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Outline 

•  Overview of memory management 
–  Why it is a software engineering issue 

•  Styles of memory management 
–  Explicit (malloc/free) 
–  Garbage collection 
–  Regions 

•  Detecting memory errors 
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Memory Management 

•  A basic decision, because 
–  Different memory management policies are difficult to mix 

•  Best to stick with one in an application 

–  Has a big impact on performance and quality 
•  Different strategies better in different situations 
•  Some more error prone than others 
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Distinguishing Characteristics 

•  Allocation is always explicit 
•  Deallocation  

–  Explicit or implicit? 

•  Safety 
–  Checks that explicit deallocation is safe? 
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Explicit Memory Management 

•  Allocation and deallocation are explicit 
–  Oldest style 
–  C, C++ 

x = new Foo; 
… 

free(x); 
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A Problem: Dangling Pointers 

X = new Foo; 
. . . 
Y = X; 
. . . 
delete(X); 
. . . 
Y.bar(); 

Foo

X

Y
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A Problem: Dangling Pointers 

X = new Foo; 
. . . 
Y = X; 
. . . 
free(X); 
. . . 
Y.bar(); 

X

Y

Dangling pointers 
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Notes 

•  Dangling pointers are bad 
–  A system crash waiting to happen 

•  Storage bugs are hard to find 
–  Visible effect far away (in time and program text) from the 

source 

•  Not the only potentially bad memory bug in C 
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Notes, Continued 

•  Explicit de-allocation is not all bad 

•  Gives the finest possible control over memory 
–  May be important in memory-limited applications 
–  May be important for time-critical, real-time systems 

•  Programmer is very conscious of how much memory 
is in use 
–  This is good and bad 

•  Allocation and de-allocation fairly expensive 
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Automatic Memory Management 

•  I.e., automatic deallocation  

•  This is an old problem:  
–  studied since the 1950s for LISP 

•  There are well-known techniques for completely 
automatic memory management 

•  Until recently unpopular outside of Lisp family 
languages 
–  introduced to mainstream with Java 
–  common in higher-level languages such as Python, … 
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The Basic Idea 

•  When an object is created, unused space is 
automatically allocated 

–  E.g., new X 
–  As in all memory management systems 

•  After a while there is no more unused space 

•  Some space is occupied by objects that will never 
be used again 

–  This space can be freed to be reused later 
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The Basic Idea (Cont.) 

•  How can we tell whether an object will “never be used 
again”? 
–  in general, impossible to tell 
–  use heuristics  

•  Observation: a program can use only the objects that 
it can find: 
              A x  = new A; x = y; … 
–  After x = y there is no way to access the newly allocated 

object 
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Garbage 

•  An object x is reachable if and only if: 
–  a register contains a pointer to x, or 
–  another reachable object y contains a pointer to x 

•  You can find all reachable objects by starting from 
registers and following all the pointers 

•  An unreachable object can never be used 
–  such objects are garbage 
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Reachability is an Approximation 

•  Consider the program: 
            x = new A; 
            y = new B; 
            x = y; 
            if(alwaysTrue()) { x = new A } else { x.foo() } 

•  After x = y (assuming y becomes dead there) 
–  the object A is unreachable 
–  the object B is reachable (through x) 
–  thus B is not garbage and is not collected 

•  but object B is never going to be used 
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A Simple Example 

•  We start tracing from registers and stack 
–  These are the roots 

•  Note B and D are unreachable from acc and stack 
–  Thus we can reuse their storage 

A B C

Frame 1 Frame 2

D Eacc

SP
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Elements of Garbage Collection 

•  Every garbage collection scheme has the following steps 
1.  Allocate space as needed for new objects 

2.  When space runs out: 

a)  Compute what objects might be used again (generally by 
tracing objects reachable from a set of “root” registers) 

b)  Free the space used by objects not found in (a) 

•  Some strategies perform garbage collection before the space 
actually runs out 
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Notes on Garbage Collection 

•  Much safer than explicit memory management 
–  Crashes due to memory errors disappear 
–  And easy to use 

•  But exacerbates other problems 
–  Memory leaks can be hard to find 

•  Because memory usage in general is hidden 
–  Different GC approaches have different performance trade-offs 
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Notes (Continued) 

•  Fastest GCs do not perform well if live data is 
significant percentage of physical memory 

•  Should be < 30% 
•  If > 50%, quite dramatic performance degradation  

•  Pauses are not acceptable in some applications 
–  Use real-time GC, which is more expensive 

•  Allocation can be very fast 

•  Amortized deallocation can be very fast, too 
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A Different Approach: Regions 
•  Traditional memory management: 

       free            GC 
Safety          -      + 
Control          +      - 
Ease of use            -      + 
Space usage         +      - 

•  A different approach: regions 
safety and efficiency, expressiveness 
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Region-based Memory Management 

•  Regions represent areas of memory 
•  Objects are allocated “in” a given region 
•  Easy to deallocate a whole region 

Region r = newregion(); 

for (i = 0; i < 10; i++) { 

  int *x = ralloc(r, (i + 1) * sizeof(int)); 

  work(i, x); } 

deleteregion(r); 
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Why Regions ? 

