
Journal of Instruction-Level Parallelism 2 (2000) 1-6 Submitted 2/00; published 4/00

©2000 Morgan Kaufmann Publishers. All rights reserved.

BMAT -- A Binary Matching Tool for Stale Profile Propagation

Zheng Wang ZHWANG@EECS.HARVARD.EDU

Division of Engineering and Applied Sciences, Harvard University,
33 Oxford Street, Cambridge, MA 02138 USA

Ken Pierce KPIERCE@MICROSOFT.COM

Scott McFarling SMCFAR@MICROSOFT.COM

Microsoft Research,
One Microsoft Way, Redmond, WA 98052 USA

Abstract

A major challenge of applying profile-based optimization on large real-world applications is
how to capture adequate profile information. A large program, especially a GUI-based application,
may be used in a large variety of ways by different users on different machines. Extensive
collection of profile data is necessary to fully characterize this type of program behavior.
Unfortunately, in a realistic software production environment, many developers and testers need
fast access to the latest build, leaving little time for collecting profiles. To address this dilemma,
we would like to re-use stale profile information from a prior program build. In this paper we
present BMAT, a fast and effective tool that matches two versions of a binary program without
knowledge of source code changes. BMAT enables the propagation of profile information from an
older, extensively profiled build to a newer build, thus greatly reducing or even eliminating the
need for re-profiling. We use two metrics to evaluate the quality of the results using propagated
profile information: static branch prediction and the accuracy of code coverage. These metrics
measure how well the matching algorithm works for the frequently executed core code and across
the whole program, respectively. Experiments on a set of large DLLs from Microsoft Windows
2000 and Internet Explorer show that compared to freshly collected profiles, propagated
information using BMAT is typically over 99% as effective in branch prediction and over 98% as
accurate in code coverage information.

1. Introduction

1.1. Stale Profile Propagation

In recent years, there has been a lot of research on various types of profile-based optimizations
(PBO) and their potential benefits. Many of these studies make the assumption that an adequate
set of profile data is available. In practice, it is often difficult to generate high quality profiles. In
a real-world production environment, delivering a fresh build back to the development and testing
teams can be a critical bottleneck. Therefore, the time available for collecting profiles is by
necessity short. Meanwhile, the size and complexity of popular interactive applications continues
to grow. Such applications can be used in a large variety of ways. Even for the same task,
differences in the position of the mouse or the placement of a window can cause an entirely
different code path to be executed. To adequately profile this vast space of potential usage in
limited time is problematic. In addition, after an application is shipped, it may require a number
of minor bug fixes and patches over a span of years. By this time, the original development team

WANG, PIERCE, & MCFARLING

2

with the expertise to conduct profile collection for the specific application may well have
scattered to other projects.

These problems are results of the conventional way in which profiles are collected and used.
Every time the program is altered, all previously collected profiles become stale and must be
discarded. Therefore, new profiles must be created from scratch. In this paper, we propose a
method of propagating and re-using stale profile information. Using a mapping between a
previous build and the current build of a binary program, we convert the existing profiles for the
previous build so that they describe expected behavior of the current build. Thus, profile
collection for the previous build becomes part of the profiling process for the current build. In
effect, this extends the time available for profile collection to days or even weeks, compared to
the minutes available now. For minor changes, it may be possible to remove the profiling step
completely.

1.2. Binary Matching

To propagate stale profile information, we need a mapping between the old and new builds of the
program. For the propagated profile to accurately describe how the new build will behave, the
mapping needs to match program sections that would be executed in the same manner in two
versions. The more accurate the mapping is, the more effective the profile propagation will be.

BMAT is a binary matching tool we developed for this purpose. It compares two versions of
a binary program and finds matches between their code and data blocks. Here a match refers to a
link between a block in one version and a block in the other, indicating that the two blocks are the
best equivalent of each other in terms of program execution. In BMAT, code blocks refer to
program basic blocks, while data blocks are divided according to how data are accessed. We
conduct code matching on the basic block level because most types of profile information that are
gathered in current practice, such as execution counts and branch biases, are associated with basic
blocks. The propagation of such profile information is straightforward once we have a mapping at
the basic block level.

In realistic situations, the majority of program blocks can be expected to remain the same or
undergo only minor changes between two program versions that are not too far apart in time.
Therefore, we match the blocks mainly based on their contents. However, we also consider the
program structure during the matching process. With certain types of program changes, blocks
that appear to be similar or even identical may not be equivalent in terms of execution patterns,
while two seemingly different blocks may be surrounded by identical control flow. For stale
profile propagation, if the block matches produce a profile that accurately describes how the new
version runs, we consider the matches to be correct.

To obtain a propagated profile that is complete, we need to find matches for as many blocks
as possible. For equivalent blocks with small differences, we use a fuzzy match based on the
hypothesis that they are used in the same or a similar way. For blocks that do not have obvious
matches due to major program changes, we try to find matches based on both block contents and
program structure. Note that the need to accommodate program changes may conflict with the
goal of finding correct matches. One major reason is that due to certain characteristics of modern
programming languages and popular programming styles, large applications tend to have many
small code blocks that are similar or even identical. Therefore, an attempt to find a fuzzy match
may also lead to incorrect matches.

BMAT -- A BINARY MATCHING TOOL FOR STALE PROFILE PROPAGATION

3

1.3. Design Guidelines

In developing BMAT, we do not assume knowledge of source code changes. It is possible to use
source code as hints in finding binary matches. However, in realistic situations, source code may
not be available on the machine where profiling is conducted. Also, the association between the
source code and binary level basic blocks may depend on how the source is compiled, adding
complexity to the matching process. Some binary level basic blocks may not be visible at the
source level.

Even though speed is not our top priority, we want BMAT to be fairly fast. Instead of doing
an exhaustive search for the best matching possibilities, we use a series of heuristic methods to
simplify our algorithm while maintaining high matching accuracy.

Our implementation of BMAT is built on Windows NT for the x86 architecture. It uses the
Vulcan binary analysis tool (Srivastava et al. 1999) to create an intermediate representation of
x86 binaries, which frees us from the tasks of separating code from data and identifying program
symbols. Meanwhile, BMAT is designed for general-purpose binary matching regardless of the
platform. The basic design of the matching algorithm is independent of the specifics of the x86
architecture. Therefore, porting BMAT should be straightforward. However, our choices of
heuristics and the tuning of the heuristics are based on observations of common Windows NT
applications for the x86 architecture. For a different platform, the heuristics may need to be
adjusted based on the instruction set and the common application characteristics.

