
UC Santa Barbara

CS189A - Capstone

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

Fundamental Design Principles

There are some fundamental principles in software engineering:

•  Anticipation of Change
–  We talked about this a lot in the context of software process models. The main

principle behind agile software development.

•  Separation of Concerns
–  You can see the use of this principle in the requirements analysis and specification.

For example: separating functional requirements from performance requirements.

•  Iterative (Stepwise) Refinement
–  For example, separating architectural design from detailed design

•  Modularity
–  This is what I will talk about today as it applies to software design

•  Abstraction
–  We will see examples of this when we discuss design patterns

UC Santa Barbara

Software Design

•  We can think of software design in two main phases

–  Architectural Design
•  Divide the system into a set of modules
•  Decide the interfaces of the modules
•  Figure out the interactions among different modules

–  Detailed Design
•  Detailed design for individual modules
•  Write the pre and post-conditions for the operations in each module
•  Write pseudo code for individual modules explaining key functionality

UC Santa Barbara

Modularity

•  Modularity principle suggests dividing a complex system into
simpler pieces, called modules

•  When we have a set of modules, we can use separation of
concerns and work on each module separately

•  Modularity can also help us to create an abstraction of a
module’s environment using interfaces of other modules

UC Santa Barbara

Modularization

•  According to Parnas
–  “... modularization as a mechanism for improving the flexibility and

comprehensibility of a system while allowing the shortening of its
development time.”

•  The goals of modularization are to
–  reduce the complexity of the software
–  and to improve

•  maintainability
•  reusability
•  productivity

UC Santa Barbara

Benefits of Modularization

•  Managerial (productivity)
–  development time should be shortened because several groups

work on different modules with limited need for communication

•  Product flexibility (reusability, maintainability)
–  it should be possible to make changes to one module without the

need to change others

•  Comprehensibility (reducing complexity)
–  it should be possible to study the system one module at a time

UC Santa Barbara

Modularization

•  Gouthier and Pont:

 “A well-defined segmentation of the project effort ensures
system modularity. Each task forms a separate, distinct
program module. At implementation time each module and
its inputs and outputs are well-defined, there is no confusion
in the intended interface with other system modules. At
checkout time the integrity of the module is tested
independently ... Finally, the system is maintained in
modular fashion; system errors and deficiencies can be
traced to specific system modules, thus limiting the scope of
detailed error searching.”

UC Santa Barbara

Modularization

•  A module is a responsibility assignment rather than a
subprogram

•  Question: What are the criteria to be used in dividing the system
into modules?

UC Santa Barbara

Modularization

•  In dividing a system into modules we need some guiding
principles.
–  What is good for a module?
–  What is bad for a module?

•  There are two notions which characterize good things and bad
things about modules nicely
–  Cohesion

•  We want highly cohesive modules
–  Coupling

•  We want low coupling between modules

UC Santa Barbara

Cohesion and Coupling

•  What is cohesion?
–  Type of association among different components of a module
–  Cohesion assesses why the components are grouped together in a

module

•  What is Coupling?
–  A measure of strength of interconnection (the communication

bandwidth, the dependencies) between modules
–  Coupling assesses the kind and the quantity of interconnections

among modules

UC Santa Barbara

1

3

10

2

9

6

8

7

4 5

A

B

C

10

6

7

2

4 5

1 3

9

8

A

B

C

Bad modularization:
low cohesion, high coupling

Good modularization:
high cohesion, low coupling

Cohesion and Coupling

UC Santa Barbara

Cohesion and Coupling

•  Good modularization: high cohesion and low coupling

•  One study on Fortran routines found that 50% of highly cohesive
units were fault free, whereas only 18 percent of routines with
low cohesion were fault free [Card, Church, Agesti 1986]

•  Another study found that routines with the highest coupling to
cohesion ratios had 7 times as many errors as those with the
lowest coupling to cohesion ratios and were 20 times as costly
to fix [Selby and Basili 1991]

UC Santa Barbara

Types of Cohesion

•  There are various informal categorizations of cohesion types in
a module. I will discuss some of them (starting with the ones
which are considered low cohesion)

•  WORST: Coincidental cohesion
–  Different components are thrown into a module without any

justification, i.e., they have no relation to each other
•  Maybe this was the last module where all the remaining components

were put into
–  Obviously, this type of cohesion is not good! It basically

corresponds to lack of cohesion.

