
CS189A/172 - Winter 2010

Lectures 13 and 14: Design Patterns

What are Design Patterns?

•  Think about the common data structures you learned
–  Trees, Stacks, Queues, etc.

•  These data structures provide a set of tools on how to organize data
•  Probably you implement them slightly differently in different projects
•  Main concepts about these data structures, such as

–  how to store them
–  manipulation algorithms

 are well understood
•  You can easily communicate these data structures to another software

developer by just stating their name
•  Knowing them helps you when you are dealing with data organization

in your software projects
–  Better than re-inventing the wheel

What are Design Patterns?

•  This is the question:
–  Are there common ideas in architectural design of software that we

can learn (and give a name to) so that
•  We can communicate them to other software developers
•  We can use them in architectural design in a lot of different

contexts (rather than re-inventing the wheel)

•  The answer is yes according to E. Gamma, R. Helm, R. Johnson, J.
Vlissides
–  They developed a catalog of design patterns that are common in

object oriented software design

What are Design Patterns?

•  Design patterns provide a mechanism for expressing common object-
oriented design structures

•  Design patterns identify, name and abstract common themes in object-
oriented design

•  Design patterns can be considered micro architectures that contribute
to overall system architecture

•  Design patterns are helpful
–  In developing a design
–  In communicating the design
–  In understanding a design

Origins of Design Patterns

•  The origins of design patterns are in architecture (not in software
architecture)

•  Christopher Alexander, a professor of architecture at UC Berkeley,
developed a pattern language for expressing common architectural
patterns

•  Work of Christopher Alexander inspired the work of Gamma et al.
•  In explaining the patterns for architecture, Christopher Alexander says:

 “Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way
twice”

•  These comments also apply to software design patterns

Resources for Design Patterns

•  “Design Patterns: Abstraction and Reuse of Object-Oriented Design”
by E. Gamma, R. Helm, R. Johnson, J. Vlissides
–  Original paper

•  Later on same authors published a book which contains an extensive
catalog of design patterns:
–  “Design Patterns: Elements of Reusable Object-Oriented Software”,

by E. Gamma, R. Helm, R. Johnson, J. Vlissides, Addison-Wesley,
ISBN 0-201-63361-2

–  This book is a catalog of design patterns. I recommend it.
•  A more recent book

–  “Design Patterns Explained”, by A. Shalloway and J. R. Trott,
Addison-Wesley, ISBN: 0-201-71594-5

•  Design patterns resources at Doug Schmidt’s webpage (including
tutorials):
–  http://www.cs.wustl.edu/~schmidt/patterns.html

Cataloging Design Patterns

•  Gamma et al. present:
–  A way to describe design patterns
–  A way to organize design patterns by giving a classification system

•  More importantly, in their book on design patterns, the authors give a
catalog of design patterns
–  As a typical developer you can use patterns from this catalog
–  If you are a good developer you can contribute to the catalog by

discovering and reporting new patterns

•  The template for describing design patterns used by Gamma et al. is
given in the next slide

Design Pattern Template

DESIGN PATTERN NAME Jurisdiction Characterization
the name should convey pattern’s essence succinctly used for categorization

Intent
 What particular design issue or problem does the design pattern address?
Motivation
 A scenario in which the pattern is applicable. This will make it easier to understand the
 more abstract description that follows.
Applicability
 What are the situations the design pattern can be applied?
Participants
 Describe the classes and/or objects participating in the design pattern and their
 responsibilities.
Collaborations
 Describe how the participants collaborate to carry out their responsibilities.
Diagram
 A class diagram representation of the pattern (extended with pseudo-code).
Consequences
 What are the trade-offs and results of using the pattern?
Implementation
 What pitfalls, hints, or techniques should one be aware of when implementing the pattern?
Examples
 Examples of applications of the pattern in real systems.
See Also
 What are the related patterns and what are their differences?

Case Study: A Text Editor

•  A case study from the Design Patterns book by Gamma et al.

•  Use of design patterns in designing a
–  WYSIWYG document editor

Case Study: A Text Editor

•  Issues to be addressed in designing the editor
–  Document structure. How should we store the document internally?
–  Formatting. How should we arrange text and graphics into lines

and columns?
–  User interface includes scroll bars, borders, etc. and it should be

extensible to include other embellishments.
–  The editor should support multiple look-and-feel standards.
–  The editor should work in multiple window systems.
–  There should be a uniform way to deal with user operations (and

possibly undo them).
–  How to traverse the document for operations such as spell-

checking?

Problem 1: Document Structure

•  The document contains:
–  Primitive elements which are not decomposable

•  such as characters and images
–  Composed elements

•  lines: a list of primitive elements
•  columns: a list of lines
•  pages: a list of columns
•  documents: a list of pages

•  What class structure should we use to store these document
elements?

