
UC Santa Barbara

CS189A - Capstone

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

Design by Contract

•  Design by Contract and the language that implements the Design by
Contract principles (called Eiffel) was developed in Santa Barbara by
Bertrand Meyer

•  Meyer won the 2006 ACM Software System Award for the Eiffel!
–  Award citation: “For designing and developing the Eiffel programming

language, method and environment, embodying the Design by Contract
approach to software development and other features that facilitate the
construction of reliable, extendible and efficient software.”

•  The company which supports the Eiffel language is located in Santa
Barbara:

–  Eiffel Software (http://www.eiffel.com)

•  The material in the following slides is mostly from the following paper:
–  “Applying Design by Contract,” B. Meyer, IEEE Computer, pp. 40-51,

October 1992.

UC Santa Barbara

Dependability and Object-Orientation

•  An important aspect of object oriented design is reuse
–  For reusable components correctness is crucial since an error in a module

can effect every other module that uses it

•  Main goal of object oriented design and programming is to improve the
quality of software

–  The most important quality of software is its dependability

•  Design by contract presents a set of principles to produce dependable
and robust object oriented software

–  Basic design by contract principles can be used in any object oriented
programming language

UC Santa Barbara

What is a Contract?

•  There are two parties:
–  Client which requests a service
–  Supplier which supplies the service

•  Contract is the agreement between the client and the supplier

•  Two major characteristics of a contract
–  Each party expects some benefits from the contract and is prepared to incur

some obligations to obtain them
–  These benefits and obligations are documented in a contract document

•  Benefit of the client is the obligation of the supplier, and vice versa.

UC Santa Barbara

What is a Contract?

•  As an example let’s think about the contract between a tenant
and a landlord

Party Obligations Benefits

Tenant Pay the rent at the
beginning of the month.

Stay at the apartment.

Landlord Keep the apartment in
a habitable state.

Get the rent payment
every month.

UC Santa Barbara

What is a Contract?

•  A contract document between a client and a supplier protects
both sides
–  It protects the client by specifying how much should be done to get

the benefit. The client is entitled to receive a certain result.
–  It protects the supplier by specifying how little is acceptable. The

supplier must not be liable for failing to carry out tasks outside of
the specified scope.

•  If a party fulfills its obligations it is entitled to its benefits
–  No Hidden Clauses Rule: no requirement other than the obligations

written in the contract can be imposed on a party to obtain the
benefits

UC Santa Barbara

What is this all about?

•  You are not in law school, so what are we talking about?

•  Here is the basic idea
–  One can think of pre and post conditions of a procedure as

obligations and benefits of a contract between the client (the caller)
and the supplier (the called procedure)

•  Design by contract promotes using pre and post-conditions
(written as assertions) as a part of module design

•  Eiffel is an object oriented programming language that supports
design by contract
–  In Eiffel the pre and post-conditions are written using require and

ensure constructs, respectively

UC Santa Barbara

Design by Contract in Eiffel

In Eiffel procedures are written is in the following form:

procedure_name(argument declarations) is
 -- Header comment
require
 Precondition
do
 Procedure body
ensure
 Postcondition
end

UC Santa Barbara

Design by Contract in Eiffel

put_child(new_child: NODE) is
 -- Add new to the children of current node
require
 new_child /= Void
do
 ... Insertion algorithm ...
ensure
 new_child.parent = Current;
 child_count = old child_count + 1
end -- put_child

•  Current refers to the current instance of the object (this in Java)
•  Old keyword is used to denote the value of a variable on entry to the procedure
•  Note that “=“ is the equality operator (== in Java) and “/=“ is the
inequality operator (!= in Java)

UC Santa Barbara

The put_child Contract

•  The put_child contract in English would be something like the
table below.
–  Eiffel language enables the software developer to write this contract

formally using require and ensure constructs

Party Obligations Benefits

Client Use as argument a
reference, say
new_child, to an existing
object of type Node.

Get an updated tree where
the Current node has one
more child than before;
new_child now has
Current as its parent.

