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Abstract. A fast and scalable interprocedural escape analysis algorithm
is presented. The analysis computes a description of a subset of created
objects whose lifetime is bounded by the lifetime of a runtime stack
frame. The analysis results can be used for many purposes, including
stack allocation of objects, thread synchronization elimination, dead-
store removal, code motion, and iterator reduction. A method to use the
analysis results for transforming a program to allocate some objects on
the runtime stack is also presented. For non-trivial programs, typically
10%-20% of all allocated objects are placed on the runtime stack after
the transformation.

1 Introduction

Several program optimizations require that objects be accessible from only one
thread and/or have a bounded lifetime. For example, in order for an object to be
allocated in a stack frame of a thread’s runtime stack, the lifetime of the object
has to be bounded by the lifetime of the stack frame. Escape analyses compute
bounds of where references to newly created objects may occur.

This paper presents a fast interprocedural escape analysis algorithm for
whole-program analysis of object-oriented programs written in JavaTM-like pro-
gramming languages. The complexity of the algorithm is linear in the size of
the program plus the size of the static call graph. The algorithm is simple and
the analysis results are good enough to be useful in practice. The algorithm also
demonstrates that a limited form of polymorphic analysis is possible in linear
time.

There are many potential uses for the analysis results. For example, if a Java
object is known to be accessible only to the thread creating the object, then
most synchronization operations on the object can be eliminated and dead stores
to fields of the object are easier to identify. Java’s memory consistency model
dictates that all memory reads and writes are fully performed at synchronization
points, but if an object is known only to a single thread then it is not detectable
� The work was performed while the author was working at Microsoft Research.
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if reads and writes to the fields of the object are moved around synchronization
points.

The usefulness of the analysis results are demonstrated in this paper by
a stack allocation transformation. A subset of the objects whose lifetime is
bounded by the lifetime of a runtime stack frame are allocated in the stack
frame instead of on the heap. If a method creates and returns an object then
the object may instead be pre-allocated in the caller’s stack frame (a common
scenario for iterator objects in Java). Some objects allocated in a stack frame can
be replaced by local variables for the object fields (another common scenario for
iterator objects). Called methods of the reduced object can either be inlined to
use the field variables, or the field variables passed as arguments to specialized
methods.

In Section 2 the escape analysis algorithm is presented. The value of the anal-
ysis results is demonstrated by using the analysis results for a stack allocation
transformation described in Section 3 and for an object reduction transformation
described in Section 4. The efficacy of the escape analysis results is discussed in
Section 5, Section 6 discusses related work, and Section 7 concludes.

2 Escape Analysis

The objective of the analysis is to keep track of objects created during the
execution of a method. The objects may be created directly in the method or
in methods called by the method. An object is considered to have escaped from
the scope of a method if a reference to the object is returned from the method,
or if a reference to the object is assigned to a field of an object.

The above stated rules can be almost directly encoded as constraints on
elements of a simple type system. Solving the constraint system can be done in
time and space linear in the number of constraints.

The constraints can be derived directly from the subject program. The pro-
gram is assumed to be in Static Single Assignment (SSA) form [CFR+91]. In SSA
form, each local variable is assigned exactly once. When two or more different
definitions of a variable can reach a control-flow merge point, all the definitions
are renamed and the value of the variable at the merge point is “calculated”
by a special φ-function which takes all the new variables as arguments. The
constraint derivation will be presented for the representative set of statements
listed in Fig. 1. The use of SSA makes the dataflow explicit without needing
to consider the control-flow statements, so only the return and throw control
statements are interesting. The return statement is annotated with the method
in which it occurs. The new statement creates an object of the specified class
but does not initialize the object apart from filling the memory block with zeros
as required by the JVM [LY99].

A fresh method returns an object created during the execution of the method.
A fresh variable is a variable whose defining statement either creates an object
directly (via new) or indirectly (via a call of a fresh method). For each fresh
variable, the analysis must determine if the value assigned may escape in any
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Domains:

m ∈ M = methods
f ∈ F = fields
s ∈ S = static fields

c, c0, c1, . . . ∈ C = classes
v, v0, v1, . . . ∈ V = local variables

Effect Statements:

s = v
v = s
v0.f = v1

v0 = v1.f
v0 = v1

v0 = φ(v1, . . . , vn)
v0 = v1.m(v2, . . . , vn)
v = new c

Control Statements:

if v
returnm v
goto

throw v

Fig. 1. representative intermediate language statements

way. For each variable the analysis determines whether the values assigned to
the variable may be returned; this serves the dual purpose of keeping track of
values that escape a method by being returned from it, and allows polymorphic
tracking of values through methods that may return an object passed as an
argument to the method.

