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Abstract—This paper presents a new model for a data manage-
ment system specifically designed to enable community-curated
data repositories and collaboration. Depot (a Dependence-Eager
Platform of Transformations) is based on a data-lake approach
that eases the technological burdens associated with data con-
tribution while providing an interactive programming environ-
ment for developing transformations that result in structured
tables supporting SQL database operations. Crucially, Depot
implements lazy evaluation of these transformations so that only
the structured data that is demanded by a data consumer is
generated. Until the structured data is “materialized,” Depot
tracks and maintains the dependencies that are required to per-
form the eventual materialization. This lazy approach to creating
structured data allows Depot to maintain a smaller resource
footprint compared to a typical data warehouse approach while
maintaining the flexibility of the data lake model. Furthermore,
Depot is designed as a community-sustainable platform. The
initial prototype is implemented for cloud deployment and it
distributes the storage and ETL workload cost among the
data consumers. Performance results of the early prototype are
encouraging, making Depot a new infrastructure for creating
data lakes that foster contributed-consumer collaboration.

Index Terms—data lake, cloud services for science

I. INTRODUCTION

Community curation of data is an emerging model of
collaboration that stimulates innovation through online data
sharing by community members who are not necessarily
working together on a common project or problem. For
example, Zooniverse [24], [28|] brokers cooperation between
researchers and contributors: Researchers describe and share
specific datasets while contributors provide insights and anal-
yses on those datasets on a volunteer basis. Other citizen
science efforts [4], [[11], [13], [21] use a similar model to
establish loose collaborations between contributors who may
be working on a variety of separate efforts using the same
“pool” of data. For software development, arguably one of the
most critical community-facing sharing venues is github [[17]]
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where users share, contribute, modify, and extend software
source code using the git [25] source-code control system.

These systems typically require that the community data
contributor ingress the data into a repository by first trans-
forming it so that it matches an internal (and possibly hid-
den) schema. Nature’s Notebook [21]], for example, exports
a form-based interface that citizen observers use to input
their observations. Alternatively, systems that do not require
a transformation (e.g., GitHub) often support only limited
database functionality.

For researchers, manipulating community-curated data can
be an especially laborious task. Either data contribution is
subject to a rigorous integrity-checking process on ingress
(creating a significant transformation burden for the contribu-
tor), as in [[1]], or the data can be ingressed as unstructured or
semi-structured data (as in [10]) making database operations
challenging or infeasible.

In this paper, we propose Depot (a Dependency-Eager
Platform of Transformations[') as a new model for a data man-
agement system specifically designed to enable community-
curated data repositories and collaboration. Depot’s approach
is to allow the ingress of “raw” data in any form along with
metadata that describes its formatting. It couples this raw
data pooling with a Python-based interactive programming
environment (i.e., a Jupyter notebook [[7]) so that consumers of
each dataset can write scripts (in Python) to create structured
data tables, which Depot also manages El The data tables that
result from transformations support SQL database operations
that can also be applied via the interactive interface. Each
table that Depot manages corresponds to a tree of “upstream”
raw datasets and tables, and a corresponding transformation
script necessary to create the “downstream” table from the

Depot is available as open source from https://github.com/MAYHEM-Lab/
Depot

“These “ingress” scripts are typically termed “ETL” scripts which is
an acronym “Extract-Transform-Load.” Depot automates the extraction and
loading of data, so the Depot user is only responsible for writing the
transformation.
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upstream dependencies. All scripts, raw datasets, and tables are
immutable and versioned so that users of Depot can determine
the provenance of the data in the dependency tree associated
with each table, and data cannot simply “disappear” when its
owner chooses to update it.