Supplier Insert new_child as
required.

No need check if the
argument actually points to
an object.

UC Santa Barbara

Contracts

•  The pre and postconditions are assertions, i.e., they are
expressions which evaluate to true or false
–  The precondition expresses the requirements that any call must

satisfy
–  The postcondition expresses the properties that are ensured at the

end of the procedure execution

•  If there is no precondition or postcondition, then the precondition
or postcondition is assumed to be true (which is equivalent to
saying there is no pre or postcondition)

UC Santa Barbara

Assertion Violations

•  What happens if a precondition or a postcondition fails (i.e.,
evaluates to false)
–  The assertions can be checked (i.e., monitored) dynamically at run-

time to debug the software
–  A precondition violation would indicate a bug at the caller
–  A postcondition violation would indicate a bug at the callee

•  Our goal is to prevent assertion violations from happening
–  The pre and postconditions are not supposed to fail if the software

is correct
•  hence, they differ from exceptions and exception handling

–  By writing the contracts explicitly, we are trying to avoid contract
violations, (i.e, failed pre and postconditions)

UC Santa Barbara

Assertion Violations

•  In the example below, if new_child = Void then precondition fails

•  The procedure body is not supposed to handle the case where
new_child = Void, that is the responsibility of the caller

put_child(new_child: NODE) is
 -- Add new to the children of current node
require
 new_child /= Void
do
 ... Insertion algorithm ...
ensure
 new_child.parent = Current;
 child_count = old child_count + 1
end -- put_child

UC Santa Barbara

Defensive Programming vs. Design by Contract

•  Defensive programming is an approach that promotes putting
checks in every module to detect unexpected situations

•  This results in redundant checks (for example, both caller and
callee may check the same condition)
–  A lot of checks makes the software more complex and harder to

maintain

•  In Design by Contract the responsibility assignment is clear and
it is part of the module interface
–  prevents redundant checks
–  easier to maintain
–  provides a (partial) specification of functionality

UC Santa Barbara

Class Invariants

•  A class invariant is an assertion that holds for all instances
(objects) of the class
–  A class invariant must be satisfied after creation of every instance

of the class
–  The invariant must be preserved by every method of the class, i.e.,

if we assume that the invariant holds at the method entry it should
hold at the method exit

–  We can think of the class invariant as conjunction added to the
precondition and postcondition of each method in the class

invariant
 left /= Void implies (left.parent = Current)
 right /=Void implies (right.parent = Current)

UC Santa Barbara

Design by Contract and Inheritance

•  Inheritance enables declaration of subclasses which can
redeclare some of the methods of the parent class, or provide
an implementation for the abstract methods of the parent class

•  Polymorphism and dynamic binding combined with inheritance
are powerful programming tools provided by object oriented
languages
–  How can the Design by Contract can be extended to handle these

concepts?

UC Santa Barbara

ClassA

someMethod()

ClassB

Client

someMethod()

Inheritance: Preconditions

•  If the precondition of the
ClassB.someMethod is stronger
than the precondition of the
ClassA.someMethod, then this is
not fair to the Client

•  The code for ClassB may have
been written after Client was
written, so Client has no way of
knowing its contractual
requirements for ClassB

UC Santa Barbara

ClassA

someMethod()

ClassB

Client

someMethod()

Inheritance: Postconditions

•  If the postcondition of the
ClassB.someMethod is weaker
than the postcondition of the
ClassA.someMethod, then this is
not fair to the Client

•  Since Client may not have
known about ClassB, it could
have relied on the stronger
guarantees provided by the
ClassA.someMethod

UC Santa Barbara

Inheritance

•  Eiffel enforces the following
–  the precondition of a derived method to be weaker
–  the postcondition of a derived method to be stronger

•  In Eiffel when a method overwrites another method the new declared
precondition is combined with previous precondition using disjunction

•  When a method overwrites another method the new declared
postcondition is combined with previous postcondition using
conjunction

