
UC Santa Barbara

CS189A - Capstone

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

Announcements

•  Next Project Deliverable: Software Requirements
Specifications (SRS) are due Wednesday, February 2nd

•  Presentations on Friday

UC Santa Barbara

Project Management
“The Mythical Man-Month”, F. B. Brooks, 1975

•  A common disaster in software projects is not being able to
deliver the project on time

•  Why is this common?
–  Techniques of estimating cost of a project is poorly developed
–  Most estimating techniques confuse effort with progress, relying on

the fact that man and months are interchangeable
–  Since the estimates are not very reliable software managers are not

firm on the product delivery times
–  Progress in the project schedule is poorly monitored
–  When a slippage in the schedule is recognized the common

response is to add more manpower which makes matters worse

UC Santa Barbara

Mythical Man-Month

•  Unit of effort used in estimating and scheduling: Man-month

•  Cost may vary as the product of the number of men and the
number of months, but progress does not.

•  Man-month as a unit for measuring the size of a job is wrong
–  For most cases, a job that takes a software developer two months

cannot be done by two software developers in one month

UC Santa Barbara

Mythical Man-Month

•  Men and months are interchangeable only when a task can be
partitioned among many workers with no communication among
them
–  Which is not true for software development projects

•  There are sequential constraints in software development:
–  For example, you cannot integrate and do integration testing on two

modules before implementing both of them

•  When a task cannot be partitioned because of sequential
constraints, the application of more effort has no effect on the
schedule
–  You can not cook one pie faster with two ovens

UC Santa Barbara

Mythical Man-Month

•  In tasks that can be partitioned but which require communication
among subtasks, the effort of communication must be added to
the amount of work to be done

•  Added communication has two parts:
–  Training

•  The added worker must be trained in the technology, the goals of the
effort, the overall strategy, the plan of the work

•  Training cannot be partitioned
–  Intercommunication

•  If each part of the task must be separately coordinated with each other
part, the communication effort increases quadratic: n(n-1)/2

•  3 developers require 3 times as mush communication effort as 2
developers, 4 developers require 6 times as much communication effort
as two developers

UC Santa Barbara

Communication Effort

3 developers,
3 communication paths

4 developers
6 communication paths

5 developers
10 communication paths

UC Santa Barbara

Adding More People

Due to sequential constraints
the relationship will not be linear

Actually, since software development
is a complex task the communication
overhead is big, therefore adding more
people to a project can lengthen rather than
shorten the schedule

Number of people

Months

Number of people

Months

Project duration

Brook’s Law: Adding more manpower to a late software project makes it later.

UC Santa Barbara

A Side Note: Parallel Programming

•  The same issues come up in parallel programming

•  In parallel programming the main idea is to partition a computer
program to a set of sub-programs which will run on different
processors so that the result is obtained faster
–  Useful for scientific computing applications that require a lot of

computing power such as weather forecast

UC Santa Barbara

A Side Note: Parallel Programming

•  The speed-up on P processors is defined as
 S(P) = (exec. time on 1 processor) / (exec. time on P processors)

•  In an ideal situation one would want the speed-up to increase
linearly with the number of processors

•  However, sequential constraints and communication overhead
prevents this
–  Hence, most of the time, one cannot trade execution time with

number of processors

UC Santa Barbara

A Side Note: Parallel Programming

Sequential constraints: due to parts of the
program that cannot be parallelized
(e.g., initialization) speed-up is not linear

P (number of processors)

S(P)
(Speed-up)

P (number of processors)

S(P)
(Speed-up)

Typical speed-up curve: Added
communication overhead will eventually
degrade the performance, i.e., adding
more processors will actually slow down
the program.