Importantly, Depot does not convert raw data to structured
data when it is ingressed or when a dependency is created.
Instead, datasets and dependencies are announced so that users
can discover their existence, but structured data tables are only
created when a dataset is materialized in response to a user
command or a fixed schedule. Materializing a dataset as a
table causes Depot to trace back through the dataset’s depen-
dency tree and materialize any announced but unmaterialized
dependencies. In this way, Depot only “expends” the resources
(database table space and Extract-Transform-Load — ETL —
processing cycles) that are necessary to create structured data
that users wish to manipulate.

This lazy approach to creating structured data allows Depot
to maintain a smaller resource footprint than a typical data
warehouse approach. If ETL were performed at data ingress
(as with most data warehouses), the space necessary to hold
the resulting tables and the ETL computation (which could
be lengthy) would need to be committed even if there are
no consumers for the resulting table. This expenditure is
particularly costly if the data is then updated with a new
version (causing another ETL cycle) before the first version is
consumed (especially if the data is to be versioned).

Finally, Depot is designed as a community-sustainable plat-
form. Its implementation is cloud-based, and it attempts to
distribute the storage and ETL workload to the consumers of
the data. The essential principle is that contributors should
“pay” little for their contribution. The platform operator should
not incur a cost because the operator does not own the data.
A consumer with use for data should incur the burden of its
use as expressed as a materialization.

Taken together, this set of design goals makes Depot
an early (if not inaugural) attempt to create a community-
sustainable platform for creating “data lakes” that fosters
contributor-consumer collaboration. In this paper, we describe
the abstractions that Depot defines for this purpose, discuss
its implementation for cloud-based deployment, and detail its
operation using a set of examples. We also present initial
performance results for a prototype implementation and end
with conclusions and an outlook on future work.

II. BACKGROUND AND RELATED WORK

The concept of a “data lake” is originally due to James
Dixon of Pentaho in opposition to a “data mart” where the data
is maintained as a set of products. More recently, the contrast
is with a data warehouse [14]], a support infrastructure for data
mining. In particular, a data warehouse notably frees its data-
consuming users (but not its data contributors) from the burden
of ETL activities by rationalizing the data on ingress against
a predefined schema.

Data lakes typically evince several properties, such as
governance and scalability while specifically supporting data

exploration and discovery, and facilitating data analysis [15].
Data lake governance refers to the policies, processes, and
controls implemented to ensure effective data management,
security, and usage compliance within a data lake. To support
governance, Hai et al. [12] study metadata management,
semantics, and enrichment. The metadata is extracted from
the data and used to create models and links between data,
thereby improving data quality. Depot shares the notions of
curated metadata and dependency links, but extends data
quality management to include versioning and provenance.

Benjelloloun et al. [2]] use elastic stacks for security [3].
They use Apache Ranger to implement access control policies.
Depot is similar in that it enforces access control policies set
by each dataset’s owner and maintains these policies through
dependency trees. Depot’s present policy implementation mir-
rors that of GitHub, but richer policies are possible.

Sarramia et al. [23]] postulate a similar reductionist set of
access control policies in which there are three levels of
visibility: open-data, which is available for everyone to access;
private which limits the access to metadata and data to people
working on the project but appears in the search; and embargo,
which gives access to only the metadata to the people on
the project and omits it from search results. The authors
apply FAIR principles (Findable, Accessible, Interoperable,
Reusable) [6] to their storage and redistribution mechanisms
for data and metadata. Depot also implements FAIR principles,
but extends them with additional principles as discussed in the
next section.

III. DEPOT PRINCIPLES AND ABSTRACTIONS

It is our thesis that community-sustainable data repositories
are best structured as data lakes [[18]]. The eventual use of
data may not be envisioned by its contributor (e.g., a citizen
scientist) and the platform operator should play the role
of a “broker” rather than an organization (e.g., a company
operating a data warehouse) that owns the data that has been
ingressed.

As such, Depot allows data providers to ingest their data into
the system without considering hosting locations, formats, or
delivery. Similarly, data consumers can use Depot to discover
existing data, build dynamic data pipelines, and serve as
producers by contributing their pipelines back to the system for
consumption by others. Depot is a trusted arbitration platform
facilitating disconnected yet collaborative data access between
mutually-distrusting entities.

