
UC Santa Barbara

CS189A - Capstone

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

(thanks to George Necula and his CS169
class in Berkeley for the slides)

UC Santa Barbara

Outline

•  Overview of memory management
–  Why it is a software engineering issue

•  Styles of memory management
–  Explicit (malloc/free)
–  Garbage collection
–  Regions

•  Detecting memory errors

2

UC Santa Barbara

Memory Management

•  A basic decision, because
–  Different memory management policies are difficult to mix

•  Best to stick with one in an application

–  Has a big impact on performance and quality
•  Different strategies better in different situations
•  Some more error prone than others

UC Santa Barbara

Distinguishing Characteristics

•  Allocation is always explicit
•  Deallocation

–  Explicit or implicit?

•  Safety
–  Checks that explicit deallocation is safe?

UC Santa Barbara

Explicit Memory Management

•  Allocation and deallocation are explicit
–  Oldest style
–  C, C++

x = new Foo;
…

free(x);

UC Santa Barbara

A Problem: Dangling Pointers

X = new Foo;
. . .
Y = X;
. . .
delete(X);
. . .
Y.bar();

Foo

X

Y

UC Santa Barbara

A Problem: Dangling Pointers

X = new Foo;
. . .
Y = X;
. . .
free(X);
. . .
Y.bar();

X

Y

Dangling pointers

UC Santa Barbara

Notes

•  Dangling pointers are bad
–  A system crash waiting to happen

•  Storage bugs are hard to find
–  Visible effect far away (in time and program text) from the

source

•  Not the only potentially bad memory bug in C

UC Santa Barbara

Notes, Continued

•  Explicit de-allocation is not all bad

•  Gives the finest possible control over memory
–  May be important in memory-limited applications
–  May be important for time-critical, real-time systems

•  Programmer is very conscious of how much memory
is in use
–  This is good and bad

•  Allocation and de-allocation fairly expensive

UC Santa Barbara

Automatic Memory Management

•  I.e., automatic deallocation

•  This is an old problem:
–  studied since the 1950s for LISP

•  There are well-known techniques for completely
automatic memory management

•  Until recently unpopular outside of Lisp family
languages
–  introduced to mainstream with Java
–  common in higher-level languages such as Python, …

UC Santa Barbara

The Basic Idea

•  When an object is created, unused space is
automatically allocated

–  E.g., new X
–  As in all memory management systems

•  After a while there is no more unused space

•  Some space is occupied by objects that will never
be used again

–  This space can be freed to be reused later

UC Santa Barbara

The Basic Idea (Cont.)

•  How can we tell whether an object will “never be used
again”?
–  in general, impossible to tell
–  use heuristics

•  Observation: a program can use only the objects that
it can find:
 A x = new A; x = y; …
–  After x = y there is no way to access the newly allocated

object

UC Santa Barbara

Garbage

•  An object x is reachable if and only if:
–  a register contains a pointer to x, or
–  another reachable object y contains a pointer to x

•  You can find all reachable objects by starting from
registers and following all the pointers

•  An unreachable object can never be used
–  such objects are garbage

UC Santa Barbara

Reachability is an Approximation

•  Consider the program:
 x = new A;
 y = new B;
 x = y;
 if(alwaysTrue()) { x = new A } else { x.foo() }

•  After x = y (assuming y becomes dead there)
–  the object A is unreachable
–  the object B is reachable (through x)
–  thus B is not garbage and is not collected

•  but object B is never going to be used

UC Santa Barbara

A Simple Example

•  We start tracing from registers and stack
–  These are the roots

•  Note B and D are unreachable from acc and stack
–  Thus we can reuse their storage

A B C

Frame 1 Frame 2

D Eacc

SP

UC Santa Barbara

Elements of Garbage Collection

•  Every garbage collection scheme has the following steps
1.  Allocate space as needed for new objects

2.  When space runs out:

a)  Compute what objects might be used again (generally by
tracing objects reachable from a set of “root” registers)

b)  Free the space used by objects not found in (a)

•  Some strategies perform garbage collection before the space
actually runs out

UC Santa Barbara

Notes on Garbage Collection

•  Much safer than explicit memory management
–  Crashes due to memory errors disappear
–  And easy to use

•  But exacerbates other problems
–  Memory leaks can be hard to find

•  Because memory usage in general is hidden
–  Different GC approaches have different performance trade-offs

UC Santa Barbara

Notes (Continued)

•  Fastest GCs do not perform well if live data is
significant percentage of physical memory

•  Should be < 30%
•  If > 50%, quite dramatic performance degradation

•  Pauses are not acceptable in some applications
–  Use real-time GC, which is more expensive

•  Allocation can be very fast

•  Amortized deallocation can be very fast, too

UC Santa Barbara

A Different Approach: Regions
•  Traditional memory management:

 free GC
Safety - +
Control + -
Ease of use - +
Space usage + -

•  A different approach: regions
safety and efficiency, expressiveness

UC Santa Barbara

Region-based Memory Management

•  Regions represent areas of memory
•  Objects are allocated “in” a given region
•  Easy to deallocate a whole region

Region r = newregion();

for (i = 0; i < 10; i++) {

 int *x = ralloc(r, (i + 1) * sizeof(int));

 work(i, x); }

deleteregion(r);

UC Santa Barbara

Why Regions ?