Document Structure: Possible Solutions

•  A solution:
–  Create a class for each element: Character, Image, Line, Column,

Page, Document
–  Each composed element has a list of objects of some type for its

parts
–  Problem: Not flexible, if we add a new kind of element we need to

change other classes
–  Problem: There is no way to uniformly treat all the elements

•  A better solution:
–  Use an abstract class for all elements
–  Each element is realized by a subclass of the abstract class
–  All elements have the same interface defined by the abstract class

•  How to draw, insert, etc.
–  Treats all elements uniformly
–  It is easy to extend the class structure with new elements

Element

Draw(Window)
Intersects(Point)
Insert(Element g, int i)
Remove(int i)

Line

Client

Image

Class Diagram

Draw(Window w)
Intersects(Point p)
Insert(Element g, int i)
Remove(int i)

Draw(Window w)
Intersects(Point p)

Character

Draw(Window w)
Intersects(Point p)

children

.

Operations

•  Draw(Window w)
–  Each primitive element draws itself to a window
–  Each compound element calls Draw method of each of its children

to draw itself
•  Intersects(Point p)

–  Each primitive element checks if it intersects a point
–  A compound element intersects a point if one of its elements

intersect that point (i.e., a compound elements’ Intersects
method calls Intersects methods of its children)

•  Child(int i)
–  Returns a child of a compound element

•  Insert(Element g, int i), Remove(int i)
–  Compound elements have Insert and Remove operations (to

insert or remove their children) whereas basic elements do not

Operations

•  Following operations are not supported by the primitive elements (like
Character and Image) but are only supported by compound
elements (like Line)
–  Child(int i), Insert(Element g, int i),
Remove(int i)

•  So if you make these operations part of the abstract base class
Element (as shown in the previous slide), then at runtime you have to
make sure that if one of these operations are called on primitive
elements, either an exception is raised or the call has no effect (i.e., it
is a no-op).

•  Alternatively you can remove these operations from the abstract base
class to make sure that they are never called on instances of primitive
elements. However, this means that you lose some of the uniformity
between the primitive and compound elements.

Recursive Composition: Composite
Pattern

•  The design pattern we used is called the Composite Pattern
–  aka recursive composition

•  Composite Pattern is one of the entries in the design catalog

•  It can be used in all cases where you have a hierarchical structure and
leaves and internal nodes share the same functionality
–  For example my research group used it in our automated

verification tool for storing logic formulas

•  Let’s look at the catalog entry for Composite Pattern in the Design
Patterns book

COMPOSITE Compound Structural

Intent
 Composite lets clients treat individual objects and compositions of objects uniformly.

Motivation
 Graphics applications like drawing editors and schematic capture systems let users build
 complex diagrams out of single components. The user can group components to form
 larger components.

 The code that uses these classes must treat primitive and container objects differently,
 even if most of the time the user treats them identically. Having to distinguish these
 objects makes the application more complex. Composite pattern describes how to use
 recursive composition so the clients do not have to make this distinction.

 The key to Composite pattern is an abstract class that represents both primitives and their
 containers.

Component

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Composite

Operation()

Client

Leaf

Class Diagram for the Composite Pattern

Operation()
Add(Component)
Remove(Component)
GetChild(int)

A Composite object structure :Composite

:Leaf :Composite :Leaf

:Leaf

Digression on UML:
•  The above diagram is an object diagram
•  Each rectangle in an object diagram represents an object
•  Objects in UML are written as name:ClassName
•  If object name is not provided then we call it an anonymous object
•  Attribute values of an object can be written in the rectangle representing the object
•  The arcs in the diagram show the links between different objects (which are
instantiations of the associations among different classes)

Applicability
 Use Composite pattern when

•  you want to represent part-whole hierarchies of objects
•  you want client to be able to ignore the difference between compositions of
objects and individual objects. Clients will treat all objects in the composite
structure uniformly.

Participants
•  Component

-  declares the interface for objects in the composition.
-  implements default behavior for the interface common to all classes
-  declares an interface for accessing and managing child components

•  Leaf
-  represent leaf objects, does not have any children
-  defines behavior of primitive objects in the composition

•  Composite
- defines behavior for components having children
-  stores child components

•  Client
- manipulates objects in the composition through Component interface

Another Case Study: Representing
Expressions

•  Assume that we would like to implement a set of classes for
representing and manipulating expressions

•  These classes can be used in a compiler implementation

•  We need to store the expressions in some form (i.e., abstract syntax
tree)

•  We need to perform operations on the expressions such as
–  printing
–  type checking

Problem 1: How To Represent
Expressions?

•  There are different types of expressions such as:
–  boolean literal, integer literal, identifier, binary expression, unary

expression, etc.