In addition to FAIR functionality [6], Depot adheres to the
following principles.

« Data origination and data consumption are decoupled.
The originator or contributor need not manifest (in the
form of a schema) the eventual usages for the data.

o The platform must support collaboration. Users must
be able to share the results of their efforts as a community.

o The system should have an interactive interface. Be-
cause the use of contributed data may not be evident when
it is contributed, the system must support exploration and
experimentation. This requirement militates for the ability



to use the system interactively (as opposed to strictly in
a “batch” mode).

o The platform’s operations must be auditable. Data
within the system must have a discoverable chain of
custody so that users can determine the provenance of
the data products they produce.

o The platform should be operationally unified. From
both the perspective of users and the platform’s operator,
it should function as a unified system and not an amal-
gamation of disparate technologies.

A. The Depot Dataset Abstraction

Depot’s core abstraction is the dataset, which represents
and encapsulates a dynamic digital asset. The dataset serves
as a typed interface for discovering, consuming, transforming,
and sharing assets while abstracting away the underlying
storage locations, data formats, and integrations. Changes in a
dataset’s underlying digital asset are captured as snapshots and
represented as an ordered sequence of immutable versions.

Depot provides a pluggable interface for defining types, or
schemas, on datasets and enforces this type on all versions.
Depot’s logical translation layer uses these types to facilitate
data access between producers and consumers operating with
different data formats. For any type, conversions can be
defined between underlying data formats, and, provided that
the target format is reachable via a path of conversions,
consumers can seamlessly interact with datasets in any format
they choose. Data format translation adds computational and
storage overhead. However, it obviates the need for producers
and consumers to negotiate physical data formats, which
in many cases also forces collaborators to be locked into
mutually-compatible technologies. Without Depot as an in-
termediary, data consumers must adopt the data processing
ecosystems their producers use or build their own complex,
ad-hoc conversion mechanisms.

B. Transformation and Materialization

In addition to being ingested into Depot from an external
system, datasets can be declared by defining transformations
on a set of input datasets; the platform automatically imple-
ments the “Extraction” and “Loading” associated with ETL.
New datasets can be arbitrarily derived from other datasets,
allowing for elaborate, lazily-evaluated data pipelines which
preserve precise data lineage and greatly reduce the barrier
of entry for data producers and consumers. Transformations
are an immutable set of instructions that encapsulate the
logic of creating a new dataset version from versions of the
input datasets. As new versions of the input datasets are
made available, the transformation announces new versions
of its target dataset but defers materialization until explicitly
requested. An announced dataset version indicates that the
version’s underlying physical data is not yet present, but
because the input versions and transformations are immutable,
they can be produced at any time. This process of evaluating
an announced version’s input versions and the associated

transformation’s instructions to produce the underlying data
is known as materialization.

Announcement is a recursive process enabling the creation
of trees of datasets of arbitrary complexity where changes in
the root datasets are recursively reflected in all downstream
datasets. Materialization is similarly recursive, but in the other
direction: when materialization is requested for a dataset ver-
sion, the dataset tree is traversed toward the roots to materialize
all announced versions that are a dependency, after which
the version’s transformation is evaluated, and the output is
persisted.

Transformations are evaluated by Depot-controlled compu-
tational resources, providing data consumers, which may not
trust providers, with a guarantee as to exactly how data was
operated on and modified. The resource cost incurred by the
computation to materialize a dataset version on the path is
attributed to the entity that requested the materialization.

Materialization can also be explicitly requested by a con-
sumer on a specific version, or by a materialization schedule
set on the dataset. A materialization schedule allows a dataset
owner to provide an upper bound for the tolerated staleness of
the dataset by ensuring that there is always one materialized
version that is not older than the latest announced segment by
some configurable duration.

