
UC Santa Barbara

CS189A - Capstone

Christopher Kruegel
Department of Computer Science

UC Santa Barbara
http://www.cs.ucsb.edu/~chris/

UC Santa Barbara

Software Crisis

•  Software’s chronic crisis: Development of large software systems is a
challenging task

–  Large software systems often: Do not provide the desired functionality;
Take too long to build; Cost too much to build Require too much resources
(time, space) to run; Cannot evolve to meet changing needs

•  Software engineering focuses on addressing challenges that arise in
development of large software systems using a systematic, disciplined,
quantifiable approach

•  There are essential difficulties in software development which makes it
a hard task:

–  Complexity; Conformity; Changeability; Invisibility

UC Santa Barbara

Software Process Models

•  Software life-cycle:
–  Requirements analysis and specification, design, implementation,

testing and integration, maintenance

•  Software process models
–  Waterfall: sequential, document driven
–  Evolutionary approaches: iterative and incremental software

development
•  Spiral model
•  Sync-and-Stabilize
•  Scrum
•  Extreme programming
•  Agile software development

UC Santa Barbara

Software Requirements

IEEE Recommended Practice for Software Requirements
Specifications

“Getting started: Using use cases to capture requirements,” James
Rumbaugh

•  Desirable properties of requirements:
–  correct, unambiguous, complete, consistent, verifiable, modifiable,

traceable

•  Formal vs. informal specification

•  Use cases, use case scenarios

UC Santa Barbara

Software Specification and Modeling

Unified Modeling Language (UML)

•  Use case diagrams

•  Class diagrams

•  Sequence diagrams

•  Collaborations diagrams

•  Activity diagrams

•  Statecharts and state diagrams

UC Santa Barbara

Principles of Software Engineering

The fundamental principles in software engineering are especially
important during software design:

•  Separation of Concerns

•  Iterative (Stepwise) Refinement

•  Abstraction

•  Modularity

•  Anticipation of Change

UC Santa Barbara

Modularization

“On the criteria to be used in decomposing systems into modules,” Parnas
“Designing software for ease of extension and contraction,” D.L. Parnas

•  Basic principle for modularity: Information hiding

•  Modularization with uses hierarchy

UC Santa Barbara

Design by Contract

"Applying Design by Contract," B. Meyer.

•  Pre-conditions, post-conditions, class invariants

•  Establishing pre-condition is the responsibility of the caller

•  Establishing the post-condition is the responsibility of the callee

•  Runtime contract monitoring

UC Santa Barbara

Design Patterns

•  Design patterns provide a mechanism for expressing common object-
oriented design structures

•  Design patterns identify, name and abstract common themes in object-
oriented design

•  Design patterns can be considered micro architectures that contribute
to overall system architecture

•  Design patterns are helpful
–  In developing a design

–  In communicating the design

–  In understanding a design

•  Patterns we discussed: Composite, Strategy, Decorator, Abstract
Factory, Bridge, Iterator, Observer

UC Santa Barbara

Validation, Verification and Testing

•  Reviews, walkthroughs, inspections

•  Software testing:
–  black-box vs. white-box; functional vs. structural

–  random testing, exhaustive testing

–  domain testing, boundary conditions

–  coverage criteria: statement, branch & path coverage, condition
coverage, multiple condition coverage

–  unit testing, stubs, drivers

–  integration& testing: top-down vs. bottom-up integration and testing

–  regression testing