•  Different types of expressions have different attributes so it would
make sense to have a different class for each expression type

•  However, we should be able to treat expressions uniformly
–  For example, children of binary expressions or unary expressions

could be any type of expression

Expression

BinaryExpr

Client

Identifier BoolLiteral

child

value : Boolean operator name : String
IntLiteral

value : Integer
UnaryExpr

operator

left

right

Class Diagram for Expressions

An Expression:
– x + 2 * y + 1

Corresponding
Object Diagram

:BinaryExpr
operator = “+”

:UnaryExpr
operator = “–”

:Identifier
name = “x”

:BinaryExpr
operator = “*”

:BinaryExpr
operator = “+”

:IntLiteral
value = 2

:Identifier
name = “y”

:IntLiteral
value = 1

Using the Composite Pattern
•  Using composite pattern enables us to treat all the expressions

uniformly using the Expression interface

Expression e1 = new Identifier(...);
Expression e2 = new BoolLiteral(...);
Expression e3 = new BinaryExpr(e1, e2, ...);

...

printer.printSomeEpxression(e3);

...

public void printSomeExpression(Expression e) {
 e.print();
}

client code may not need to know what
type of expression e is

Component

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Composite

Operation()

Client

Leaf

Operation()
Add(Component)
Remove(Component)
GetChild(int)

We Used the Composite Pattern

Back to the Text Editor Case Study:
Problem 2: Formatting

•  Formatting decides the physical layout of the document
–  For example formatting decides on how to break a set of Elements

to lines, or how to break a set of lines to columns, etc.

•  Formatting is complex
–  There are various algorithms for formatting, not just a single best

algorithm

Formatting: Possible Solutions

•  A solution
–  Add a format method to each Element class
–  Problem: You have to modify the Element classes when you

change the formatting algorithm
–  Problem: It is not easy to add new formatting algorithms

•  A better solution
–  Encapsulate the formatting behind an interface
–  Create an abstract Formatter class and make different formatting

techniques subclasses of this abstract class
–  We create a subclass of Element called FormattedComposition.

This class represents composed text elements whose children are
formatted by a subclass of Formatter

Element

Insert(Element, int)

FormattedComposition

Insert(Element g, int i)

Formatter

Format()

BasicFormatter

Format()

Element::Insert(g,i);
formatter.Format();

children

TeXFormatter

Format()

formatter

Class Diagram

Encapsulating Algorithms: Strategy
Pattern

•  This design pattern is called the Strategy pattern

•  You can use strategy pattern when
–  Many different variants of an algorithm is needed

•  Strategy pattern
–  Declares an interface common to all supported algorithms as an

abstract class
–  Concrete strategy classes are subclasses of the abstract class

Class Diagram for the Strategy Pattern

Context

ContextInterface()

Strategy

AlgorithmInterface()

CocreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

strategy

Back to the Expressions: Problem 2:
Supporting Different Print Styles

•  We want to be able to print the expressions in different format

•  For example, given the expression: – x + 2 * y + 1

–  We may want to print it infix (fully parenthesized)
(((– x) + (2 * y)) + 1)

–  or we may want to print it in postfix form:
x–2 y * + 1 +

Printing Expressions

Expression

printExpression()

Printer

print()

PrintInfix

print()

PrintPostfix

print()

printer

printer.print()

Printing Expressions
•  Using strategy pattern enables us to encapsulate the printing

algorithm behind a common interface.
•  The client code does not have to know what type of printing

strategy is being used
–  hence if the printing strategy changes we do not have to

change the client code

Expression e = new Expression(...);
e.printer = new PrintPostfix(...);

...

e.printExpression();
client code

We Used the Strategy Pattern

Context

ContextInterface()

Strategy

AlgorithmInterface()

CocreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

strategy

Text Editor: Problem 3: Embellishing the
User Interface

•  We want to embellish the user interface by adding
–  Borders
–  Scrollbars, etc.

 when we draw a document

•  How do we add this to the design structure?

Embellishing the User Interface

•  A solution:
–  Subclass elements of Element

•  BorderedElement, ScrolledElement,
BorderedandScrolledElement, etc.

–  Problem: Too many classes, hard to maintain

•  A better solution:
–  Create an abstract class say Decorator which is a subclass of

Element
–  Make all different embellishments subclasses of this new abstract

class
–  BorderDecorator, ScrollDecorator, etc.
–  Each Decorator is a wrapper around a single Element

Element

Draw(Window)

Decorator

Draw(Window w)

ScrollDecorator

Draw(Window w)
ScrollTo(int i)

component.Draw(w);

component

BorderDecorator

Draw(Window w)
DrawBorder(Window w)

Decorator::Draw(w);
DrawBorder(w);

borderWidth scrollPosition

Class Diagram

Transparent Enclosure: Decorator
Pattern

•  This is called the Decorator pattern

•  Note that component of a ScrollDecorator could be an instance of
BorderDecorator
–  We can dynamically create all the combinations of decorators

•  Decorator pattern is used to add responsibilities to individual objects
dynamically and transparently without affecting other objects

•  Decorator pattern is useful when extension by subclassing is
impractical.
–  Sometimes a large number of independent extensions are possible

and would produce an explosion of subclasses to support every
combination

Component

Operation()

Decorator

Operation()

ConcreteDecoratorA

Operation()

component.Operation();

component

ConcreteDecoratorB

Operation()
AddedBehavior()

Decorator::Operation();
AddedBehavior();

ConcreteComponent

Operation()

addedState

Class Diagram for the
Decorator Pattern

Problem 4: Supporting multiple look-and-
feel standards

•  There are different look-and-feel standards
–  Look-and-feel standards determine the appearance of scrollbars,

buttons, menus, etc.