The ability for users to produce new datasets with trans-
formations drastically reduces the obstacles that potential
contributors may face. One who wishes to derive new datasets
from existing datasets can do so by simply defining a transfor-
mation, without considering storage locations, computational
systems, data formats, or synchronizing evaluation schedules.
Because transformations are lazily evaluated, the owner of a
dataset without an explicit materialization schedule incurs no
resource cost, allowing providers to derive exploratory datasets
without an explicit use in mind. Only when a consumer starts
to use the dataset does Depot start to evaluate and persist
data, and the resource cost of the materialization and storage
is incurred by the consumers.

Because materialization is always possible once dependen-
cies are announced, lazy evaluation of dataset versions also
prevents large, complex data pipelines from suffering from
unnecessary latency bottlenecks. In particular, the maximum
possible frequency for dataset materialization is bounded by
its parent datasets’ announcement frequency. In a pipeline,
intermediate datasets (or dataset versions) that are only an-
nounced are only materialized if, and when, they are needed.
As long as versions of the dependency datasets are announced
frequently enough, a dataset can be derived from it with
minimum upstream materialization latency. By contrast in a
data pipeline system without lazy evaluation, all versions of all
datasets are materialized even when some versions are never
used and a downstream materialization might need to wait for
unneeded upstream processing.

C. Transformations

Transformations are parts of ETL programs that take one
or more datasets (themselves either raw or transformed and



structured) as inputs and produce a structured dataset as an
output. Depot stores transformations as immutable objects.
In this way, a user of a transformation is guaranteed to be
able to produce its outputs in the future as long as the input
dependency tree has not been truncated by a retention policy
(see below). Users can then delete datasets that can easily be
reproduced, thereby reducing the storage burden.

When a dataset is published, if it is not a raw dataset, the
transformation necessary to create the dataset is also published.
The access controls on the transformation are the same as those
on the data itself.

D. Data Lineage

Transformations create dataset versions and each dataset
version retains precise information about which versions of
which datasets are contained it its dependency tree, providing
an exact lineage for any piece of data. The entire lineage of
a dataset version is persisted as long as the version itself is
retained.

Persisting the lineage of a dataset and its versions provides
transparency, giving data consumers confidence about the
reliability of their data. Inspection of the transformations and
input datasets that were used to produce a dataset version
allow consumers to assess the quality and compliance of data
quickly.

E. Retention Policies

Retention of a dataset’s physical artifacts are managed via
a reference-counting mechanism. A dataset version holds a
reference to all parent dataset versions in its lineage. Datasets
can be configured to have their versions hold either strong or
weak references to parent versions. A retention duration may
also be set on a dataset; this causes an implicit temporary
strong reference to be held against new versions for a set
amount of time.

If a dataset version has no strong references held against it,
it is considered eligible for collection, and Depot may delete its
physical assets, held references, and lineage metadata. When
a version is deleted, all versions with a weak reference to it
are similarly deleted.

An entity’s storage utilization depends on how many strong
references their dataset versions hold. This behavior enables
providers and consumers with different tolerances for storage
cost to effectively collaborate. A data consumer with a need
to retain a lengthy history can configure their datasets as
holding strong references against parents, forcing retention
of parent versions without burdening the upstream providers
with the cost. If the parent owner deletes the dependency, the
storage burden shifts to the nearest downstream consumer.
The accounting for downstream “inheritance” of strong up-
stream dependencies is the subject of our ongoing research.
For example, if the original owner deletes the dataset, one
option could be to share (evenly) the storage cost among all
downstream consumers with a strong dependence. As such, a
cost-conscious consumer may derive datasets that hold only
weak references, creating “best-effort” datasets, versions of

which exist only as long as another entity is willing to retain
parent versions.