The analysis computes two boolean properties for each local variable, v, of
reference type. The property escaped(v) is true if the variable holds references
that may escape due to assignment statements or a throw statement. The prop-
erty returned(v) is true if the variable holds references that escape by being
returned from the method in which v is defined.

Properties are introduced to identify variables that contain freshly allocated
objects and methods returning freshly allocated objects. The set of Java reference
types (classes) is augmented with a ⊥ and a � element to form a flat lattice, τ ,
with partial order ≤. The proper elements of τ are discrete; the least upper bound
of two distinct proper elements is �. The τ property vfresh(v) is a Java reference
type if v is a fresh variable (as defined above) assigned a freshly allocated object
of exactly that type, and is either � or ⊥ otherwise. Intuitively, the ⊥ value
means “unknown” and the top value means “definitely not fresh”. vfresh is �
for all formal parameter variables. The τ property mfresh(m) is a Java reference
type if the method m is a fresh method (as defined above) returning a freshly
allocated object of exactly that type, and is either � or ⊥ otherwise.

Each statement of a program may impose constraints on these properties.
The constraints imposed by the interesting representative statements are shown
in Fig. 2. No attempts are made to track references through assignments to
fields, so any reference assigned to a field is assumed to possibly escape from
the method in which the assignment occurs. In the rule for method invocation,
if a reference passed as an argument to a method may be returned from the
method then the escaped and returned properties are propagated as if there was
an assignment from the actual parameter to the left-hand-side variable. The
function methods-invoked returns a set of methods that may be invoked at the
call site as indicated by the given call graph. The function formal-var returns the
formal parameter variable indicated by the given method and parameter index.
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returnm v:
true ⇒ returned(v)
vfresh(v) ≤ mfresh(m)
escaped(v) ⇒ (� ≤ mfresh(m))

throw v:
true ⇒ escaped(v)

v = new c:
c ≤ vfresh(v)

s = v:
true ⇒ escaped(v)

v = s:
� ≤ vfresh(v)

v0.f = v1:
true ⇒ escaped(v1)

v0 = v1.f :
� ≤ vfresh(v0)

v0 = v1:
escaped(v0) ⇒ escaped(v1)
returned(v0) ⇒ returned(v1)
� ≤ vfresh(v0)

v0 = φ(v1 . . . vn):
� ≤ vfresh(v0)
∀i ∈ [1 . . . n]:

escaped(v0) ⇒ escaped(vi)
returned(v0) ⇒ returned(vi)

v0 = v1.m(v2 . . . vn)
∀i ∈ [2 . . . n] :
∀g ∈ methods-invoked(v1.m):

let f = formal-var(g, i),
c = returned(f) in

c ⇒ (escaped(v0) ⇒ escaped(vi))
c ⇒ (returned(v0) ⇒ returned(vi))
escaped(f) ⇒ escaped(vi)
mfresh(g) ≤ vfresh(v0)

Fig. 2. constraints for escaped,returned, vfresh, and mfresh implied by the syn-
tactic forms of statements.

The number of constraints generated from the program is linear in the size
of the program plus the size of the call graph measured as the total number of
corresponding actual/formal parameter pairs at all call sites.

Most of the constraints are boolean implications. The minimal solution to
these constraints may be found by initializing all properties to be false and
updating the properties as constraints are added. The properties values change
monotonically. A true property will always stay true. A property that is false
at one point may become true as more constraints are added. When adding a
constraint where the trigger is a property whose value is false, a pending list
for that property value may be used to ensure the constraint is processed again,
should the property value become true. Similarly, pending lists can be used to re-
process ≤ constraints when the left-hand element changes value; the constraints
are based on a lattice of height 3, so each constraint is processed at most 3 times.
It follows that a minimal solution to the set of constraints can be found in time
and space linear in the number of constraints.

For method calls, the implication constraints conditioned on returned(f) calls
makes the analysis non-sticky, meaning that one invocation of a method does
not affect the analysis results for another invocation of the same method (except
for recursive method invocations). This kind of “polymorphism” is rarely seen
for algorithms with linear time complexity.

The number of constraints can be limited to the size of program if the call
graph is computed by an analysis like Rapid Type Analysis [BS96], or in general
if the co-domain of methods-invoked is a power-set that can be partially ordered
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by the subset operator. This can be achieved by summarizing the properties for
all methods in each set in the co-domain of methods-invoked. The summary for
each set is computed by adding constraints from the summary of the largest
other set it contains that is in the co-domain of methods-invoked and from the
individual methods not in the contained set. The rule for adding constraints for
method invocations should of course be modified to use the summary properties
for the set of methods possibly invoked.

Constraints for parts of a program can be computed independently and sub-
sequently linked together to obtain a solution valid for the entire program. It
follows that a partial solution for library code can be precomputed and thus
doesn’t need to be recomputed for every program. If partial solutions for all
parts of a program are linked together, the analysis results will be the same as
if the analysis was performed on the entire program as a whole.