UC Santa Barbara

Cost Estimation, Metrics

•  Estimating how long a software project will take is difficult

•  Monitoring the progress in a project is crucial for project
management

•  For both of these, one needs good metrics
–  It is hard to measure software
–  Different phases of software require different metrics: requirements,

design, implementation

UC Santa Barbara

Size of Code as a Metric

•  KLOC: Thousand Lines of Code
–  Different languages imply different lengths of code
–  The number of lines in the code will vary based on the

programmer’s ability

•  DSI: Delivered Source Instructions
–  The number of lines of code delivered to customer

•  NCSS: Non-Commented Source Statements
–  Ignore comments

UC Santa Barbara

Cost Estimation, Metrics

•  Function points: weighted sum of the following
–  the number of inputs: distinct number of items the user provides to

the system (weight 4)
–  the number of outputs: distinct number of items that the system

provides to the user (weight 5)
•  In counting inputs and outputs a group of similar items are counted as

one item
–  the number of inquiries: distinct interactive queries to the system

that require an action (weight 4)
–  the number of files (weight 10)
–  the number of external interfaces to other systems (weight 7)

UC Santa Barbara

Causes of Inaccurate Cost Estimation

•  Lederer and Prasad investigated cost estimation practices in 115
different organizations:

“Nine Management Guidelines for Better Cost Estimating,” Lederer and Prasad,
Communications of the ACM, 35, pp, 51-59, February 1992.

•  35% indicated that their estimates were “moderately unsatisfactory” or
“very unsatisfactory”

•  Key causes for inaccurate estimates were:
–  Frequent requests for changes by customers
–  Overlooked tasks
–  Customers’ lack of understanding of their own requirements
–  Insufficient analysis when developing an estimate
–  Lack of coordination during development
–  Lack of an adequate method or guidelines for estimating

UC Santa Barbara

Causes of Inaccurate Cost Estimation

•  In Lederer and Prasad study, the key influences on estimates
were found to be
–  Complexity of the proposed application system
–  Required integration with existing systems
–  Complexity of the programs in the system
–  Size of the system expressed in number of functions or programs
–  Capabilities of the project team members
–  Project team’s experience with the application
–  Anticipated frequency of extent of potential changes in user

requirements
–  Project team’s experience with the programming language
–  Number of project team members
–  Extent of programming or documentation standards
–  Availability of supporting software tools

UC Santa Barbara

Planning and Monitoring

•  One can use PERT (Program Evaluation and Review
Technique) charts or Gantt charts (developed by Henry L.
Gantt) for planning and monitoring a project

•  Break the project into tasks
–  Estimate the amount of time required for completing each task
–  Tasks should not be too large (it is harder to estimate larger tasks)

•  Write the dependencies among the tasks
–  There is a dependency between two tasks if one has to be

completed before the other one starts

UC Santa Barbara

PERT Charts

•  PERT charts and critical path method can be used for project
planning and monitoring

Arcs represent the activities, nodes represent end or beginning of activities.
Dashed arcs show the critical path (longest path from the Start node to Finish node)

A

B

C

E

F

H

J

D
G

Task 1:
6 days

Task 4:
2 days Task 9: 5 days

Task 12:
3 days

Task 5: 4 days
Task 10:
 5 days Task 2: 6 days

Task 6: 4 days

Task 7: 7 days

Task 11: 5 days

Task 3: 2 days

Task 8: 4 days

UC Santa Barbara

Monitoring with PERT charts

A

B

C

E

F

H

J

D
G

Task 1:
6 days

Task 4:
2 days Task 9: 4 days

Task 12: 3 days
Task 5: 5 days

Task 10: 5 days
Task 2: 7 days

Task 6: 4 days

Task 7: 7 days

Task 11: 5 days

Task 3: 10 days

Task 8: 4 days

Thick lines indicate completed tasks.
Project has to be monitored constantly and PERT chart should be updated.
As seen above, the critical paths may change after the estimates are
updated with the exact time spent on completed activities.

UC Santa Barbara

Gantt Charts

•  Gantt Charts can also be used for project planning and scheduling

Days of the project are shown with vertical dashed lines.
Tasks are shown with horizontal rectangles
Lengths of the rectangles show the amount of time each task will take
Tasks are scheduled based on the dependencies

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Task 9

Task 10

Task 11

Task 12

Day
1

Day 18

UC Santa Barbara

An Example

•  A simple compiler project is divided in to following tasks with the
associated cost estimates:

–  Design (6 days)
–  Implement Scanner (4 days)
–  Implement Parser (5 days)
–  Implement Code Generator (7 days)
–  Integration and Testing (7 days)
–  Write Manual (4 days)

•  The dependencies among these tasks are as follows:
–  Implementation of Scanner, Parser and Code Generator and Writing of the