Note that retention policies must be visible to users con-
sidering creating a dependency on the associated datasets. In
particular, they do not govern access control but are necessary
to allow users to manage their resource expenditures. For
example, a user who wishes to create a dataset dependent
on an upstream dataset with a weak retention policy must
decide whether the dataset created is permanent or ephemeral.
If the intention is to create a dataset that is permanent, the
user must materialize the dataset (before Depot reclaims its
weak upstream dependencies) and set its retention policy to
strong. As described, the newly created dataset, having a
strong retention policy, is “charged” to the creating user’s
resource account. If the user had chosen the ephemeral option,
Depot need only charge the user for the storage at the time
of materialization and then only until the reclamation of the
upstream dependency.

F. Access Control Policies

In principle, Depot allows the “owner” of a dataset to set its
access control policies. A contributor of raw data is the raw
dataset’s owner. Derived datasets are owned by their deriving
users, who can only set access control policies that attenuate
the most restrictive access control policies associated with the
dependency tree for each derived dataset.

This general access control functionality, while powerful,
leads to complexities that we have yet to be able to address
successfully. For example, a creator of a derived dataset must
analyze the access control policies for all dependencies in
the dependency tree to determine the intersection of what is
permitted by the union of all policies. She must then determine
an access control policy for the dataset she creates that is no
more permissive.

Even when a dedicated and knowledgeable user can ac-
complish this task, the burden of policy attenuation on the
dataset creator necessarily implies that the policies themselves
must be public. If, for example, two separate policies forbid
the combination of data by competing research groups, that
information cannot be hidden from a user (who is part of
neither group and has access to both datasets) considering
using them as a dependency. Thus, in some sense, the policies
must necessarily “leak” information. That is, the neutral user
must be able to see that the two groups do not wish to
cooperate. Further, unlike retention policies, defining a unified
rights transfer policy to be invoked when an owner revokes
upstream access is, at present, an unaddressed challenge.

For these reasons, the initial Depot prototype implements a
simple public-private dichotomy (including group-private for
collaborators with mutual trust) in which public access cannot
be revoked. We plan to study enriching the policy mechanisms
in Depot as part of our future work.

G. Accounting

One goal of Depot is to prevent the platform operator from
taking a stake in its operation. This model contrasts with other



community repositories (such as GitHub), which technically
take ownership (or joint ownership) of the data they host as
recompense for the hosting expenses. Except for the Depot
control plane, the goal for Depot is to assign the hosting
“costs” to its users according to their usage and to incentivize
usage by minimizing this cost.

Depot assumes a cloud hosting model in which individual
users are charged for tenancy, possibly according to organiza-
tion membership. The current prototype uses Eucalyptus [8]],
[22] to emulate Amazon AWS on local resources but also
leverages the quota features that Eucalyptus supports. In par-
ticular, each user is associated with a quota (in terms of storage
footprint and ETL load). That is, a user cannot materialize a
dataset with a strong retention policy unless there is sufficient
quota in that user’s account.

Quota transfer in response to retention policy or user-
triggered deletion of an upstream dependency is more com-
plex. If a user creates a dataset with a strong retention policy,
the user must also have quota sufficient to materialize any
upstream dependencies as well. In this way, if the upstream
owner deletes a dataset or a retention policy times out a dataset
with a weak policy, the quota for maintaining the dependency
transfers to the nearest consumer with the oldest dependency.

We still need to observe the efficacy of this quota mech-
anism sufficiently to determine its actual utility. On the one
hand, it allows Depot to make strong guarantees about mate-
rialization while transparently and predictably exposing the
potential costs. On the other hand, it discourages archival
activities since the effects of potential quota transfer are
cumulative. We are considering a modification of this policy
that would “charge” the quotas of all downstream consumers
for an equal fraction of the hosting cost. While fair, this
modification would mean that quota charges could fluctuate
when downstream consumers delete dataset to reclaim the
fraction of the quota. This alternative is attractive, however,
because it incentivizes users to commit quota to a dependency
in proportion to the importance of the materialization of a
dataset upon which it depends.