1.4. Contributions

Our work explores a fairly new and undeveloped area of profile-based optimizations. It makes the
following contributions:
� We investigate the problem of obtaining adequate profile information for large and complex

real world applications where only a limited time window is available for profile collection. We
study the solution of propagating stale profile information from prior builds to the current build.
� We describe a sophisticated binary matching algorithm specifically designed for stale profile

propagation. We choose the binary level for this process because of the practical difficulties of
keeping source code and tracking source code changes on the build machine.
� We propose two metrics for evaluating the quality of propagated profile information: static

branch prediction and code coverage. These metrics allow us to show that our algorithm is highly
effective both on the frequently executed key blocks and across the full scope of the program.
� We conduct experiments on common Windows NT applications and show that stale profile

propagation can extend the time window for profile collection to weeks or months.

1.5. Roadmap

The next section provides an overview of the algorithm we use in BMAT. Section 3 discusses the
hashing-based matching method in detail. In Section 4, we present some results from applying
BMAT to stale profile propagation for real-world applications. Section 5 examines some related
work, and Section 6 concludes.

WANG, PIERCE, & MCFARLING

4

2. Algorithm Overview

In the rest of this paper, a pair of procedures (or blocks) refers to a set of two procedures (or
blocks) taken from two versions of a binary program, one from each.

When developers modify the source code, they may directly cause several types of changes in
the binary program. Such changes include code being added, deleted or moved within a
procedure, instruction changes (operands and opcode), and procedure name or type changes. In
addition to these direct changes, one small modification in source code may cause many more
code and data changes throughout the binary. In many cases, this is simply because the rest of the
program shifts in the address space. Such indirect changes may occur to control flow instruction
targets, pointers, register allocation, etc.1 In some extreme cases, indirect changes may cause two
blocks that shouldn’t match to appear identical while two blocks that should match appear
different. Therefore, it is essential to detect and filter out indirect changes when looking for a
match.

Figure 1. Example of Indirect Changes

In this example, a shift in the data layout of the program causes the address offsets in the
mov instructions to change. A code change in the first block affects register allocation in
the next two blocks. In addition, jump offsets in a1 and b1 may be different due to code
movement. Note that due to indirect changes, blocks a2 and b3 are identical, while the
correct matches are a2-b2, a3-b3. If we ignore the indirect changes in address offsets
and register allocation, blocks a2, a3, b2, b3 will all be identical, and correct matches
can be made based on the relative positions of the blocks.

Our basic model is to divide the matching process into two stages. The first stage is to find a
one-to-one mapping between the procedures in two versions based on their names, type
information and code contents. Procedures that have been deleted or added will not be included.
The mapping may also fail to include procedures that have changed drastically. During the
second stage, we look for basic block matches within each pair of matched procedures. In other
words, blocks in a procedure may only be matched to blocks in the corresponding procedure in
the other version. Data blocks are matched in a separate phase from code blocks.

1 In some literature, direct and indirect changes are called primary and secondary changes.

mov ecx,dword ptr[ebp+08h]
cmp dword ptr[ecx],0
jne L1

mov edx,dword ptr[ebp+20h]
add dword ptr[edx+18h],0x4

mov eax,dword ptr[ebp+28h]
add dword ptr[eax+18h],0x4

b1

b2

b3

mov ecx,dword ptr[ebp+10h]
mov edx,dword ptr[ebp+20h]
cmp dword ptr[ecx],0
jne L1

mov eax,dword ptr[ebp+28h]
add dword ptr[eax+18h],0x4

mov ecx,dword ptr[ebp+30h]
add dword ptr[ecx+18h],0x4

a1

a2

a3

BMAT -- A BINARY MATCHING TOOL FOR STALE PROFILE PROPAGATION

5

We confine code block matches within the procedure mapping to narrow down the problem
space. To consider code block matches in the scope of the whole binary will increase both the
complexity of the algorithm and the possibility of wrong matches. In reality, most code changes
occur within procedure boundaries. There are cases where a procedure is split or multiple
procedures are merged. Certain optimizations such as procedure inlining, if done differently for
different builds, may also cause code movement across procedure boundaries. The current version
of BMAT does not deal with these cases.

To compare basic blocks within a pair of procedures, we use a hashing-based algorithm. A
64-bit hash value is calculated for each block based on the opcodes and operands of its
instructions. If a pair of blocks have the same hash value, it is likely that they constitute a match.
If two or more blocks in one procedure have the same hash value, we use locality information and
heuristic methods to identify which one makes the correct match.

The hashing calculation in our implementation is order-sensitive. In other words, two blocks
produce the same hash value if and only if their instructions match and the order is the same. If
aggressive instruction scheduling is performed during compilation, changes in one block may
cause instructions in other blocks to shuffle around. In that case, it may be desirable to use a
hashing method that does not depend on the order of the instructions. This issue is not
investigated in this paper.

As mentioned earlier, we need to deal with indirect changes when looking for matches.
However, if we ignore all program elements that may be affected by indirect changes, we will
have too little information left. Furthermore, BMAT is designed to find approximate matches for
program blocks affected by direct changes. All these factors introduce a tradeoff between being
flexible to look past minor changes and being precise to identify correct matches. In our design,
the hashing-based matching algorithm includes multiple passes with different levels of matching
fuzziness. This allows us to find more matches more accurately. A number of heuristic methods
are used to help find the best match for each block.

Figure 2 is an overview of the whole matching process. The next three subsections present
details of each phase.

Figure 2. Overview of the Matching Process

2.1. Procedure Matching

In the procedure matching stage, we use a combination of name-based and hashing-based
methods.