•  Performance  

•  Locality benefits 

•  Expressiveness 

•  Memory safety 
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Region Performance 
•  Applies to delete all-at-once only 

•  Basic strategy: 
–  Allocate a big block of memory 
–  Individual allocation is: 

•  pointer increment 
•  overflow test 

–  Deallocation frees the list of big blocks 

•   All operations are fast 

a region 

alloc 
point 

wastage 
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Region Performance: Locality 

•  Regions can express locality:  
–  Sequential allocs in a region can share cache line 
–  Allocs in different regions less likely to pollute cache for each 

other 

•  Example: moss (plagiarism detection software) 
–  Small objects: short lived, many clustered accesses 
–  Large objects: few accesses 
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•  1-region version: small & large objects in 1 region 
•  2-region version: small & large objects in 2 regions 
•  45% fewer cycles lost to r/w stalls in 2-region version 

Region Performance: Locality - moss 
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Region Expressiveness 

•  Adds some structure to memory management 

•  Few regions: 
–  Easier to keep track of 
–  Delay freeing to convenient "group" time 

•  End of an iteration, closing a device, etc 

•  No need to write "free this data structure" functions 
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Summary 

     regions  free     GC 
Safety         +        -      + 
Control         +        +      - 
Ease of use             =        -      + 
Space usage        +        +      - 
Time         +        +      + 
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Region Notes 

•  Regions are fast 
–  Very fast allocation 
–  Very fast (amortized) deallocation 
–  Can express locality 

•  Only known technique for doing so 

•  Good for memory-intensive programs 
–  Efficient and fast even if high % of memory in use 
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Region Notes (Continued) 

•  Does waste some memory 
–  In between malloc/free and GC 

•  Requires more thought than GC 
–  Have to organize allocations into regions 
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Run-Time Monitoring 

•  Recall from testing:  
–  How do you know that a test succeeds? 
–  Can check (intermediate) results, using asserts 

•  This is called run-time monitoring (RTM) 
–  Makes testing more effective 
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What do we Monitor? 

•  Check the result of computation 
–  E.g., the result of matrix inversion 

•  Hardware-enforced monitoring 
–  E.g., division-by-zero, segmentation fault 

•  Programmer-inserted monitoring 
–  E.g., assert statements 
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Automated Run-Time Monitoring 
•  Given a property Q that must hold always 
•  … and a program P 

•  Produce a program P’ such that: 
–  P’ always produces the same result as P 
–  P’ has lots of assert(Q) statements, at all places where Q may be 

violated 
–  P’ is called the instrumented program 

•  We are interested in automatic instrumentation  
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RTM for Memory Safety 

•  A technique for finding memory bugs 
–  Applies to C and C++  

•  C/C++ are not type safe 
–  Neither the compiler nor the runtime system enforces type 

abstractions 

•  Possible to read or write outside of your intended data 
structure 
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Picture 

memory objects

 A

Access to A Access to A Access to A
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The Idea 

•  Each byte of memory is in one of three states: 

•  Unallocated 
–  Cannot be read or written 

•  Allocated but uninitialized 
–  Cannot be read 

•  Allocated and initialized 
–  Anything goes 
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State Machine 
Associate an automaton with each byte 

Missing transition edges indicate an error 

Unallocated

Uninitialized
Initialized

malloc
write

free

free

write

read
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Instrumentation 

•  Check the state of each byte on each access 

•  Binary instrumentation 
–  Add code before each load and store 
–  Represent states as giant array 

•  2 bits per byte of memory 

•  25% memory overhead 
–  Catches byte-level errors 
–  Won’t catch bit-level errors 
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Picture 

memory objects

 A

Access to A Access to A Access to A

Note: We can detect invalid accesses to red areas, but not to blue areas. 
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Improvements 

•  We can only detect bad accesses if they are to 
unallocated or uninitialized memory 

•  So try to make most of the bad accesses be of those 
two forms 
–  Especially, the common off-by-one errors 
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Red Zones 

•  Leave buffer space between allocated objects 
–  The “red zone” 
–  In what state do we put this zone? 

•  Guarantees that walking off the end of an array 
accesses unallocated memory 
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Aging Freed Memory 

•  When memory is freed, do not reallocate immediately 
–  Wait until the memory has “aged” 

•  Helps catch dangling pointer errors 

•  Red zones and aging are easily implemented in the 
malloc library 
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Another Class of Errors: Memory Leaks 

•  A memory leak occurs when memory is allocated but 
never freed. 

•  Memory leaks are at least as serious as memory 
corruption errors 

•  We can find many memory leaks using techniques 
borrowed from garbage collection 
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The Basic Idea 

•  Any memory with no pointers to it is leaked 
–  There is no way to free this memory 

•  Run a garbage collector 
–  But don’t free any garbage 
–  Just detect the garbage 
–  Any inaccessible memory is leaked memory 
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Issues with C/C++ 

•  It is sometimes hard to tell what is inaccessible in a 
C/C++ program 

•  Cases 
–  No pointers to a malloc’d block 

•  Definitely garbage 
–  No pointers to the head of a malloc’d block 

•  Maybe garbage 
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Leak Detection Summary 

•  From time to time, run a garbage collector 
–  Use mark and sweep 

•  Report areas of memory that are definitely or 
probably garbage 
–  Need to report who malloc’d the blocks originally 
–  Store this information in the red zone between objects 
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Tools for Memory Debugging 

•  Purify 
–  Robust industrial tool for detecting all major memory faults 
–  Developed by Rational, now part of IBM 

•  Valgrind 
–  Open source tool for Linux 
–  http://valgrind.org 

•  “Poor man’s purify” 
–  Implement basic memory checking at source code level 