Finally, our limited experience with Depot indicates that
users materialize datasets they wish to preserve and charge
these datasets to their respective quotas. When exploring,
they set weak retention policies and avoid the quota charges
associated with upstream dependencies.

H. Streaming Data

Depot’s dataset abstraction represents structured data (e.g.
data that can be queried using relational query primitives). To
integrate streaming data, Depot adapts the A-architecture [[19]]
which combines a “speed layer” (usually a streaming database)
with a “batch layer” (supporting full query semantics). Unlike
a typical A-architecture (which exports both layers to the user
interface), Depot uses the speed-layer to generate announce-
ments and/or materializations in the batch layer.

In Depot, a stream is represented as a unique Depot data
type and a topic-based publish-subscribe (pub-sub) commu-
nication abstraction [16]]. Users associate a Depot dataset

using a Depot stream represented by a pub-sub topic, and a
transformation script for materializing the dataset. When new
data available becomes for that topic, a new flattened version
of the stream is announced or instantly materialized depending
on the user’s logic.

1. Example

We next demonstrate an example use of Depot for a collab-
oration from the RiPiT [3]] project in which three organizations
are exploring energy generation and emissions data within a
region. Organization A has tabular data about the greenhouse-
gas (GHG) emissions of each subregion within the overall
region and ingests this data into Depot as a table dataset.
Organization B has a listing of all generating stations within
the region, without locational data, and publishes it to Depot
as an unstructured dataset. Organization C provides geospatial
information about energy infrastructure within the region, such
as transmission lines, distribution systems, load nodes, and
generation nodes. Each organization instructs Depot that they
would like to consume storage quota to retain only the three
most recent versions of their respective datasets.

In this example, Organization C realizes the value of aug-
menting Organization B’s plant listing with their geospatial
data, and defines a transformation which consumes both
datasets and produces a table which enumerates all generating
stations and their associated geographical coordinates. Since
Organization C has no immediate use for this data, they choose
not to configure a materialization schedule for the dataset and
consume no storage or compute resources.

Organization A is then able to apply a transformation
on Organization C’s new dataset and their own locational
greenhouse-gas emissions table to join both, producing a table
that exposes emissions over time per-generating station. The
dependency graph of these organizations’ datasets is depicted
in Figure [T]

If Organization A and B were to each upload one version
of their dataset, and Organization C were to upload 3, the
dependency graph of individual dataset versions would appear
as depicted in Figure

Consider then, a user D, distinct from Organizations A, B,
or C, which requests explicit materialization of the emissions
timeseries dataset. This user requests a weak materialization
of version 1 and a strong materialization of version 2. These
materialization requests force materialization of versions 1 and
2, respectively, of the locational plant dataset, and results in
the state depicted in Figure [3]

The weak materialization of version 1 of the emissions
dataset causes user D to hold weak references to version 1
of each of the aforementioned datasets. Similarly, version 2’s
strong materialization results in strong references being held
against version 2 of all datasets. Thus, even if the organizations
produce a sufficient number of new dataset versions to cause
their respective versions 1 and 2 to fall out of retention, user
D is guaranteed that Depot will retain all versions that are
upstream of version 2 of the emissions timeseries dataset



Organization A

Locational GHG
emissions

Plant emissions

t
1
1
. .
1
1
! timeseries

-~ - -

Energy GIS Locational plant
data data

Join and tabulate
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Fig. 2: Dataset version dependency graph. Announced ver-
sions are shaded yellow and materialized versions are shaded
green.

(charging user D’s quota for the retention). However, the phys-
ical assets produced by materializing version 1 of this dataset
will be eligible for collection as soon as any organization-
defined retention policies do not apply to upstream versions.