A conservative result can also be obtained in the absence of parts of a pro-
gram. If unknown methods may be called, a conservative approximation to their
effects is to assume that all formal parameters escape and that each formal
parameter may be returned as a result of the method.

3 Stack Allocation

The efficacy of the escape analysis results is demonstrated by using the analysis
results for stack allocation of objects.

To keep it simple, the stack allocation transformation allocates objects in the
stack frame of a method. No separate stack of objects is used. To avoid the use
of a frame pointer, the stack frame size must be computed at compile time. No
attempt is made to stack allocate arrays since the length of the arrays may not
always be known at compile time1. Objects created in a loop can only be stack
allocated if objects from different loop iterations have non-overlapping lifetimes,
so the used memory area can be reused in subsequent iterations.

Some methods create objects and return a reference to the newly created
object. The object cannot be stack allocated in the stack frame of the method
creating the object. Instead, memory for the object may be reserved in the stack
frame of a calling method, and a pointer to the reserved memory area may be
passed to a specialized version of the object-creating method. Initialization of
the object is done in the specialized method.

A new effect statement is added to create an object on the stack:

v = newStack c.

It is left to the compiler backend to reserve memory in the stack frame and
to translate the newStack operator into a computation of the address of the
reserved memory.

1 It is possible to stack allocate arrays whose length is known at compile time, but
the details will not be presented in this paper.



Fast Escape Analysis and Stack Allocation for Object-Based Programs 87

An extra property, loop(v), is introduced to identify when stack allocation is
impossible due to overlapping lifetimes. loop(v) is a boolean property that is true
if the local variable v is modified in a loop and objects referenced in different
iterations of the loop have overlapping lifetimes. The property is only interesting
for variables containing references that do not otherwise escape.

Given a method in SSA form, objects created by a given new statement in
a given method execution can only have mutually overlapping lifetimes if an
object may escape or if a reference to an object is stored in a local variable used
as an argument to a φ expression at a loop header.

Figure 3 shows the constraints on the loop property imposed by the interest-
ing representative statements. For the purposes of exposition, it is conservatively
assumed that all φ expressions occur at loop headers.

v0 = v1:
loop(v0) ⇒ loop(v1)

v0 = φ(v1 . . . vn):
∀i ∈ [1 . . . n]:

true ⇒ loop(vi)

v0 = v1.m(v2 . . . vn)
∀i ∈ [2 . . . n] :
∀g ∈ methods-invoked(v1.m):

let f = formal-var(g, i),
c = returned(f) in

c ⇒ (loop(v0) ⇒ loop(vi))

Fig. 3. constraints for loop implied by the syntactic form of statements.

For each statement of the form

v = new c

any object created is only used within the method and the object has non-
overlapping lifetimes with other objects created by the statement if escaped(v),
returned(v), and loop(v) all are false. In that case, the new operator may be
replaced by the newStack operator to allocate the object on the runtime stack.

Methods that return a freshly created object may be specialized to instead
take a freshly created object as an extra argument. The freshly created object
may be created on the stack at those call sites where the object originally re-
turned does not escape. At the remaining call sites, the unspecialized method
may be called or the specialized method may be called with a freshly created
object on the heap.

Initialization of objects must be carefully considered. The JVM semantics
dictate that any freshly allocated block of memory be filled with zeros. A block of
memory allocated in a runtime stack frame can be filled with zeros at allocation
time. If a pointer to such a memory block is passed as an extra argument to a
specialized method, then the memory block is only known to be filled with zeros
for one use. To ensure that the memory block is only used once, a depth-first
traversal of each method m is performed, ensuring that for each return variable
v the following holds:
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– The definition of v does not occur in a loop in m, and
– All paths in m from the definition of v terminate with a statement: return v.

If either condition is not satisfied, the following constraint is added to indicate
that a specialized method should not be created:

� ≤ mfresh(m).

For each method m, for which mfresh(m) is a proper element, a specialized
version, m′, of the method is created with an extra formal parameter, site. For
each variable v, in m, for which vfresh(v) and returned(v) both are true (loop(v)
and escaped(v) are both false), the body of m is specialized as follows:

– If the definition of v is a statement of the form v = new c, eliminate the
statement.

– If the definition of v is a statement of the form v = h(v1, . . . , vn), specialize
the statement to be h′(v1, . . . , vn, site), where h′ is the specialized version
of h.

– Substitute all uses of v with uses of site.

The language fragment shown in Fig. 1 does not include methods without return
values, but the specialized methods do not need to return a value and may be
specialized accordingly.