•  Also, the invariants of the parent class are passed to the derived
classes

–  invariants are combined using conjunction

UC Santa Barbara

ClassA

ClassB

Client

someMethod()

someMethod()

In ClassA:
invariant
 classInvariant
someMethod() is
require
 Precondition
do
 Procedure body
ensure
 Postcondition
end

In ClassB which is derived from ClassA:
invariant
 newClassInvariant
someMethod() is
require
 newPrecondition
do
 Procedure body
ensure
 newPostcondition
end

Inheritance - Example

UC Santa Barbara

The precondition of ClassB.aMethod is defined as:
 newPrecondition or Precondition

The postcondition of ClassB.aMethod is defined as:
 newPostcondition and Postcondition

The invariant of ClassB is
 classInvariant and newClassInvariant

Inheritance - Example

UC Santa Barbara

Dynamic Design-by-Contract Monitoring

•  Enforce contracts at run-time

•  A contract
–  Preconditions of modules

•  What conditions the module requests from the clients
–  Postconditions of modules

•  What guarantees the module gives to clients
–  Invariants of the objects

•  Precondition violation, the client is to blame
–  Generate an error message blaming the client (caller)

•  Postcondition violation, the server is to blame
–  Generate an error message blaming the server (callee)

UC Santa Barbara

Writing Contracts in JML

•  Java Modeling Language (JML) is an annotation language for Java that
enables specification of contracts for Java classes as annotations.

http://www.cs.iastate.edu/~leavens/JML/

•  JML can be used to write pre, post-conditions and invariants for Java
classes

•  There are dynamic contract checking tools based on JML (jmlc) that
compile the source code and insert assertion checks for dynamic
contract checking

•  There are static contract checking tools (such as ESC Java) which
check JML contracts statically

–  Static verification tools can check contracts at compile-time rather than
runtime. JContractor checks contracts at runtime.

UC Santa Barbara

jContractor: Design-by-Contract for Java

•  jContractor is a design by contract tool for Java
–  http://jcontractor.sourceforge.net/
–  Developed here at UCSB by Murat Karaorman

•  References:
–  “jContractor Crash Course”, Parker Abercrombie, http://

jcontractor.sourceforge.net/doc/crashcourse.html
–  jContractor: Bytecode instrumentation techniques for implementing

design by contract in Java." In Proceedings of Second Workshop
on Runtime Verification, RV 02. Copenhagen, Denmark. July 26,
2002.

UC Santa Barbara

Preconditions

•  Precondition of a method is written as a Boolean method and its name
is the method name followed by "_Precondition"

•  A method's precondition is checked when execution enters the method.
•  Precondition methods return Boolean and take the same arguments as

the non-contract method that they correspond to.

protected boolean push_Precondition (Object o) {

 return o != null;
}
private boolean searchStack_Precondition (Object o) {
 return o != null;
}

protected boolean Stack_Precondition (Object [] initialContents) {
 return (initialContents != null) && (initialContents.length > 0);
}

UC Santa Barbara

jContractor

•  Contracts in jContractor are written as Java methods that follow
a simple naming convention.
–  Assertions are written as Java methods that return a Boolean value

•  jContractor provides runtime contract checking by instrumenting
the bytecode of classes that define contracts.

•  jContractor can
–  either add contract checking code to class files to be executed

later,
–  or it can instrument classes at runtime as they are loaded.

•  Contracts can be written in the class that they apply to, or in a
separate contract class.