Procedure Matching

by identical names

hashing-based comparison

by similar names

block trial-matching

Data Block Matching

by value

by position

for each pair of
matched procedures

Basic Block Matching

hashing based

control flow based

WANG, PIERCE, & MCFARLING

6

The first idea we use is that if two procedures have identical names, we map them to each
other. When procedure overloading is allowed, multiple procedures may have the same
hierarchical name2. However, the compiler assigns each procedure a unique extended name,
which includes not only the hierarchical name but also the procedure parameters and return type
information. In BMAT, we first look for procedure pairs with the same extended name. Then,
among the remaining procedures, we look for pairs with the same hierarchical name. Both steps
are necessary because when the parameter list or return type of a procedure changes, the extended
name changes even though the hierarchical name remains the same.

Occasionally program developers change the name of a procedure. We have observed that in
most cases, the change involves only a small number of characters in the name string. Therefore,
we look for every procedure pair whose hierarchical names are different by a small number of
characters, then do a block trial-matching between their code blocks. This trial-matching is a
simplified, one-pass version of the hashing-based basic block matching algorithm performed later
within each pair of matched procedures. If the percentage of matching blocks between the two
procedures is high, we conclude that the two constitute a match. The thresholds for procedure
name difference and block matching percentage are both set heuristically, based on observations
on some common Windows NT applications. Particularly, the threshold for procedure name
difference may need to be adjusted according to the habits of program developers.

We also perform hashing-based pair-wise comparison between procedures that cannot be
matched by name. In a bottom-up fashion, we calculate a single hash value for each unmatched
procedure based on the hash values of its code blocks. The calculation is sensitive to the order of
blocks within a procedure. We then compare the procedures’ hash values to look for matches. As
in the basic block matching phase, this hashing-and-comparing process is done in multiple passes
with different levels of fuzziness.

If there are still procedures remaining unmatched, they are usually procedures that have been
deleted or added. Some of them may be procedures whose name and contents have both changed
substantially. To catch the latter cases, we perform the above-mentioned block trial-matching
between all unmatched procedures. Unlike hashing-based pair-wise comparison, which reduces
each procedure to a single hash value, pair-wise block trial-matching can find a match even when
code blocks have been added to or deleted from a procedure. However, we have observed that for
many programs, this method can be time-consuming and yet find very few procedure matches.

In the current version of BMAT, the above four methods are performed in the following
order: matching by identical names, hashing-based pair-wise comparison, matching by similar
names, and pair-wise block trial-matching. We put matching by similar names after hashing-
based pair-wise comparison because the former has a high error rate for some modern
applications where many procedures have similar names.

2.2. Data Block Matching

As with code block matching, we use a hashing-based algorithm to match data blocks in the two
binaries. Relocation entries pose challenges because their values tend to change from build to
build. For our implementation, we chose to exclude relocation entries from the hashing, although
more sophisticated methods are possible. For data blocks that are not matched by the hashing-
based algorithm, we try to match them according to their positions in the program. If a pair of

2 For C++ programs, we consider the class hierarchy as part of the procedure name. For example, if foo is a
class and it has a method bar, the corresponding procedure name will be foo::bar instead of just bar. We
refer to such a name as the procedure’s hierarchical name.

BMAT -- A BINARY MATCHING TOOL FOR STALE PROFILE PROPAGATION

7

unmatched data blocks are sandwiched by two pairs of matched data blocks in the program, we
make them a match as long as their sizes are not too different.

We match the data blocks before the code blocks in order to use data matching results to help
code matching. For example, if two instructions refer to two data blocks that are already matched
to each other, we can consider the two instructions a match even if the data addresses are
different. On the other hand, it is also justifiable to match the data blocks after the code blocks. In
that case, the code matching results can help us analyze the relocation entries and improve data
matching accuracy. After trying out both approaches on several programs, we chose to perform
data matching first because it is simpler and often provides critical clues for code matching. To
keep our algorithm simple and fast, we decided not to investigate the possibility of doing data
block matching in multiple passes or intertwining data matching with code matching.

2.3. Basic Block Matching

Within each pair of matched procedures, we use a hashing-based algorithm to match the basic
blocks based on their code contents, taking their relative positions into account. We perform
multiple hashing passes with different levels of fuzziness. Details of the hashing and comparing
process will be described in Section 3.

The hashing-based matching identifies only one-to-one matches between basic blocks. It
cannot find matches for blocks that have been deleted, added or drastically changed. In order to
propagate as much profile information as possible, we try to match each of these remaining
blocks with a block that is equivalent according to the control flow. Specifically, we traverse
down both versions of a procedure simultaneously following the control flow, and use conditional
branches, jump instructions, return instructions and previously matched blocks to pinpoint code
sections that are comparable in terms of control flow. We do not use subroutine calls as reference
points because they are often added to, removed from or moved within a procedure while the rest
of the code remain the same. This traversing method can find a match for every block except
those that are unreachable in the scope of our static analysis. Unlike hashing-based matching, the
control-flow-based phase may match several blocks in the same control flow branch to a single
block in the other version.

Figure 3. Example of Control-flow-based Basic Block Matching

In this example, two new blocks (b2’ and b2”) are added to the fall through path of a
conditional branch. During control-flow-based block matching, these two blocks are
matched to a2, the fall through block of the matching branch in the old version. Note that

P

test eax,eax
je L1

add ecx,4
jmp L2

L1:

a1

a2

a3

test eax,eax
je L1

test ecx,ecx
je L1a

push 0
call P1

L1a: add ecx,4
jmp L2

L1:

b1

b2’

b2”

b2

b3

WANG, PIERCE, & MCFARLING

8

b2, b2’ and b2” are matched to the same block. However, each new block is still
matched to only one old block, so there is no ambiguity when propagating profile
information.

A “partial” flag is associated with the match from block b2” to block a2, indicating that
b2” corresponds to only part of the control flow through a2. In other words, if a2 is
executed N times under a certain scenario, b2” may be executed anywhere between 0
and N times under the same scenario.

3. Hashing-and-Matching Algorithm Details

This section discusses some details of the multi-pass hashing-and-comparing process in both
procedure matching and basic block matching, and it explains the reasons behind some of our
design decisions.