•  Performance

•  Locality benefits

•  Expressiveness

•  Memory safety

UC Santa Barbara

Region Performance
•  Applies to delete all-at-once only

•  Basic strategy:
–  Allocate a big block of memory
–  Individual allocation is:

•  pointer increment
•  overflow test

–  Deallocation frees the list of big blocks

•  All operations are fast

a region

alloc
point

wastage

UC Santa Barbara

Region Performance: Locality

•  Regions can express locality:
–  Sequential allocs in a region can share cache line
–  Allocs in different regions less likely to pollute cache for each

other

•  Example: moss (plagiarism detection software)
–  Small objects: short lived, many clustered accesses
–  Large objects: few accesses

UC Santa Barbara

•  1-region version: small & large objects in 1 region
•  2-region version: small & large objects in 2 regions
•  45% fewer cycles lost to r/w stalls in 2-region version

Region Performance: Locality - moss

UC Santa Barbara

Region Expressiveness

•  Adds some structure to memory management

•  Few regions:
–  Easier to keep track of
–  Delay freeing to convenient "group" time

•  End of an iteration, closing a device, etc

•  No need to write "free this data structure" functions

UC Santa Barbara

Summary

 regions free GC
Safety + - +
Control + + -
Ease of use = - +
Space usage + + -
Time + + +

UC Santa Barbara

Region Notes

•  Regions are fast
–  Very fast allocation
–  Very fast (amortized) deallocation
–  Can express locality

•  Only known technique for doing so

•  Good for memory-intensive programs
–  Efficient and fast even if high % of memory in use

UC Santa Barbara

Region Notes (Continued)

•  Does waste some memory
–  In between malloc/free and GC

•  Requires more thought than GC
–  Have to organize allocations into regions

UC Santa Barbara

Run-Time Monitoring

•  Recall from testing:
–  How do you know that a test succeeds?
–  Can check (intermediate) results, using asserts

•  This is called run-time monitoring (RTM)
–  Makes testing more effective

UC Santa Barbara

What do we Monitor?

•  Check the result of computation
–  E.g., the result of matrix inversion

•  Hardware-enforced monitoring
–  E.g., division-by-zero, segmentation fault

•  Programmer-inserted monitoring
–  E.g., assert statements

UC Santa Barbara

Automated Run-Time Monitoring
•  Given a property Q that must hold always
•  … and a program P

•  Produce a program P’ such that:
–  P’ always produces the same result as P
–  P’ has lots of assert(Q) statements, at all places where Q may be

violated
–  P’ is called the instrumented program

•  We are interested in automatic instrumentation

UC Santa Barbara

RTM for Memory Safety

•  A technique for finding memory bugs
–  Applies to C and C++

•  C/C++ are not type safe
–  Neither the compiler nor the runtime system enforces type

abstractions

•  Possible to read or write outside of your intended data
structure

UC Santa Barbara

Picture

memory objects

 A

Access to A Access to A Access to A

UC Santa Barbara

The Idea

•  Each byte of memory is in one of three states:

•  Unallocated
–  Cannot be read or written

•  Allocated but uninitialized
–  Cannot be read

•  Allocated and initialized
–  Anything goes

UC Santa Barbara

State Machine
Associate an automaton with each byte

Missing transition edges indicate an error

Unallocated

Uninitialized
Initialized

malloc
write

free

free

write

read

UC Santa Barbara

Instrumentation

•  Check the state of each byte on each access

•  Binary instrumentation
–  Add code before each load and store
–  Represent states as giant array

•  2 bits per byte of memory

•  25% memory overhead
–  Catches byte-level errors
–  Won’t catch bit-level errors

UC Santa Barbara

Picture

memory objects

 A

Access to A Access to A Access to A

Note: We can detect invalid accesses to red areas, but not to blue areas.

UC Santa Barbara

Improvements

•  We can only detect bad accesses if they are to
unallocated or uninitialized memory

•  So try to make most of the bad accesses be of those
two forms
–  Especially, the common off-by-one errors

UC Santa Barbara

Red Zones

•  Leave buffer space between allocated objects
–  The “red zone”
–  In what state do we put this zone?

•  Guarantees that walking off the end of an array
accesses unallocated memory

UC Santa Barbara

Aging Freed Memory

•  When memory is freed, do not reallocate immediately
–  Wait until the memory has “aged”

•  Helps catch dangling pointer errors

•  Red zones and aging are easily implemented in the
malloc library

UC Santa Barbara

Another Class of Errors: Memory Leaks

•  A memory leak occurs when memory is allocated but
never freed.

•  Memory leaks are at least as serious as memory
corruption errors

•  We can find many memory leaks using techniques
borrowed from garbage collection

UC Santa Barbara

The Basic Idea

•  Any memory with no pointers to it is leaked
–  There is no way to free this memory

•  Run a garbage collector
–  But don’t free any garbage
–  Just detect the garbage
–  Any inaccessible memory is leaked memory

UC Santa Barbara

Issues with C/C++

•  It is sometimes hard to tell what is inaccessible in a
C/C++ program

•  Cases
–  No pointers to a malloc’d block

•  Definitely garbage
–  No pointers to the head of a malloc’d block

•  Maybe garbage

UC Santa Barbara

Leak Detection Summary

•  From time to time, run a garbage collector
–  Use mark and sweep

•  Report areas of memory that are definitely or
probably garbage
–  Need to report who malloc’d the blocks originally
–  Store this information in the red zone between objects

UC Santa Barbara

Tools for Memory Debugging

•  Purify
–  Robust industrial tool for detecting all major memory faults
–  Developed by Rational, now part of IBM

•  Valgrind
–  Open source tool for Linux
–  http://valgrind.org

•  “Poor man’s purify”
–  Implement basic memory checking at source code level