UC Santa Barbara

Types of Cohesion

•  BAD: Logical cohesion
–  A module performs multiple somewhat related operations one of

which is selected by a control flag that is passed to the module

–  It is called logical cohesion because the control flow (i.e. the “logic”)
of the module is the only thing that ties the operations in the module
together

procedure operations (data1, data2, operation)
{
 switch (operation) {
 case ...: // execute operation 1 on data1
 case ...: // execute operation 2 on data2
 }
}

UC Santa Barbara

Types of Cohesion

•  BAD: Temporal cohesion
–  A module performs a set of functions related in time

•  For example an initialization module performs operations that are only
related by time

–  These operations can be working on different data types
–  A user of a module with temporal cohesion can not call different

operations separately

procedure initialize_game()
{
 // initialize the game board
 // set players' scores to 0
}

UC Santa Barbara

Types of Cohesion

•  Coincidental, logical and temporal cohesion should be avoided.
•  Such modules are hard to debug and modify.
•  Their interfaces are difficult to understand.

UC Santa Barbara

Types of Cohesion

•  BETTER: Communicational cohesion
–  Grouping a sequence of operations that operate on the same data

in the same module
–  Some drawbacks: Users of the module may want to use a subset of

the operations.

procedure operations1and2 (data)
{
 // execute operation 1 on data
 // execute operation 2 on data
}

UC Santa Barbara

Types of Cohesion

•  GOOD: Functional cohesion
–  Every component within the module contributes to performing a single

function
–  Before object orientation this was the recommended approach to

modularization.
–  No encapsulation between a data type and operations on that data type

procedure operation1 (data)
{
 // execute operation 1 on data
}

procedure operation2 (data)
 // execute operation 2 on data
}

UC Santa Barbara

Types of Cohesion

•  BEST: Informational Cohesion
–  This term is made up to mean the data and functionality encapsulation

used in object oriented design

•  A ranking of (from good to bad) types of cohesion:
informational > functional > communicational > temporal > logical > coincidental

module stack
// definition of the stack data type
procedure initialize() { .. }
procedure pop() { .. }
procedure push() { .. }
procedure top_element() { .. }

High cohesion Low cohesion

UC Santa Barbara

Types of Coupling

•  Coupling is the type and amount of interaction between modules

•  Coupling among modules
–  module A and B access to the same global variable
–  module A calls module B with some arguments

•  Arbitrary modularization will result in tight coupling
–  Loosely coupled modules are good, tightly coupled modules are bad

•  If you use only one module, you get no coupling. Good idea?
–  No! You did not reduce the complexity of the system. You did not

modularize.

UC Santa Barbara

Types of Bad Coupling

•  Common (or Global) coupling
–  Access to a common global data by multiple modules
–  Class variables are also a limited form of common coupling, use

them with caution

•  This is a bad type of coupling: The interactions among the
modules are through global data so it is very difficult to
understand their interfaces and interactions. It is hard to debug,
and maintain such code.

UC Santa Barbara

Types of Bad Coupling

int number_of_students
float student_grades[];

procedure find_maximum_grade(student_grades)
{
// traverse the array student_grades from 0 to number_of_students
// to find the maximum grade
}

procedure find_minimum_grade(student_grades)
{
// traverse the array student_grades from 0 to number_of_students
// to find the minimum grade
}

UC Santa Barbara

Types of Bad Coupling

•  Control coupling
–  If one module passes an element of control to another module
–  For example a flag passed by one module to another controls the

logic of the other module

•  This type of code is hard to understand
–  It is hard to understand the interfaces among the modules, you

need to look at the functionality to understand the interfaces

UC Santa Barbara

Types of Bad Coupling

call operations (d1, d2, opcode);

procedure operations (data1, data2, operation)
{
 switch (operation) {
 case ...: // execute operation 1 on data1
 case ...: // execute operation 2 on data2
 }
}

UC Santa Barbara

Good coupling

•  Data coupling
–  The interaction between the modules is through arguments passed

between modules
–  The arguments passed are homogenous data items

•  Data coupling is the best type of coupling

•  In the data coupling you should try to pass only the parts of data
that is going to be used by the receiving module
–  do not pass redundant parts

UC Santa Barbara

Modularization

•  Complexity
–  A design with complex modules is worse than a design with

simpler modules
–  Remember the initial motivation in modularization is to

reduce the complexity
–  If your modules are complex this means that you did not

modularize enough
–  Modularization means using divide-and-conquer approach to

reduce complexity

UC Santa Barbara

Modularization

•  Now we will discuss and compare two modularization strategies

•  These modularization strategies are both intended to generate
modules with high cohesion and low coupling

–  Modularization technique 1: Functional decomposition

–  Modularization technique 2: Parnas’s modularization technique
 “On the Criteria to be Used in Decomposing Systems into Modules”,

 Parnas 1972

UC Santa Barbara

Functional Decomposition

•  Functional decomposition
–  Divide and conquer approach
–  Use stepwise refinement