3.1. Types of Code Changes

In order to match as many code blocks as possible and match them correctly, we need to filter out
indirect changes and also accommodate minor direct changes. We achieve this by excluding
certain information from the hashing calculation. Here is a list of different types of information
we may need to exclude in order to find correct matches:
� Numerical address offsets, i.e., numerical offsets in memory address operands. These offsets

often change from build to build due to changes in data layout.
� Register allocation. A minor code change may cause different results of register allocation

for the rest of the procedure. This only affects registers that are included in the allocation by the
compiler. It does not affect special registers such as the stack pointer.
� Immediate operands. Some immediate operands, such as loop boundaries and program

constants, may change from build to build.
� Block address operands. These operands appear in control flow instructions (jump, branch

and call) and some others such as pointer operations. For simplicity, we call the instruction that
contains the block address operand source instruction and the block referred to by the operand
target block. In many programs, the majority of indirect changes occur to block address operands,
and these changes can be tricky to recognize. It is necessary to distinguish the following
scenarios:

1. The source instruction is modified to refer to a different target block. This is a direct
change to the block address operand.

2. The target block address changes, which could be caused by the shifting of the whole
procedure or the shifting of the block within the procedure. This is an indirect change to
the block address operand.

3. The target block code changes, or the target procedure’s name or type is modified. This
does not affect the block address operand directly, but it may be confused with the first
scenario.

Due to these possibilities, the best way to represent a block address operand is not clear. Our
design includes the following rules:

1. If the target block is already matched to another block, the hashing is done so that address
operands associated with the two blocks are treated as the same.

BMAT -- A BINARY MATCHING TOOL FOR STALE PROFILE PROPAGATION

9

2. If the target block has a compiler-assigned extended name (for example, if it is the entrance
block of a procedure), hash the extended name only.

3. If the target block is within the same procedure as the source instruction, hash the address
offset of the target block from the beginning of the procedure and its offset from the source
instruction. If the target block is in a different procedure, hash the name of that procedure
and the address offset of the target block from the beginning of the procedure.

We follow these rules in the given priority order. However, steps 1 and 2 may introduce
errors in some cases. Therefore, they are disabled in some passes during the matching process, as
described later in Section 3.2.
� Instruction opcode and operand types. For example, due to minor changes in the source code

or the compilation process, a push word instruction may become a push double word, a memory
operand may become a register operand, and a return instruction with no parameter may become
a return with a parameter.
� Instruction(s) added or removed. One or more instructions may be added to or removed from

a basic block, and each instruction may change so much that our hashing algorithm cannot
accommodate the changes. To match such a block requires the exclusion of these instructions. It
is impractical to try out all the possibilities, as the total number of possibilities is exponential with
the number of instructions in the block. For simplicity, our design is to hash only the last
instruction in the block during some passes.

In summary, there are many types of information we may need to exclude in order to find
matches. Instead of trying out all the combinations among them, we selectively define several
matching fuzziness levels, and perform multiple matching passes at different levels. At each level,
we exclude a specific set of information from the hashing calculation. The design is to have levels
where most information is included in the hashing, and also levels where much information is
excluded. In other words, we use different degrees of approximation when we look for matches at
different levels. The more encompassing levels allow us to find accurate matches for blocks that
have not changed or only barely changed, while the fuzzier levels find good matches for blocks
that have changed considerably.

The definition of the fuzziness levels and the order in which we perform them are both
heuristic. We tuned the heuristics based on our experiments on several common Windows NT
applications. The tuning often involves tradeoffs between matching accuracy and algorithm
complexity.

3.2. Definition of Matching Fuzziness Levels

Here we list the definition of all matching fuzziness levels in our implementation of BMAT.
Generally speaking, the levels are defined incrementally, i.e., more and more information is
excluded when the fuzziness level increases. There are two special levels where we consider only
the last instruction in each block. They are designed to deal with blocks in which instructions
have been added or removed. Table 1 gives an overview of all fuzziness levels, followed by
detailed description for each level.

WANG, PIERCE, & MCFARLING

10

F
uz

zi
ne

ss
 L

ev
el

N
um

er
ic

al
A

dd
re

ss
 O

ff
se

t
Register Allocation Block Address Operand Operand Opcode

0 all all • target block’s match
• target block’s extended name
• target procedure name or

branch offset within procedure
• target block’s distance from

beginning of procedure

all all

1 none EAX/ECX/EDX:
dependency only

same as level 0 all all

1a same as level 1, but includes only the last instruction in each block

2 none EAX/ECX/EDX:
dependency only

• target block’s match
• target block’s extended name
• target procedure name or

branch offset within procedure

all all

3 none EAX=ECX=EDX
EBX=EDI=ESI

target procedure name or
branch direction within procedure

no immediate
none for return

all

3a same as level 3, but includes only the last instruction in each block

4 none N/A N/A type only all

5 none N/A N/A none group

Table 1. Matching Fuzziness Levels

� Level 0. All instruction opcodes and operands are included in the hashing. Due to indirect
changes in address offsets and register allocation, a level 0 match between two blocks is not
always a correct match. This is demonstrated by the example in Figure 1. In our current
implementation, level 0 is not used in hashing-based basic block matching. It is used in procedure
matching to find procedures that remain exactly the same.
� Level 1. At this level and above, numerical address offsets are excluded from the hashing,

and registers EAX, ECX and EDX are converted to the same value for the calculation. However,
we retain some information on the use of these three registers by including their dependencies
within each basic block in the hashing. These three registers are allocated for arithmetic
calculations by the compiler that generated our benchmark programs.

BMAT -- A BINARY MATCHING TOOL FOR STALE PROFILE PROPAGATION

11

Figure 4. Excluding Register Allocation and Including Register Dependency

By treating EAX, ECX and EDX as the same in the hashing calculation, we can match
blocks (1) and (2) despite indirect changes in register allocation. Meanwhile, by including
register dependency information, we can still distinguish blocks (1) and (2) from (3).

� Level 1a. Same as level 1, but hashes only the last instruction in each block.
� Level 2. For each block address operand, the address offset of the target block from the

beginning of the procedure is excluded. This accommodates indirect changes that cause address
shift for part of a procedure.
� Level 3. At this level:

− All immediate operands and operands of return instructions are excluded from the hashing.
− In addition to EAX/ECX/EDX, registers EBX/EDI/ESI are also converted to the same

value for the hashing calculation. These three registers are usually used as base registers for
memory access. Register dependency information is no longer included, and thus the registers in
each of the two groups make no difference to the final hash value.