Manual can start after the Design is finished
–  Integration and Testing can start after Implementation of Scanner, Parser

and Code Generator are all finished

UC Santa Barbara

An Example: PERT Chart

Project
Start

Design
Finished

Implement.
Finished

Project
Finished Implement Code

Generator: 7 days

Implement Parser:
5 days Design:

6 days

Implement Scanner:
4 days

Integration and Testing:
7 days

Write Manual:
4 days

Dashed arcs show the critical path

UC Santa Barbara

An Example: Gantt Chart

Design

Imp. Parser

Imp. Code Generator

Write Manual

Imp. Scanner

Integration and Test

Day 1 Day 20

UC Santa Barbara

Team Organization

•  To limit the amount of interaction needed, one has to think about
team organization in software development

•  Chief-programmer teams (the cathedral approach)
–  One of the programmers is the chief programmer
–  Other programmers interact with the chief programmer
–  Limits the number of communication channels

Chief Programmer

Programmer Programmer Programmer

UC Santa Barbara

Team Organization

•  Democratic teams
–  Team members review each other’s work and are responsible as a

group for what every member produces

–  Team members have to own all of the system, not only the part
they develop. Every team member is responsible for the whole
product

–  Finding faults have to be encouraged and faults have to be
expected

–  Due to communication overhead democratic teams have to be
small

UC Santa Barbara

The Cathedral and the Bazaar

•  In a famous article Eric Stevens Raymond argues the merits of
Open Source Software Development (the Bazaar approach):

“The Cathedral and the Bazaar,” 1997,
http://www.catb.org/~esr/writings/cathedral-bazaar/

•  Based on his experiences in Open Source development he
states a set of observations/lessons about Open Source
development

•  These principles articulate the reasons behind the success (e.g.,
Linux) of Open Source development

•  Let’s go over his observations/lessons

UC Santa Barbara

The Cathedral and the Bazaar

•  On choosing a task:
1. “Every good work of software starts by scratching a developer’s

itch.”
•  If you want to produce good software, work on a problem that you

care about.

•  On evolutionary, incremental development:
2. “Good programmers know how to write. Great ones know how to

rewrite (and reuse).”
•  The software evolves incrementally with a lot of reuse.

3. “Plan to throw one away; you will, anyhow.”
•  It is hard to understand a problem (requirements) until after the first

time you implement a solution (implementation)
•  Prototyping

UC Santa Barbara

The Cathedral and the Bazaar

•  On maintaining open source software
4. “If you have the right attitude, interesting problems will find you.”

5. “When you lose interest in a program, your last duty to it is to hand
it off to a competent successor.”

•  These rely on the open source model where there are a large set of
developers who volunteer for the tasks.

•  It is important that the code is maintained by someone who cares about
it and understands it well.

UC Santa Barbara

The Cathedral and the Bazaar

•  On debugging open source software:
6. “Treating your users as co-developers is your least-hassle route to

rapid code improvement and effective debugging.”
•  This of course is assuming that users are programmers

7. “Release early. Release often. And listen to your customers.”
•  In order to take full advantage of the previous observation.

8. “Given a large enough beta-tester and co-developer base, almost
every problem will be characterized quickly and the fix obvious to
someone.”

•  “Linus’s Law: Given enough eyeballs, all bugs are shallow”
•  Debugging does not suffer from the quadratic communication cost that

makes large development teams problematic

UC Santa Barbara

The Cathedral and the Bazaar

•  On software design

9. “Smart data structures and dumb code works a lot better than the
other way around.”

12. “Often, the most striking and innovative solutions come from
realizing that your concept of the problem was wrong.”

13. “Perfection (in design) is achieved not when there is nothing more
to add, but rather when there is nothing more to take away.”

UC Santa Barbara

The Cathedral and the Bazaar

•  On beta-testers and users

10. “If you treat your beta-testers as if they’re your most valuable
resource, they will respond by becoming your most valuable
resource.”

11. “The next best thing to having good ideas is recognizing good
ideas from your users. Sometimes the latter is better.”

14. “Any tool should be useful in the expected way, but a truly great
tool lends itself uses you never expected.”

•  The lifetime of the program may be much longer than what the
developers expected and therefore it is important that the code is
maintainable.