•  We want the editor to support multiple look-and-feel standards
–  Motif, Mac, etc.

Supporting multiple look-and-feel
standards

•  A solution:
–  Use a lot of if statements
–  For example to create a ScrollBar:

•  A better solution:
–  Abstract object creation
–  Create a set of abstract subclasses of Element for each object

class that will be influenced by the look-and-feel standards. Derive
concrete subclasses for them for each look-and-feel standard.

–  Define an abstract Factory class. Each concrete subclass of this
abstract class generates objects for one look-and-feel standard

ScrollBar sb;
if (style == MOTIF) then sb = new MotifScrollBar
else if (style == MAC) then sb = ...

GUIFactory

CreateScrollBar()
CreateButton(Point)

MacFactory

Class Diagram

CreateScrollBar()
CreateButton()

MotifFactory

CreateScrollBar()
CreateButton()

return new MotifScrollBar();

return new MotifButton();

Element

Button

ScrollTo(int)

ScrollBar

Press()

MacScrollBar

ScrollTo(int)

MotifScrollBar

ScrollTo(int)

Abstracting Object Creation: Abstract
Factory Pattern

•  This design pattern is called Abstract Factory
–  Following slides show the catalog entry for the Abstract Factory

pattern
•  You can use it when

–  A system can be configured with one of multiple families of
products

–  A family of related product objects is designed to be used together
and this constraint is needed to be enforced

•  Now, we can generate a scroll bar as follows

GUIFactory guiFactory;
if (style == MOTIF) then guiFactory = new MotifFactory;
else if ...

ScrollBar sb;
sb = guiFactory.CreateScrollBar();

ABSTRACT FACTORY Object Creational

Intent
 Provides an interface for creating generic product objects. It removes dependencies
 on concrete product classes from clients that create product objects.
Motivation
 Consider a user interface toolkit that supports multiple standard look-and-feels,
 for example Motif and Open Look, and provides different scroll bars for each. It is
 undesirable to hard-code dependencies on either standard into the application, the
 choice of look-and-feel and hence scroll bar may be deferred until run-time.

 When such a system is designed using Abstract Factory pattern an abstract base class
 WindowKit declares services for creating scroll bars and other controls. For each
 look-and-feel there is a concrete subclass of WindowKit that defines services to
 create the appropriate control. Clients access a specific kit through the interface
 declared by the WindowKit class.

WindowKit

CreateScrollBar()
CreateWindow()

OpenLookWindowKit MotifWindowKit

CreateScrollBar()
CreateWindow()

CreateScrollBar()
CreateWindow()

Window

OpenLookWindow MotifWindow

ScrollBar

OpenLookScrollBar MotifScrollBar

Client

Applicability
 When the classes of the product objects are variable, and dependencies on these
 classes must be removed from a client application.

 When variations on the creation, composition, or representation of aggregate
 objects or subsystems must be removed from a client application. Clients do not
 explicitly create and configure the aggregate or subsystem but defer this
 responsibility to an AbstractFactory class.
Participants

•  AbstractFactory
- declares a generic interface for operations that create generic product
 objects

•  ConcreteFactory
- defines the operation that create specific product objects

•  AbstractProduct
- declares a generic interface for product objects

•  ConcreteProduct
- defines a product object created by the corresponding concrete factory
- all product classes must conform to the generic product interface

Collaborations
•  Usually a single instance of ConcreteFactory class is created at run-time. This
 concrete factory creates product objects having a particular implementation.
•  AbstractFactory defers creation of product objects to its ConcreteFactoy
 subclasses

AbstractFactory

CreateProductA()
CreateProductB()

ConcreteFactory2

CreateProductA()
CreateProductB()

CreateProductA()
CreateProductB()

AbstractProductA

ConcreteProductA1 ConcreteProductA2

AbstractProductB

ConcreteProducB1 ConcreteProductB2

Client

ConcreteFactory1

Class Diagram for the Abstract Factory Pattern

Consequences
 When the classes of the product objects are variable, and dependencies on these
 classes must be removed from a client application.

 AbstractFactory isolates clients from implementation classes, only generic interfaces
 are visible to clients. Implementation class names do not appear in the client code.
 Clients can be defined and implemented solely in terms of protocols instead of classes.
Examples
 InterViews, ET++.
Implementation
 AbstractFactory defines a different operation for each kind of product it can produce.
 The kinds of products are encoded in the operation signatures. Adding a new kind of
 product requires changing the AbstractFactory interface. A more flexible but less safe
 design is to add a parameter to operations that create objects which specifies what kind
 of object will be created. In this approach a single “Create” operation will be enough
 with a parameter defining the type of the object. However, now the client will use a
 generic base class to access the products and cannot make safe assumptions about the
 class of a product.
See Also Factory Method pattern

Back to the Case Study; Problem 5:
Supporting Multiple Window Systems

•  We want to support multiple window systems

•  However there is a wide variation in standards
–  There are different models for window operations such as

•  resizing,
•  drawing,
•  raising, etc.