IV. EVALUATION

We implement a Depot prototype using OpenJDK 11,
Python 3.10, Jupyter 7, MySQL 8, and RabbitMQ 3.10.
We use Erlang 25.0 for messaging, PyArrow 12.0 for load-
ing/storing Apache Parquet files, and Spark 3.2 for batch
processing. We use this prototype to evaluate the performance
cost incurred by Depot facilitating data pipeline execution. To
do so, we have crafted a benchmark application, referred to
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Fig. 3: Dataset version dependency graph after user D requests
materialization. Announced versions are shaded yellow and
materialized versions are shaded green. Materialized versions
are annotated with W for weak references held against them
by user D and S for strong references.

as the “Tree Benchmark” to measure Depot’s performance in
handling transformations across a range of complexities. We
run the benchmark using Eucalyptus (v5) cloud instances. We
deploy Depot using a 2 node cluster each with 24 2.6GHz
processors and 72GB of memory.

The Tree Benchmark measures the latency of materializing
a dataset version where none of the input datasets, except for
the ultimate upstream dataset, have been pre-materialized for
a family of compliant datasets. Each dataset in the family
is identified by a depth k and encapsulates a constant-length
sequence of 64-bit integers. Datasets with £ > 0 are defined
from a transformation that performs a horizontal vector sum
over exactly two datasets with depth k£ — 1. The special-case
datasets with k£ = O serve as the initial data source for the tree
and are pre-materialized.

In our evaluation, we create and pre-materialize text-file-
based datasets of k = 0, which consist of 50,000,000 random
64-bit integers. Each derived dataset transforms two input
datasets by performing an element-wise sum to produce a new
tabular sequence of 50,000,000 64-bit integers. For datasets
1 < k < b5, we measure the latency between requesting
materialization of a version and the persistence of the version’s
result. In each run, none of the intermediate versions, except
k = 0, are materialized, so the tree must be traversed, and
parent versions materialized first, the latency of which is
included in our end-to-end latency result.

In practice, Depot exploits the inherent parallelism present
in graph-based execution models: a dataset with two inputs
can have both input trees built entirely in parallel. There is
an implicit synchronization point before the materialization of
a dataset can begin: all of its inputs must be materialized,
but otherwise, Depot may be performing computation of a
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Fig. 4: Depot’s dataset dependency graph visualizer depicting
the Tree Benchmark datasets £ = 2 (left) and k = 3 (right).

transformation for some datasets while scheduling announce-
ments for others. This approach makes building a performance
timeline and ascribing each time quantum to a distinct phase
in Depot’s execution model (e.g., computation, messaging
overhead, 10) difficult, so we introduce explicit synchroniza-
tion points between transformation computation, messaging,
scheduling, and the data translation layer for this evaluation.

For example, when materializing a £ = 3 dataset, Depot
will schedule all transformations for the upstream k£ = 1
datasets, wait until all transformations are ready for execution,
start transforming the k& = 1 datasets, then wait for all
transformations to complete before proceeding to the next
phase for the & = 2 datasets. This synchronization (which
we use only for evaluation purposes) makes estimates of end-
to-end latency conservative because, by breaking the execution
model up into synchronized phases, the latency of each phase
is controlled by the maximum latency of each of its constituent
operations. This break-up allows for a more transparent overall
analysis of system-imposed overhead by eliminating overlap
between phases. Because we have eliminated the overlap, the
following results represent an upper-bound on the latency a
user would perceive.

Our end-to-end latency results are depicted in a stacked
fashion in Fig. [5] The latency of the compute phase increases
linearly with k& because each additional layer in the dataset
tree requires an additional set of transformations, which can
all be executed in parallel. The translate phase has a relatively
high baseline latency, which then increases much more slowly.
This is because the initial translation for £k = 0 involves
extracting integers from an unstructured text file. However,
each additional layer for datasets & > 0 can use Depot’s
optimized table persistence and loading mechanisms. Finally,
the delays due to signaling and scheduling within Depot are
negligible compared to computation/IO work and also scale
linearly with the depth of the dataset tree.
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Fig. 5: End-to-end depot transformation latency in seconds
for dataset dependency depth k (z-axis). Materialization for
depth k triggers materialization of dependent datasets at depth
k — 1. The performance is an upper bound on the latency a
user perceives because we prevent materialization overlap for
clarity of evaluation.