UC Santa Barbara

An Example Class

class Stack implements Cloneable {
 private Stack OLD;
 private Vector implementation;
 public Stack () { ... }
 public Stack (Object [] initialContents) { ... }
 public void push (Object o) { ... }
 public Object pop () { ... }
 public Object peek () { ... }
 public void clear () { ... }
 public int size () { ... }
 public Object clone () { ... }
 private int searchStack (Object o) { ... }
}

UC Santa Barbara

Postconditions

•  Postcondition of a method is written as a Boolean method and its name is the
method name followed by "_Postcondition"

•  A method's postcondition is checked just before the method returns.
•  Postcondition methods return Boolean and take the same arguments as the

non-contract method, plus an additional argument of the method's return type.
This argument (called RESULT) must be the last in the list, and holds the value
returned by the method.

protected boolean push_Postcondition (Object o, Void RESULT) {
 return implementation.contains(o) && (size() == OLD.size() + 1);
}

protected boolean size_Postcondition (int RESULT) {
 return RESULT >= 0;
}

protected boolean Stack_Postcondition (Object [] initialContents,
Void RESULT) {
 return size() == initialContents.length;
}

UC Santa Barbara

Postconditions

•  Postconditions may refer to the state of the object at method
entry through the OLD instance variable.

•  This variable must be declared private, and must have the same
type as the class that contains it.

•  If a class defines an OLD variable, it must also implement
Cloneable and provide a clone() method.

•  When execution enters a method, a clone of the object will be
created and stored in OLD.

UC Santa Barbara

Invariants

•  Class invariants are checked at the entry and exit of every
public method in the class.

•  The invariant is defined in a method called "_Invariant" that
takes no arguments and returns a boolean.

protected boolean _Invariant () {
 return size() >= 0;

}  

UC Santa Barbara

Assertion Evaluation Rule

•  Since in the jContractor approach we use Java methods to write
preconditions, postconditions and invariants, some problems
may occur

•  Consider the example below where invariant method makes a
call to the method size().

•  When size method is called the invariant is checked at the entry
which makes a call to size(), and this results in an infinite
recursion

class Stack {
 ...
 public int size () { ... }
 protected boolean _Invariant () { return size() >= 0; }
}

UC Santa Barbara

Assertion Evaluation Rule

•  To solve this problem, jContractor uses the following rule
–  Assertion Evaluation Rule: Only one contract can be checked at

a time

•  In the Stack example, the invariant will call size() and since
there is already a contract check in progress the invariant will
not be checked on size()

•  jContractor implements Assertion Evaluation Rule by
maintaining a shared hash table of threads that are actively
checking contracts. Before a thread checks a contract it queries
the table to see if it is already checking one.

UC Santa Barbara

Implementing OLD

•  jContractor uses the OLD instance variable in postconditions

class Stack {
 private Stack OLD;
 private Vector implementation;
 ...
 public void push (Object o) { implementation.addElement(o); }
 protected boolean push_Precondition (Object o) {
 return o != null; }
 protected boolean push_Postcondition (Object o, Void RESULT) {
 return implementation.contains(o) &&
 (size() == OLD.size() + 1);
 }
}

UC Santa Barbara

Implementing OLD

•  Simply storing the cloned state in the OLD instance variable is not
sufficient.

–  The value needs to be saved at the entry point of every method that uses
OLD in its postcondition

•  Hence following instrumentation would not work

public void push (Object o) {
 OLD = (Stack) clone();
 // Check precondition and invariant
 // Method body
 // Check postcondition. OLD holds state at entry
 // Check invariant
}

UC Santa Barbara

Implementing OLD

•  jContractor uses a stack to store OLD instances

public void push (Object o) {
 jContractorRunTime.pushState(clone());
 // check precondition and invariant
 // Method body
 // Check postcondition and invariant
}

protected boolean push_Postcondition (Object o, Void RESULT) {
 Stack $old = (Stack) jContractorRuntime.popState();
 return implementation.contains(o) && (size() == $old.size() + 1);
}

UC Santa Barbara

Writing Contacts in OCL

•  Object Constraint Language (OCL) is a specification language
that supports specification of contracts (i.e., pre, post conditions
and invariants) in UML class diagrams.

•  OCL constraints have formal syntax and semantics
–  their interpretation is unambiguous

•  OCL can be used to add precision to UML diagrams

•  There are tools which check OCL constraints.:
–  USE (A UML-based Specification Environment)

 http://www.db.informatik.uni-bremen.de/projects/USE/
–  Enables analysis of UML diagrams before implementation