− For block address operands, the matching status and extended name of target blocks are no
longer used. The address offset from a source instruction to a target block in the same procedure
is reduced to +1 or –1 based on the branch direction, i.e., forward or backward.
� Level 3a. Same as level 3, but hashes only the last instruction in each block.
� Level 4. For each instruction, hash the opcode and the types (but not the contents) of its

operands.
� Level 5. For each instruction, hash the opcode only. Certain groups of opcodes are considered

as the same, such as push word and push double word, all conditional branch opcodes, etc.

3.3. Method of Matching at Each Level

At each matching fuzziness level, there can be several code units (procedures or blocks) with the
same hash value. The possibility of ties tends to increase with higher fuzziness levels as we
exclude more information from the hashing. We refer to a pair of code units with the same hash
value as matching candidates.

For procedure matching, ties are rare. We break the ties simply by matching the candidates in
their order of appearance in the program. At the higher fuzziness levels, we also use block trial-
matching (see Section 2.1) to reduce the rate of wrong matches.

For block matching within a pair of procedures, ties are relatively common. We use a two-
phase method to break the ties, utilizing a locality assumption that the order of blocks in a
procedure seldom changes drastically. This assumption may not hold true if aggressive basic
block ordering is performed during compilation.

(1) (2) (3)

mov eax,dword ptr[ebp]
mov ecx,edx
add ecx,eax

mov ecx,dword ptr[ebp]
mov eax,edx
add eax,ecx

mov eax,dword ptr[ebp]
mov ecx,edx
add eax,ecx

WANG, PIERCE, & MCFARLING

12

In the first phase, the one-to-one phase, we match blocks
that are the only matching candidate for each other. This is
reasonable for fuzziness level 1, but at higher levels, even a one-
to-one candidate does not necessarily make a correct match.
Errors are especially likely when many small blocks are similar
to each other. Most of these errors fall into the category of cross-
matching, where a new match “crosses” an existing match (see
Figure 5). Based on our observations and experiments, we added
the following restrictions: At fuzziness level 1a, cross-matching
is forbidden. At level 3, cross-matching is forbidden for blocks
with three instructions or less. At level 3a, we skip the one-to-
one phase altogether. At levels 4 and 5, we forbid any matching
for blocks with one or two instructions, and forbid cross-
matching for blocks with three instructions.

The second phase is the propagation phase, where we propagate a match between a pair of
blocks to their neighbor blocks. To implement this, we look through the multiple matching
candidates for a block and pick one that passes the neighbor test. A pair of blocks passes the
neighbor test if either their predecessors or their successors are matched to each other. This new
match can then be propagated to more successors or predecessors. This process is repeated until
the propagation stops.

3.4. Order of Matching Passes

We can adjust the order in which different levels of matching are performed. Note that not all
levels have to be used, and each level can be used more than once. In general, we perform the
matching levels in increasing order of fuzziness. However, we have observed that for certain
cases, a strictly increasing order is not the best choice. We adjusted the order accordingly. In our
current implementation, we perform six passes during hashing-based procedure matching. They
use fuzziness levels of 0, 1, 3, 1a, 5, and 3a, in that order. Levels 2 and 4 are skipped in an effort
to save time, as they do not significantly improve matching results on top of the other passes.
During basic block matching, we perform seven passes using fuzziness levels 1, 3, 2, 1a, 4, 3a,
and 5. Level 0 is skipped because it may cause wrong matches.

An annotation is attached to each code block match to indicate the fuzziness level at which
the match is established. It is also used to mark matches that are made during control-flow-based
block matching. This annotation helps to distinguish between strong and weak matches, and thus
provides important information for the profile propagation algorithm.

3.5. Example

To demonstrate our block matching algorithm, Figure 6 shows the matching results for a
procedure from a common Windows NT application.

b1

b2

b3

b4

a1

a2

a3

Figure 5. Example of
Cross-matching

: an existing match

: a new match

BMAT -- A BINARY MATCHING TOOL FOR STALE PROFILE PROPAGATION

13

Version 1

mov eax,[Sym_a1]
test eax,eax
je L1 (offset: 0x30)

test byte ptr [Sym_a2+3Eh],10h
je L1 (offset: 0x27)

push 1
push dword ptr [Sym_a2]
push 453h
push eax
call dword ptr [Sym_a3]

and dword ptr [Sym_a4],0
and dword ptr [Sym_a5],0
jmp Proc_a6

 L1: ret

Version 2

mov eax,[Sym_b1]
test eax,eax
je L2 (offset: 0x2B)

test byte ptr [Sym_b2+3Eh],10h
je L2 (offset: 0x22)

push 1
push dword ptr [Sym_b2]
push 453h
push eax
call dword ptr [Sym_b3]

and dword ptr [Sym_b4],0
and dword ptr [Sym_b5],0

 L2: ret

Figure 6. An Example of Code Block Matching

The number on each arrow is the annotation that indicates the fuzziness level at which the
match is made. CF = control-flow-based.

In this case, the data symbols are already identified in the intermediate representation,
and Sym_a1, Sym_a2, Sym_a3, Sym_a4, Sym_a5 have been matched with Sym_b1,
Sym_b2, Sym_b3, Sym_b4, Sym_b5, respectively, during data block matching.
Assuming the data symbols were not identified or not matched, the algorithm would still
find the same code block matches, but possibly at higher fuzziness levels.

The different jump offsets for the first two pairs of blocks are indirect changes. These two
pairs are matched at level 3 when jump offsets are reduced to jump directions. For the
fourth pair of blocks, the last instruction has been removed in the new version, so the
blocks are not matched until control-flow-based matching.

4. Results

In this section we present experimental results for mshtml.dll, a major DLL from Microsoft
Internet Explorer 5.0, and a collection of eight DLLs from Microsoft Windows 2000. When
tuning the heuristics in our algorithm, we used two of the Windows 2000 DLLs and another small
program, but none of the other DLLs we used for testing.

4.1. Running Time

Table 2 lists the running time of BMAT for several programs of different sizes. All experiments
were run on a PC with a Pentium II 200MHz processor and 512MB of RAM. The total running
time ranges from four seconds for a 122KB sized program to under four minutes for a 5.5MB
sized program. For these programs, between a quarter and a half of the total running time is spent
in the Vulcan tool (Srivastava et al. 1999) to build the program intermediate representation, while
the rest is spent on the matching algorithm.