–  Different window systems provide different functionality
•  Since different window systems may not be compatible we cannot use

the Abstract Factory Pattern
–  Abstract Factory Pattern assumes that the class hierarchy is same

for all the variations

Supporting Multiple Window Systems

•  A solution
–  We can take an intersection of all the functionality
–  A feature is allowed in the window model only if it is in every

window system
–  Problem: Intersection functionality may be too restrictive

•  Another solution
–  Create an abstract window hierarchy

•  All the functionality required by the application is represented
–  Create a parallel hierarchy for window systems

•  All the functionality required by the application is represented
•  Requires methods to be written for the systems missing some

functionality

Window

DrawText()
DrawRect()

TransientWindow

DrawBorder()

IconWindow

DrawCloseBox()

DrawRect();
DrawRect();
DrawText();

WindowImp

MacWindowImp

DevDrawText()
DevDrawLine()

XWindowImp

DevDrawText()
DevDrawLine()

imp.DevDrawLine();
imp.DevDrawLine();
imp.DevDrawLine();
imp.DevDrawLine();

DevDrawText()
DevDrawLine()

imp

XDrawString(); XDrawLine();

Class Diagram

Encapsulating Implementation
Dependencies: Bridge Pattern

•  This is called the Bridge pattern

•  There are two hierarchies
–  Abstraction: This is the abstract hierarchy showing a logical view
–  Implementation: This is the implementation hierarchy implementing

the logical view

•  Both hierarchies are extensible independently
•  Implementation is hidden from the abstract hierarchy

Abstraction

Operation()

RefinedAbstraction

Implementor

OperationImp()

ConcreteImplementorA

imp.OperationImp();

OperationImp()

imp

OperationImp()

ConcreteImplementorB

Class Diagram for the Bridge Pattern

Encapsulating the Concept that Varies

•  Note that there is a common theme in some of the patterns we are
discussing (strategy, decorator, bridge patterns)
–  We are encapsulating the concept that varies
–  This varying part is accessed by the rest of the system through an

abstract interface
•  We are using two important software engineering principles:

Anticipation of Change and Information Hiding
–  We try to make it easy to change the parts we suspect will have a

lot of variations
–  We try to isolate the rest of the system from the effects of these

changes
–  We achieve this by hiding the part that varies behind an abstract

interface

Problem 5: User Operations

•  User has a set of operations such as
–  creating a new document
–  opening, saving, printing an existing document
–  changing the the font and style of the selected text
–  etc.

•  There should be a uniform way to deal with user operations
–  and possibly undo them.

•  How do represent user commands?

User Commands

•  Define an abstract class for user operations
–  This class presents an interface common to all the operations

•  such as undo, redo

•  Each operation is derived as a subclass of the abstract command class

Element

MenuItem Command

Execute()

SaveCommand

Execute()

command

Execute()

QuitCommand

Clicked()

Class Diagram

command.Execute();

User Commands

•  User may want to undo some commands
–  Add an abstract Unexecute operation to the command interface

•  Command history
–  A command history is a list of commands that have been executed
–  Using a command history one can do arbitrary undo and redo

operations

•  Command pattern
–  Decouples command requester and requestee
–  Enables a uniform treatment of commands

•  command history
•  undo/redo

Encapsulating a Request: Command
Pattern

Invoker Command

Execute()

Execute()

ConcreteCommand Receiver

Action()

receiver

state

receiver.Action();

Problem 6: Spell Checking

•  How to traverse the document for operations such as spell-checking
–  We need to traverse every Element in the document
–  There may be other analyses which require traversal

•  A solution: Iterators
–  An Iterator hides the structure of the container from clients who

want to iterate over the structure
–  An Iterator has a method for

•  Getting the first element
•  Getting the next element
•  Testing for termination

Encapsulating Access and Traversal:
Iterator Pattern

Aggregate Iterator

First()
Next()
IsDone()
CurrentItem()

ConcreteAggregate

CreateIterator()

CreateIterator()

Client

ConcreteIterator

First()
Next()
IsDone()
CurrentItem() return new ConcreteIterator(this);

Spell Checking Using Iterator Pattern

Element g;
Iterator i = g.CreateIterator();

for (i = i.first() ; !(i.isdone()); i = i.next())
{

 // spell check Element i.current()
 }

•  Note that we can easily implement different traversal strategies
(such as pre-order traversal, post-order traversal, etc.) by writing
new concrete iterator classes.