1. Clearly state the intended function
2. Divide the function to a set of sub-functions and re-express the

intended function as an equivalent structure of properly connected sub-
functions, each solving part of the problem

3. Divide each sub-function far enough until the complexity of each sub-
function is manageable

•  How do you divide a function to a set of sub-functions? What is
the criteria? This approach does not specify the criteria for
decomposition
–  Based on how you decompose the system the modules will show

different types of cohesion and coupling

UC Santa Barbara

Functional Decomposition

•  One way of achieving functional decomposition: Make each step in the
computation a separate module

–  Draw a flowchart showing the steps of the computation and convert steps of
the computation to modules

–  Shortcoming: Does not specify the granularity of each step

•  Another way of achieving functional decomposition is to look at the data
flows in the system

–  Represent the system as a set of processes that modify data. Each process
takes some data as input and produces some data as output.

–  Each process becomes a module

•  Shortcoming: Both of these approaches produce a network of modules,
not a hierarchy

UC Santa Barbara

What about Data Structures?

•  Fred Brooks: “Show me your code and conceal your data structures, and I
shall continue to be mystified. Show me your data structures, and I won’t
usually need your code; it’ll be obvious.”

•  Eric Stevens Raymond: “Smart data structures and dumb code works a lot
better than the other way around.”

•  Functional decomposition focuses on operations performed on data

•  According to Brooks and Raymond data structures should come first

•  Parnas’s modularization approach pays attention to data

UC Santa Barbara

Example:
KWIC Index Production System

•  The KWIC (Key Word In Context) index system
–  Accepts an ordered set of lines

–  Each line is an ordered set of words, and each word is an
ordered set of characters.

–  Any line may be “circularly shifted” by repeatedly removing
the first word and appending it at the end of the line.

–  The KWIC index system outputs a listing of all circular shifts
of all lines in alphabetical order.

UC Santa Barbara

KWIC: Input and Output

Input: Output:
to understand better an example need
need an example better to understand

 example need an
 need an example
 to understand better
 understand better to

UC Santa Barbara

Modularization 1

•  Use functional decomposition
•  Generate five modules based on the functionality

1.  Input: Read the data lines from the input and store them internally
in an array that will be accessed by other modules

2.  Circular Shifter: Called after the input module finishes its work.
Prepares an array of all circular shifts: Each array item is a pair
(original line number, location of the first character of the circular
shift)

3.  Alphabetizing: Using the arrays produced by the first two modules
this module produces an array in the same format produced by
module 2 but the array is ordered based on the alphabetical order

UC Santa Barbara

Modularization 1

•  Remaining modules

4.  Output: Using the arrays produced by modules 1 and 3 it
produces the output listing of all the circular shifts in alphabetical
order

5. Master Control: Controls the sequencing among the other four
modules, can also handle error messages, space allocation etc.

UC Santa Barbara

Module 1 Module 2 Module 3 Module 4
Input Circular-Shifter Alphabetizer Output

1 “to understand better” (1, 1) (2,6) an example need
2 “need an example” (1, 4) (1,15) better to understand

 (1,15) (2,9) example need an
 (2,1) (2,1) need an example
 (2,6) (1,1) to understand better
 (2,9) (1,15) understand better to

line number

character location in line
(start from that character and
wrap around to get the circular shift)

Reads the input
and creates an
array of strings

Generates an array
listing all the
circular shifts

Sorts the circular
shift array

Generates the
output

Module 5
Master Control

Decides the control flow
handles error messages etc.

Modularization 1

UC Santa Barbara

Modularization 2

•  Input: Reads the input and calls the Line Storage module to
have them stored internally

•  Line Storage: This module consists of a number of procedures
such as

CHAR(r,w,c): returns the cth character in the wth word of the rth line
WORDS(r): returns as value the number of words in line r
…

 All the above procedures have certain restrictions in the way
they can be called and if these restrictions are violated they
raise an exception that should be handled by the caller

UC Santa Barbara

Modularization 2

•  Circular Shifter: Provides essentially the same functionality as
the Line Storage module. It creates the impression that not the
original lines but all the circular shifts of the original lines are
stored

 CS_CHAR(l,w,c): returns the cth character in the wth word of the lth
circular-shift

 It is specified that
(1)  if i < j then the shifts of line i precede the shifts of line j
(2)  for each line the first shift is the original line, the second shift is

obtained by making a one-word rotation to the first shift, etc.