3

3

1

1

CF

WANG, PIERCE, & MCFARLING

14

Weeks File File Running Time (seconds) Speed
Apart Name Size (KB) Build Match Total (Minute / MB)

3 dhcpcsvc.dll 122 2 2 4 0.6
3 netlogon.dll 477 7 7 14 0.5
3 browseui.dll 1080 15 18 33 0.5
3 shell32.dll 3360 32 84 116 0.6

21 mshtml.dll 5628 60 178 238 0.7

Table 2. Running Time of BMAT

Weeks Apart: Time apart between the two builds on which we ran BMAT
Build: Time for building intermediate representations using the Vulcan tool
Match: Time for the matching algorithm
Total: Total time for building and matching
Speed: Total running time divided by file size

4.2. Matching Rate

Table 3 lists the matching rate results for mshtml.dll. Though not necessarily proving the
accuracy of our algorithm, these results demonstrate how matching rate decreases when the builds
are longer apart in time. It also shows that mshtml.dll did not change drastically over several
months of time, a positive sign for the potential of stale profile propagation. It is worth noting that
the rate of program change varies for different applications and different phases of product
development. Even within the same project, some program modules are modified more often or
more significantly than the others. Late in the development and testing process, there are usually
only small changes.

Build Date 10/22/98 03/15/99 04/16/99 07/15/99 07/27/99 08/11/99
File Size 5395KB 5592KB 5592KB 5600KB 5627KB 5628KB

Number of Procedures 12455 12891 12891 12902 12965 12966
Number of Code Blocks 145111 155996 156044 156175 157417 157417
Number of Data Blocks 9357 9440 9440 9445 9511 9512

Maximum Procedure 96.06% 99.42% 99.42% 99.51% 99.99% --
Remain Code 92.18% 99.10% 99.13% 99.21% 100.00% --
08/11/99 Data 98.37% 99.24% 99.24% 99.30% 99.99% --

Matching Procedure 92.21% 99.02% 99.02% 99.11% 99.99% --
Rate Code 93.01% 99.51% 99.50% 99.55% 100.00% --

08/11/99 Data 90.52% 97.90% 97.90% 97.95% 99.97% --

Table 3. Matching Rates for mshtml.dll (6 Versions)

In this experiment, we ran BMAT between the latest build (08/11/99) and each previous
version.

BMAT -- A BINARY MATCHING TOOL FOR STALE PROFILE PROPAGATION

15

Maximum Remain: Total number of units (procedures, code blocks or data blocks) in the
older build divided by total number in the newer build. This ratio represents the
maximum percentage of units in the newer build that have remained the same since the
older build. The percentage of units that are actually the same is most likely lower, due to
units that have been deleted or changed.

Matching Rate: Percentage of units in the newer build for which we successfully find
matches.

For procedures and data blocks, the Maximum Remain gives an absolute upper limit for
the Matching Rate, since the mapping is one-to-one. For code blocks, the Matching Rate
may exceed the Maximum Remain because multiple blocks may be matched to the same
block during control-flow-based basic block matching.

For two cases of binary matching, Table 4 and Table 5 list the matching rates on the
procedure and code block levels, respectively, after different phases of the matching process.
These numbers demonstrate the performance gain of BMAT from using a multiple-pass approach
and a combination of different methods. All results are reported in terms of matching rates in the
newer build, because we are usually interested in propagating profile information from the older
build to the newer build. A higher matching rate in the newer build enables us to propagate more
information.

Number and Percentage of Matched Procedures* After

File Name Build Dates and
Number of Procedures

matching by
identical
names

hashing-
based

comparison

matching by
similar
names

block
trial-

matching

mshtml.dll older: 03/15/99, 12891 12235 12838 12839 12839
newer: 08/11/99, 12966 94.36% 99.01% 99.02% 99.02%

shell32.dll older: 05/11/99, 7473 7098 7191 7222 7224
newer: 06/15/99, 7685 92.36% 93.57% 93.98% 94.00%

* : in the newer build

Table 4. Procedure Matching Rates at Different Stages

Table 4 lists the number and percentage of successfully matched procedures in the newer
build after using each of the four methods. The four methods are used sequentially from
left to right, and each number reflects the cumulative result of all methods that have been
used up to that point. The results show that most matches can be found by simply looking
for identical names, while the hashing-based method noticeably improves the results. As
mentioned in Section 3.1, block trial-matching, which can be time-consuming, often finds
very few additional matches.

In the case of shell32.dll, our investigation shows that a large number of procedures
were removed from or added to the program between the two builds. These procedures
cannot be matched by BMAT.

WANG, PIERCE, & MCFARLING

16

Number & Percentage of Matched Code Blocks* After
File Name Build Dates and

Number of Code Blocks
hashing

(first pass only)
hashing

(all passes)
hashing and

control-flow-based

mshtml.dll older: 03/15/99, 155996 143643 155098 156638
newer: 08/11/99, 157417 91.25% 98.53% 99.51%

shell32.dll older: 05/11/99, 88906 73761 84189 87694
newer: 06/15/99, 90538 81.47% 92.99% 96.86%

* : in the newer build

Table 5. Code Block Matching Rates at Different Stages

Table 5 lists the total number and percentage of successfully matched code blocks in the
newer build for three cases: after using only the first hashing pass (fuzziness level 1),
after using all hashing passes, and after using both hashing and control-flow-based
matching. These results demonstrate benefits from using multiple matching passes and
performing control-flow-based basic block matching.

In the case of mshtml.dll, the number of matched code blocks in the newer build after
control-flow-based matching exceeds the total number of code blocks in the older build.
This is a result of multiple blocks being matched to the same block. Most code blocks
that remain unmatched after control-flow-based matching are blocks in unmatched
procedures.