A. Evaluating Depot with Streaming Data

To incorporate a streaming capability, we extend Depot
using Apache Kafka [9] (v3.5). Kafka is a popular and
scalable, distributed event streaming platform that implements
topic-based publish/subscribe pattern. Figure [6] shows the
Depot streaming architecture in the prototype. Depot streaming
allows datasets to be announced or materialized in response
to “events” observed in a Kafka stream (denoted by a Kafka
topic). It does so via a consumer agent that subscribes to topics
of interest. The agent triggers Depot actions in response to
data consumed from the topic. Note that announced datasets
derived from a stream source require the stream data to be
preserved until the dataset is eventually materialized. Thus,
our current prototype uses the maximum duration (globally, for
the Depot deployment) for announcements of stream sources.
Supporting fine grain (per topic) preservation is the subject of
ongoing work.
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Fig. 6: Depot Stream Processing Architecture



We evaluate the performance of Depot stream processing us-
ing a digital agriculture application from the UCSB SmartFarm
project [20]. It is an environmental monitoring application
deployed at the Lindcove Research Extension Center [27]]
located in Exeter, California. The application continuously
gathers and processes “nanoclimate” data from a large test
facility for growing citrus [26]]. The application collects and
publishes a set of climate measurements to Depot from the
facility every 10 minutes.

We use the application to measure the performance of
stream materialization and processing in Depot. We present
a breakdown of the average latencies (over 10 executions
of the application) in seconds in Table Materialization
consists of accessing Kafka (row 1), creating a dataset in
Depot and storing it in cloud storage (row 2), invoking the
user’s transformation script (row 3), and execution the script
via PySpark (row 4). The script simply converts the Kafka
data to a Spark dataframe and exits; it is at this point that user
code would manipulate the data as desired using distributed
Spark workers. Row 5 shows the total latency (18.4 seconds)
when using a single-machine deployment for the services
(with no spark workers or network delay). Executing the
same operations in Depot results in a total latency of 19.8s,
indicating that Depot and/or distributed deployment results in
an overhead of 7.6%.

TABLE I: Average latency for stream materialization

Stream monitoring 0.03s
Creating dataset 2.7s
Script invocation 3.4s
Script execution 12.3s
[ Total (single machine) [ 18.4s |
[ Depot end-to-end [ 19.9s |

While this performance profile acceptable for an application
with a 10-minute duty cycle, we are pursuing additional op-
timization opportunities to ensure low overhead. Specifically,
we are exploring alternatives that will allow users consuming
a stream to allocate resources from their quotas explicitly
to avoid startup overhead (e.g. Spark workers introduce an
additional 10s) via pooling and by keeping services “warm”
to avoid cold start overhead, as part of our future work.

V. CONCLUSION

Community data curation is a vital model of collaboration
stimulating research through data sharing. We have presented
Depot, a new data curation system that builds upon and
extends the data lake data management model. Specifically,
Depot adds community-aware data management features that
decouple data origination from consumption and that simplify
and facilitate data sharing and exploration, policy enforcement,
and resource accounting and consumer-driven attribution. Key
to the Depot design is the lazy materialization of datasets
which reduces computation and storage costs until the result-
ing dataset is needed by the consumer. The evaluation of our
prototype implementation demonstrates that this new model is
viable in practice.

We see many opportunities for future research in this area.
First, we plan to develop mechanisms for sharing the storage
costs among data consumers with strong references to datasets
and eliminating up-front quota requirements. Furthermore, we
are working on fine-grained access policies to foster more
community sharing. Finally, we will investigate new rights-
transfer policies that are effective and efficient with this
combination of mechanisms.
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