Problem 6: Generalizing the Analysis

•  Iterator pattern provides traversal of containers

•  We may also want to encapsulate the traversal with the analysis as
follows:
–  Visit each item
–  Perform a type-specific action on each item

•  For example, spell check

•  We can abstract recursive traversal in a class
–  Create a visit operation for each element that performs the analysis
–  The visitor can call the operations of the element while performing

the analysis

Encapsulating Analysis: Visitor Pattern

Element

Accept(Visitor v)

ConcreteElementB

Accept(Visitor v)
OperationB()

Accept(Visitor v)
OperationA()

ConcreteVisitor1

Client

ConcreteElementA

VisitA(ConcreteElementA)
VisitB(ConcreteElementA)

ConcreteVisitor1

VisitA(ConcreteElementA)
VisitB(ConcreteElementA)

Visitor

VisitA(ConcreteElementA)
VisitB(ConcreteElementA)

v.VisitA(this); v.VisitB(this);

Sequence Diagram for the Visitor Pattern

a:ConcreteElementA b:ConcreteElementB :Client

Accept(v)

v:ConcreteVisitor1

VisitA(a)

OperationA()

VisitB(b)
Accept(v)

OperationB()

Back to Expressions: Problem 3:
Checking Expressions

•  We need to do type checking on expressions
–  For example, arguments of an addition operation should be

integers; types of left and right children of an equality expression
should match, etc.

•  We may need to add other checks later on
–  For example, are all the identifiers used in the expression have

been declared

Checking Expressions

Expression

Accept(Visitor v)
getType()
setType(type)

UnaryExpression

Accept(Visitor v)
getType()
setType(type)

Accept(Visitor v)
getType()
setType(type)

TypeChecker

Client

BinaryExpression

VisitBinary(binaryExp)
VisitUnary(unaryExp)

CheckDeclared

Visitor

VisitBinary(binaryExp)
VisitUnary(unaryExp)

VisitBinary(binaryExp)
VisitUnary(unaryExp)
VisitIdentifier(identifier)

v.VisitBinary(this);

Checking Expressions

•  The visitBinary method first calls the Accept methods of the left
and right children and passes itself (type-checker) as the
argument
–  This will type check all subexpressions recursively

•  If the children have type errors or if the types of children do not
match it sets its own type to type error

VisitBinary(binaryExp e) {
 e.left.Accept(this);
 e.right.Accept(this);
 if (e.left.getType() == type_error
 || e.right.getType() == type_error
 || e.left.getType() != e.right.getType())
 e.setType(type_error);
 else
 e.setType(...); // the argument here will depend

 // on the type of the operator
}

We Used the Visitor Pattern

Element

Accept(Visitor v)

ConcreteElementB

Accept(Visitor v)
OperationB()

Accept(Visitor v)
OperationA()

ConcreteVisitor1

Client

ConcreteElementA

VisitA(ConcreteElementA)
VisitB(ConcreteElementA)

ConcreteVisitor1

VisitA(ConcreteElementA)
VisitB(ConcreteElementA)

Visitor

VisitA(ConcreteElementA)
VisitB(ConcreteElementA)

Benefits of Design Patterns

•  Design patterns
–  provide a common vocabulary for designers to communicate,

document and explore design alternatives
–  reduce system complexity by naming and defining abstractions that

are above classes and instances
–  constitute a reusable base of experience for building software
–  act a building blocks for constructing more complex designs
–  reduce the learning time for a class library
–  provide a target for reorganization and refactoring of class

hierarchies

Design Patterns

•  A design pattern consists of three essential parts
1.  An abstract description of class or object collaboration and its

structure
2.  The issue addressed by the design pattern, the circumstances in

which it is applicable
3.  Consequences of using the design pattern

•  Design patterns are micro-architectures
–  They can have several different realizations
–  They do not define a complete application or a library
–  To be useful they should be applicable to more than one problem

Categorizing Design Patterns

•  Two orthogonal criteria can be used to categorize patterns
–  Jurisdiction
–  Characterization

•  Jurisdiction
–  Class jurisdiction

•  Relationships between base classes and their subclasses,
static semantics

–  Object jurisdiction
•  Relationships between peer objects

–  Compound jurisdiction
•  Deals with recursive object structures

Characterizing Design Patterns

•  Characterization
–  Creational patterns

•  Deal with initializing and configuring classes or objects
–  Structural

•  Deal with composition of classes or objects, decoupling
interface and implementation of classes or objects

–  Behavioral
•  Characterize the ways in which classes or objects interact and

distribute responsibility, deal with dynamic interactions among
classes or objects

Creational Structural Behavioral

Class Factory Method Adapter(class)
Bridge(class)

Template Method

Object Abstract Factory
Prototype
Singleton

Adapter(object)
Bridge(object)
Flyweight
Facade
Proxy

Chain of Responsibility
Command
Iterator(object)
Mediator
Momento
Observer
State
Strategy

Compound Builder Composite
Decorator

Interpreter
Iterator(compound)
Walker

Characterization

Jurisdiction

Creational Patterns

•  Factory Method
–  Define an interface for creating an object, but let subclasses decide

which class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

•  Abstract Factory
–  Provide an interface for creating families of related or dependent

objects without specifying their concrete classes.
•  Builder

–  Separate the construction of a complex object from its
representation so that the same construction can create different
representations.