4.3. Profile Propagation

We ran an automated test on Internet Explorer 5.0 using five different versions of
mshtml.dll, and collected profiles for each version3. Between the latest build and each earlier
build, we used BMAT to propagate the profile for the older version onto the newer version, then
compared the propagated profile with the fresh profile directly collected for the newer version. As
far as we know, there are no well-established metrics for evaluating propagated profile
information. In this paper we propose two metrics:

Branch Prediction (B.P.) metric: We perform static branch prediction on the newer version
using both the propagated profile4 and the fresh profile, and calculate the dynamic success rate of
each prediction. The Branch Prediction metric is the ratio of the two success rates, i.e., the
success rate using the propagated profile divided by the success rate using the fresh profile. A
B.P. metric of 100% indicates that the propagated profile is as effective in branch prediction as
the fresh profile. This metric measures how well BMAT works on the most frequently executed
part of the program.

3 All experiments were run on the same machine, using the same version of Internet Explorer with different
versions of mshtml.dll. The 10/22/98 version was excluded because of an incompatibility problem. The
automated test exercises about 27% of the code blocks in mshtml.dll.
4 If a branch in the newer version is not covered by the propagated profile, we predict the branch to be
“taken.”

BMAT -- A BINARY MATCHING TOOL FOR STALE PROFILE PROPAGATION

17

Code Coverage (C.C.) metric: For either profile, we assign each code block in the newer
version a coverage bit of 1 or 0 based on whether it has a non-zero execution count in the profile5.
A block is classified as “agreed” if its coverage bit is the same according to the propagated profile
or the fresh profile. The Code Coverage metric is the percentage of “agreed” code blocks among
all code blocks in the newer version. A C.C. metric of 100% indicates that the propagated profile
accurately describes which blocks in the newer version will be executed. This metric measures
how well BMAT works across the whole binary.

On an interactive application like Internet Explorer, even an automated test may generate
slightly different profiles from run to run. We call this the execution uncertainty factor. To
quantify this effect, we ran the test three times on each version, and compared the three profiles to
each other using the metrics defined above. The calculation of the metrics remains the same, with
one profile collected earlier assumed to be “propagated profile” and one collected later assumed
to be “fresh profile.”

Results from both profile propagation and self-comparison are given in Table 6. In these
experiments, error rate from profile propagation is under 0.13% for branch prediction, about 16
times the largest execution uncertainly factor we see when the test is repeated on the same
version. For code coverage, the error rate is under 0.5%, less than three times the largest
execution uncertainly factor. These results show that it is feasible to use propagated stale profiles
on newer versions. Assuming these error rates are acceptable for the purpose of optimization, all
profile information collected for mshtml.dll during the five month period can be propagated
and used on the latest build.

Build Date 03/15/99 04/16/99 07/15/99 07/27/99 08/11/99

Matched B.P. 99.997% 99.997% 99.997% 99.992% 99.996%
against self C.C. 99.94% 99.95% 99.96% 99.83% 99.87%

Matched B.P. 99.876% 99.876% 99.894% 99.998% --
against 08/11/99 C.C. 99.59% 99.61% 99.55% 99.93% --

Table 6. Profile Propagation and Self-Comparison Results for mshtml.dll (5 Versions)

B.P.: Static branch prediction success rate using the propagated profile (BMAT-
converted profile from the older version) divided by the rate using the fresh profile
(profile collected directly for the newer version).

C.C.: Accuracy of code coverage data from the propagated profile as compared to the
fresh profile. Each code block in the newer version is “agreed” if its coverage bit is the
same according to the propagated profile or the fresh profile. C.C. is the percentage of
“agreed” code blocks among all code blocks in the newer version.

Matched against self: Comparison results between different test runs on the same build.
We compare profiles from two runs using the above metrics. Each number listed is the
average of three pair-wise comparisons (between three runs). These results quantify the
execution uncertainty factor.

5 If a code block in the newer version is not covered by the propagated profile, its coverage bit is 0.

WANG, PIERCE, & MCFARLING

18

Table 7 presents the matching rates and profile propagation results for eight DLLs from
Microsoft Windows 2000. Even though the oldest build A and the newest build D are only six
weeks apart, the average matching rate across the eight DLLs (98.92%) is lower than the
matching rate for two builds of mshtml.dll that are five months apart (99.51%, Table 3). This
suggests that this group of DLLs underwent more significant changes during the six weeks than
mshtml.dll did during the five months. Consequently, the profile propagation results are not
as close to 100% as the results for mshtml.dll, but they are nonetheless promising.
Throughout the table, most branch prediction metrics are over 99% and most code coverage
metrics are over 98%. Between builds A and D which are six weeks apart, five out of the eight
DLLs produce branch prediction and code coverage metrics both over 97%. For the other three,
one of the two metrics is over 97%. On average, between builds A and D, the propagated profiles
are 98.8% up to par in terms of static branch prediction and 97.7% accurate in terms of code
coverage information. Unsurprisingly, the averaged metrics are even higher for profile
propagation from a more recent build (B or C).

Name browseui comctl32 explorer netlogon shdocvw shell32 shlwapi webcheck Average

A-D 99.71% 99.66% 97.80% 100.00% 99.62% 96.86% 99.45% 98.27% 98.92%
B-D 99.96% 99.92% 99.03% 100.00% 99.67% 99.40% 99.82% 99.30% 99.64%

M
.R

.

C-D 99.98% 99.99% 99.03% 100.00% 99.85% 99.97% 99.91% 99.33% 99.76%

A-D 95.94% 99.70% 99.97% 99.64% 97.81% 97.76% 99.61% 100.00% 98.80%

B-D 96.13% 99.74% 100.00% 99.84% 98.47% 99.19% 99.82% 99.07% 99.03%B
.P

.

C-D 96.51% 99.90% 100.00% 99.83% 98.50% 99.24% 99.70% 99.07% 99.09%

A-D 98.53% 97.52% 93.82% 98.17% 99.58% 96.67% 97.23% 100.00% 97.69%
B-D 98.43% 98.18% 97.70% 99.51% 99.65% 98.83% 98.79% 99.98% 98.88%C

.C
.