 A function CSSETUP is provided which must be called before
other functions have their specified values

UC Santa Barbara

Modularization 2

•  Alphabetizer: Provides two functions
 ALPH must be called before the other function has a meaningful
value
 ITH(i): Gives the index of the circular-shift that comes ith in the
alphabetical ordering

•  Output: Prints the circular-shifts in alphabetical order

•  Master Control: Similar to the previous modularization, controls
the sequencing among the other four modules

UC Santa Barbara

Comparison

•  Both approaches would work

•  Actually, the generated binary code for both approaches might
be identical

•  The differences are in the way they are divided to different
modules and the interfaces between modules

•  Binary representation is for running the program on a machine
–  However other representations (design specification, source code)

is for changing, documenting, and understanding. Two systems will
not be same in terms of these other representations

UC Santa Barbara

Changeability

There are a number of design decisions that could change:

1.  Input format

2.  The decision to store all lines in main memory
•  It may be necessary to use disk storage for some applications

3.  Storage format for the string can change

4.  Using an index array for circular shifts.
•  It may be better to store them as strings for some applications.

5.  Alphabetize the list at once rather than searching for an item
when needed, or partially alphabetize

UC Santa Barbara

Changeability

 Now, let’s look at how different modularizations perform under these
changes:

•  The 1st change (changing the input format) is confined to the Input
module in both modularizations

•  The 2nd and 3rd changes (not storing lines in memory and changing
the storage format for strings) will require changing every module in the
first modularization. Every module accesses the storage format of the
lines and strings. The situation is completely different for the second
modularization, only the Line Storage module has to change:

–  The knowledge of exact way the lines are stored is entirely hidden from all
but the Line Storage module

UC Santa Barbara

Changeability

•  The 4th change (not using an index array for circular shifts) is confined
to the Circular-shifter module in the second decomposition but in the
first decomposition in addition to Circular-shifter, Alphabetizer and
Output modules will have to change too

•  The 5th change (alphabetizing incrementally or partially) will also be
difficult for the first decomposition. Since the Output module expects
the index to have been completed before it began, this change will not
be confined to the Alphabetizer module. In the second decomposition
the user of the Alphabetizer module (i.e., the output module) does not
know exactly when the alphabetizing is done so the modification will be
confined to the Alphabetizer module.

UC Santa Barbara

Independent Development

•  In the first modularization the interfaces between the modules
are complex involving arrays for strings and index arrays
–  The design of these data structures are important for the efficiency

of the system. The design of the data structures will involve all
development groups working on different modules

•  In the second decomposition interfaces are abstract, they
involve function names and types and number of parameters
–  These decisions are much easier. Hence, independent

development of the modules can begin much earlier

UC Santa Barbara

Comprehensibility

•  To understand the code of the different modules in the first
decomposition one has to understand the storage formats.

•  In the second decomposition this is only necessary for
understanding the line storage module.
–  The rest of the modules can be understood without understanding

how data is stored.

UC Santa Barbara

First Modularization

•  Functional decomposition

•  Makes each step in the computation a separate module
–  Draw a flowchart showing the steps of the computation and convert

steps of the computation to modules

UC Santa Barbara

•  Every module in the second decomposition is characterized by
its knowledge of a design decision which it hides from others.
–  Its interface or definition is chosen to reveal as little as possible

about its inner workings
–  This principle is called Information Hiding

•  Modules do not correspond to steps in the computation

•  A data structure, its internal representation, and accessing and
modifying procedures for that data structure are part of a single
module

Second Modularization

UC Santa Barbara

What about Efficiency?

•  There will be too many procedure calls in the second approach
which may degrade the performance

–  Use inline expansion, insert the code for a procedure at the site of
the procedure call to save the procedure call overhead

–  This is a common compiler optimization

UC Santa Barbara

Parnas ~ Object Oriented Design

•  In his paper on modularization, even without an object-oriented
programming language, Parnas advocates principles of object-
oriented design and programming
–  Information hiding
–  Encapsulation: line storage module encapsulates the data and the

functionality
–  Abstraction: Circular shift module is a specialization of the line

storage module
–  Inheritance: Circular shift module can inherit some functionality

from the line storage module
–  Polymorphism: In the “Hierarchical Structure” section Parnas talks

about having a parameterized version of the system where either
circular shift or the original line storage module is used

•  All of these features are supported by modern object-oriented
languages such as C++ and Java

UC Santa Barbara

Modularization Summary

•  The goals of modularization are to reduce the complexity of the
software, and to improve maintainability, reusability and
productivity.

•  A module is a responsibility assignment rather than a subprogram.

•  Good modularization: highly cohesive modules and low coupling
between modules

•  One modularization approach:
–  Functional decomposition: Draw a flowchart showing the steps of the

computation and convert steps of the computation to modules.

•  Better modularization approach:
–  Information hiding: Isolate the changeable parts, make each changeable

part a secret for a module. Module interface should not reveal module’s
secrets.