•  Prototype
–  Specify the kinds of objects to create using a prototypical instance,

and create new objects by copying this prototype.
•  Singleton

–  Ensure a class only has one instance, and provide a global point of
access to it.

Structural Patterns

•  Adapter
–  Convert the interface of a class into another interface clients

expect. Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces.

•  Bridge
–  Decouple an abstraction from its implementation so that the two

can vary independently.
•  Composite

–  Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

•  Decorator (aka Wrapper)
–  Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to subclassing for
extending functionality

Structural Patterns

•  Facade (aka Glue)
–  Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the subsystem
easier to use.

•  Flyweight
–  Use sharing to support large numbers of fine-grained object

efficiently.
•  Proxy

–  Provide a surrogate or placeholder for another object to control
access to it

Behavioral Patterns

•  Chain of Responsibility
–  Avoid coupling the sender of a request to its receiver by giving

more than one object a chance to handle the request. Chain the
receiving objects and pass the request along the chain until an
object handles it.

•  Command
–  Encapsulate a request as an object, thereby letting you

parameterize clients with different requests, queue or log requests,
and support undoable operations.

•  Interpreter
–  Given a language, define a representation for its grammar along

with an interpreter that uses the representation to interpret
sentences in the language

Behavioral Patterns

•  Iterator
–  Provide a way to access the elements of an aggregate object

sequentially without exposing its underlying representation.
•  Mediator

–  Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from referring
to each other explicitly, and it lets you vary their interaction
independently

•  Memento
–  Without violating encapsulation, capture and externalize an object’s

internal state so that the object can be restored to this state later
•  Observer

–  Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and
updates accordingly.

Behavioral Patterns

•  State
–  Allow an object to alter its behavior when its internal state changes.

The object will appear to change its class.
•  Strategy

–  Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

•  Template Method
–  Define the skeleton of an algorithm in an operation, deferring some

steps to subclasses. Template Method lets subclasses redefine
certain steps of an algorithm without changing the algorithm’s
structure

•  Visitor
–  Represent an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

Case Study: Representing Expressions

•  Assume that we would like to implement a set of classes for
representing and manipulating expressions

•  These classes can be used in a compiler implementation

•  We need to store the expressions in some form (i.e., abstract syntax
tree)

•  We need to perform operations on the expressions such as
–  printing
–  type checking

Problem 1: How To Represent
Expressions?

•  There are different types of expressions such as:
–  boolean literal, integer literal, identifier, binary expression, unary

expression, etc.

•  Different types of expressions have different attributes so it would
make sense to have a different class for each expression type

•  However, we should be able to treat expressions uniformly
–  For example, children of binary expressions or unary expressions

could be any type of expression

Expression

BinaryExpr

Client

Identifier BoolLiteral

child

value : Boolean operator name : String
IntLiteral

value : Integer
UnaryExpr

operator

left

right

Class Diagram for Expressions

An Expression:
– x + 2 * y + 1

Corresponding
Object Diagram

:BinaryExpr
operator = “+”

:UnaryExpr
operator = “–”

:Identifier
name = “x”

:BinaryExpr
operator = “*”

:BinaryExpr
operator = “+”

:IntLiteral
value = 2

:Identifier
name = “y”

:IntLiteral
value = 1

Using the Composite Pattern
•  Using composite pattern enables us to treat all the expressions

uniformly using the Expression interface

Expression e1 = new Identifier(...);
Expression e2 = new BoolLiteral(...);
Expression e3 = new BinaryExpr(e1, e2, ...);

...

printer.printSomeEpxression(e3);

...

public void printSomeExpression(Expression e) {
 e.print();
}

client code may not need to know what
type of expression e is

Component

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Composite

Operation()

Client

Leaf

Operation()
Add(Component)
Remove(Component)
GetChild(int)

We Used the Composite Pattern

Problem 2: Supporting Different Print
Styles

•  We want to be able to print the expressions in different format

•  For example, given the expression: – x + 2 * y + 1

–  We may want to print it infix (fully parenthesized)
(((– x) + (2 * y)) + 1)

–  or we may want to print it in postfix form:
x–2 y * + 1 +

Printing Expressions

Expression

printExpression()

Printer

print()

PrintInfix

print()

PrintPostfix

print()

printer

printer.print()

Printing Expressions
•  Using strategy pattern enables us to encapsulate the printing

algorithm behind a common interface.
•  The client code does not have to know what type of printing

strategy is being used
–  hence if the printing strategy changes we do not have to

change the client code

Expression e = new Expression(...);
e.printer = new PrintPostfix(...);

...

e.printExpression();
client code

We Used the Strategy Pattern

Context

ContextInterface()

Strategy

AlgorithmInterface()

CocreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

strategy

Problem 3: Checking Expressions

•  We need to do type checking on expressions
–  For example, arguments of an addition operation should be

integers; types of left and right children of an equality expression
should match, etc.