C-D 98.73% 98.58% 99.65% 99.50% 99.65% 98.85% 99.08% 99.98% 99.25%

Table 7. Matching Rates and Profile Propagation Results for Eight Windows 2000 DLLs
(4 Versions)

A, B, C, D: Four different builds, in time order, over six weeks of time (05/11/99,
06/04/99, 06/15/99, 06/22/99)

M.R.: Matching Rate (code block). Percentage of successfully matched code blocks in
the newer build (D)

B.P., C.C.: Branch Prediction and Code Coverage metrics for profile propagation (see
Table 6 caption)

5. Related Work

Most existing PBO systems do not address the issue of stale profile data. In these systems, the
profiling process starts over after any program transformation. The only system we are aware of
that employs binary matching for re-using stale profiles is Spike, an optimization system for
Alpha executables (Cohn et al. 1997). In Spike, profiles collected for one version continue to be
used for successive builds if the changes are small. However, Spike only conducts matching on

BMAT -- A BINARY MATCHING TOOL FOR STALE PROFILE PROPAGATION

19

the procedure level, and discards profile information for any procedure whose control flow graph
has changed. With BMAT, profile information is propagated on basic block level and for as many
blocks as possible, even in procedures that have partially changed. Spike’s binary matcher does
not use a procedure’s name or most of its code contents. It generates a control flow graph
signature for each procedure, and uses a minimum edit distance algorithm to find matches
between the signatures.

Some other systems deal with stale profiles without using binary matching. Morph (Zhang et
al. 1997), a system for automatic and continuous profiling and optimization, addresses the issue
of stale profiles caused by program re-optimization. In Morph, profiles for a program module are
generated for its special intermediate representation, which is saved in the system. When a
module is re-optimized, the optimizer produces a mapping between the old and new intermediate
representations so that stale profiles can be converted for use on the new version. These
requirements on the intermediate representation and the optimizer are difficult to fulfill on widely
available commercial systems. More importantly, Morph does not deal with program source code
changes.

A compiler system built at Compaq (Albert, 1999) correlates profile information collected for
a binary program with the program source code, using help from the compiler back-end. This
presents a different approach to the problem of stale profiles, as profile information attached to
source code can be carried along when the source is modified. BMAT is designed for a different
type of situation, i.e., binary optimization without access to program source or additional
information from the compiler.

There has been a lot of work on comparing two versions of a binary program or two different
binary programs for reasons other than stale profile propagation. The most common purpose for
binary comparison is efficient code patching (Baker et al. 1999; Coppieters, 1995). Code patching
algorithms generally look for exact or almost-exact matches and deal with a fixed set of simple
changes. The goal of stale profile propagation is much broader. In order to match as much of the
program as possible, including substantially altered sections and entirely new sections, our
algorithm is designed to accommodate all types of changes from the procedure level down to the
opcode/operand level. A project by Baker and Mander (1998) detected similarities in Java
bytecodes without referring to the source files, which is similar to our comparing binary programs
without using the source code. Their work focused on calculating a single similarity metric for
two files, not on matching them on the code and data block level. Debray et al. (1999) compared
a binary with itself to find redundancies for the purpose of code compression. Instead of trying to
find only identical instruction sequences, they detected “similar” basic blocks based on
instruction opcodes, then looked for transformations that make them identical. For their purpose,
the locations of the basic blocks do not matter to the matching process. For BMAT, block
locations are extremely important to the correctness of matching, thus requiring different
strategies when looking for matches.

The above binary comparison projects and our work contain some similar ideas on looking
beyond small changes to find similar codes. However, these projects deal with code blocks that
are identical or will become identical after simple transformation, with the goal of reducing
overall code size. For stale profile propagation, we match the blocks based on both block contents
and program structure, with the ultimate goal of obtaining a propagated profile that accurately
describes the newer version.

WANG, PIERCE, & MCFARLING

20

6. Summary

For the purpose of stale profile propagation, we have designed BMAT, a tool for finding matches
between code and data blocks in two versions of a binary program. Our implementation uses a
hashing-based algorithm and a series of heuristic methods to find correct matches for as many
program blocks as possible. The algorithm first matches procedures, then basic blocks within
each procedure. Multiple passes of matching are performed with varying degrees of fuzziness.
This process allows good matches to be found even with shifted addresses, different register
allocation, and small program modifications. For program builds that are weeks or even months
apart, BMAT can often find matches for over 99% of code blocks. BMAT is fairly fast. On a
Pentium II 200MHz machine, the total running time ranges from four seconds for a 122KB
program to under four minutes for a 5.5MB program.

A more important goal of BMAT is that the propagated profile accurately describes how the
current program version will behave. In this, our results are promising. Across a set of large
DLLs from Microsoft Windows 2000, propagated information from profiles six weeks old can be
used to predict branch biases with a success rate almost 99% as good as that using freshly
collected profiles. For identifying which blocks will be executed, the correctness rate is close to
98%. Propagated information from profiles that are closer in time performs even better on these
two measures.

In our future work, we hope to demonstrate and quantify performance gains of profile-based
optimizations from doing stale profile propagation. Profile propagation also introduces new issues
in profile management, such as how to combine propagated profiles with fresh profiles collected
for the new build. These issues present opportunities for future research. Finally, we would like to
explore other uses of binary matching in program testing and patching.

References

Albert, E. (1999). A Transparent Method for Correlating Profiles with Source Programs. In
Proceedings of the Second ACM Workshop on Feedback-Directed Optimization.

Baker, B. S., & Manber, U. (1998). Deducing Similarities in Java Sources from Bytecodes. In
Proceedings of the 1998 USENIX Technical Conference.

Baker, B. S., Manber, U., & Muth, R. (1999). Compressing Differences of Executable Code. In
Proceedings of the ACM SIGPLAN 1999 Workshop on Compiler Support for System
Software.

Cohn, R. S., Goodwin, D. W., & Lowney, P. G. (1997). Optimizing Alpha Executables on
Windows NT with Spike. Digital Technical Journal, Vol. 9, No. 4.

Coppieters, K. (1995). A Cross-platform Binary Diff. Dr. Dobb’s Journal.

Debray, S., Evans, W., & Muth, R. (1999). Compiler Techniques for Code Compression. In
Proceedings of the ACM SIGPLAN 1999 Workshop on Compiler Support for System
Software.

Srivastava, A., et al. (1999). Vulcan. Tech. rep. TR-99-76, Microsoft Research.

Zhang, X., Wang, Z., Gloy, N., Chen, J. B., & Smith, M. D. (1997). System Support for
Automatic Profiling and Optimization. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles.