•  We may need to add other checks later on
–  For example, are all the identifiers used in the expression have

been declared

Checking Expressions

Expression

Accept(Visitor v)
getType()
setType(type)

UnaryExpression

Accept(Visitor v)
getType()
setType(type)

Accept(Visitor v)
getType()
setType(type)

TypeChecker

Client

BinaryExpression

VisitBinary(binaryExp)
VisitUnary(unaryExp)

CheckDeclared

Visitor

VisitBinary(binaryExp)
VisitUnary(unaryExp)

VisitBinary(binaryExp)
VisitUnary(unaryExp)
VisitIdentifier(identifier)

v.VisitBinary(this);

Checking Expressions

•  The visitBinary method first calls the Accept methods of the left
and right children and passes itself (type-checker) as the
argument
–  This will type check all subexpressions recursively

•  If the children have type errors or if the types of children do not
match it sets its own type to type error

VisitBinary(binaryExp e) {
 e.left.Accept(this);
 e.right.Accept(this);
 if (e.left.getType() == type_error
 || e.right.getType() == type_error
 || e.left.getType() != e.right.getType())
 e.setType(type_error);
 else
 e.setType(...); // the argument here will depend

 // on the type of the operator
}

We Used the Visitor Pattern

Element

Accept(Visitor v)

ConcreteElementB

Accept(Visitor v)
OperationB()

Accept(Visitor v)
OperationA()

ConcreteVisitor1

Client

ConcreteElementA

VisitA(ConcreteElementA)
VisitB(ConcreteElementA)

ConcreteVisitor1

VisitA(ConcreteElementA)
VisitB(ConcreteElementA)

Visitor

VisitA(ConcreteElementA)
VisitB(ConcreteElementA)

Observer Pattern

•  Observer pattern is a pattern based on Model-View-Controller (MVC)
architecture

•  MVC is a design structure for separating representation from
presentation using a subscribe/notify protocol

Model-View-Controller (MVC) Architecture
•  MVC consists of three kinds of objects

–  Model is the application object
–  View is its screen presentation
–  Controller defines the way the user interface reacts to user

input

a=50%
b=30%
c=20%

model

views

Model-View-Controller (MVC)
Architecture

•  MVC decouples views and models by establishing a subscribe/notify
protocol between them
–  whenever model changes it notifies the views that depend on it
–  in response each view gets an opportunity to update itself

•  This architecture allows you to attach multiple views to a model
–  it is possible to create new views for a model without rewriting it

•  Taken at face value this may be seen as an architecture for user
interface design
–  It is actually addresses a more general problem:

•  decoupling objects so that changes to one can affect any
number of others without requiring the changed object to know
the details of the others

–  This is called Observer pattern in the design patterns catalog

Class Diagram for the Observer Pattern

Subject

Attach(Observer)
Detach(Observer)
Notify()

ConcreteSubject

GetState()
SetState()

subjectState

Observer

Update()

ConcreteObserver

Update()

observerState

for all o in observers
{ o->Update(); }

observers

return subjectState;

observerState =
 subject->GetState();

a:ConcreteObserver :ConreteSubject

SetState()

Notify()

b:ConcreteObserver

GetState()

Update()

GetState()

Update()

A Case Study on Design Patterns

•  A case study on design patterns for Communication Software:
–  “Using Design Patterns to Develop Reusable Object-

Oriented Communication Software”, by D. C. Schmidt

•  A case study on using design patterns to develop reusable
object-oriented communication software

•  Defines a new design pattern called Reactor

Conclusions from the case study

•  Patterns enable widespread reuse of software architecture
–  Patterns explicitly capture knowledge that experienced developers

already understand implicitly
–  Pattern descriptions explicitly record engineering trade-offs and

design alternatives
–  The contexts where patterns apply and do not apply must be

carefully documented

•  Patterns improve communication within and across software
development teams
–  Patterns facilitate training of new developers
–  Pattern names should be chosen carefully and used consistently
–  Successful pattern descriptions capture both structure and behavior

Conclusions from the case study

•  Useful patterns arise from practical experience
–  Pattern authors should be directly involved with application

developers and domain experts
–  Pattern descriptions should contain concrete examples
–  Patterns are validated by experience rather than by testing

•  Everything should not be recast as a pattern
–  The focus should be on developing patterns that are strategic to the

domain and reusing existing tactical patterns

•  Integrating patterns into a software development process is a human-
intensive activity
–  Rewards should be institutionalized for developing patterns
–  Patterns can be considered deliverables such as code

Conclusions from the case study

•  Patterns help to transcend “programming language centric” viewpoints
–  However, implementing patterns efficiently requires careful

selection of language features

•  Managing expectations is crucial to using patterns effectively
–  Using patterns does not guarantee flexible and efficient software
–  Patterns may lead developers to think they know more about the

solution to a problem than they actually do