Each statement in the program of the form

v0 = v1.m(v2, . . . , vn),

for which vfresh(v0) is a proper element c and the properties returned(v0),
escaped(v0), or loop(v0) all are false, is modified to invoke a specialized method

v1.m
′(v2, . . . , vn, v0).

The objects returned from the called method in the original program may be
allocated in the stack frame of the calling method, so a statement

v0 = newStack c

is inserted before the method invocation.

4 Object Reduction

Some objects may be replaced by local variables representing the fields of the
objects. A requirement for doing so is that the conditions for stack allocation as
described in the previous section are met. In addition, all the uses of the objects
must be inlined to use the local variables rather than the fields.2 This object
2 In some cases the field values may be passed as arguments to methods instead of the

object reference, but that experiment was not attempted for this paper.
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reduction is often possible for objects of type java.util.Enumeration, and has
the advantage of removing a large fraction of the overhead due to using iterator
objects.

Inlining may of course cause code growth. Object reduction is a trade-off
between code growth and object elimination. Object reduction is usually advan-
tageous for iterator objects.

5 Empirical Results

The stack allocation and object reduction transformations have been imple-
mented in the Marmot compiler [FKR+99]. The efficacy of the transformations
is evaluated on the set of benchmarks described in Table 1. For these bench-
marks, the stack allocation transformation typically places 10–20% (and 73% in
one case) of all allocated objects on the stack as shown in Table 2.

Performance improvements due to the transformations will depend greatly on
quality of the underlying compiler and the details of the machine (especially the
memory subsystem) the program is being executed on. Performance improve-
ments in general come from less work for the memory allocator and garbage
collector, increased data locality, and the optimizations enabled by doing object
elimination. Improvements in running time were typically 5–10% for non-trivial
programs compiled with Marmot [FKR+99], an optimizing Java to native code
(x86) compiler.3 The analyses and transformations for stack allocation and ob-
ject reduction increase compile time by approximately 1%.

The generated code and the garbage collection systems are high quality. The
Marmot backend does not currently try to reuse memory in the stack frame
for stack allocated objects with non-overlapping lifetimes. Doing so would likely
yield further performance improvements.

Table 1. Benchmarks

Name LOC Description

marmot 88K Marmot compiling itself
jessmab 11K Java Expert Shell System solving “Bananas and Monkeys” problem
jessword 11K Java Expert Shell System solving the “Word game” problem
jlex 14K JLex generating a lexer for sample.lex
javacup 8.8K JavaCup generating a Java parser
parser 5.6K The JavaCup generated parser parsing Grm.java
slice 1K Viewer for 2D slices of 3D radiology data

3 Performance numbers for a larger and partially overlapping set of benchmarks are
presented in [FKR+99].
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Table 2. Objects allocated on the stack

Name % Code Stack Allocated % Stack allocated % Reduced
increase increase objs bytes objects bytes objects bytes

marmot 8.5 24.4KB 98M 2289MB 20.6 13.9 11.1 7.1
jessmab 1.2 936 B 510K 19MB 19.1 10.5 0.3 0.2
jessword 1.2 1080 B 305K 11MB 9.7 5.3 0.1 0.1
jlex 2.5 328 B 41K 1.6MB 15.7 7.2 1.8 0.5
javacup 6.9 328 B 785K 21MB 12.6 8.8 1.8 1.3
parser 0.3 116 B 1201K 32MB 1.7 1.2 0.0 0.0
slice 3.3 220 B 463K 16MB 72.9 62.4 72.2 62.1

The data demonstrates that a significant fraction of all objects can be iden-
tified as allocatable on the runtime stack using a very simple analysis algorithm.
The increase in stack size is relatively small.

6 Related Work

Escape analysis and stack allocation or compile-time garbage collection based
on same have been performed on functional languages like SML or Lisp [Bla98,
Deu97, Hug92, ISY88, Moh95, PG92], and recently for Java [CGS+99, Bla99,
BH99, WR99]. The precision of the escape analyses considered for functional
languages is much greater than the precision of the algorithm presented in this
paper. For instance, some of them can find that a function’s result does not
contain elements from the spine of its second argument (a list). This extra pre-
cision appears to be necessary for effective stack allocation in these list-oriented
languages. The only algorithm with a near-linear complexity is that of Alain
Deutsch [Deu97] (the complexity is n log2 n where n is the program’s size). A
study of the performance of this algorithm on some SML benchmarks was per-
formed by Bruno Blanchet [Bla98]. On the only large program considered, this
algorithm placed 25% of allocated bytes on the stack and gave a performance
improvement of 3-4%. An extension of this work to Java [Bla99] gives an average
speedup of 21%, but is also eliminating some synchronization operations.

Phase 1 of the algorithm of Bogda and Hölzle [BH99] is similar to the es-
cape analysis of this paper, except that it is flow-insensitive. Also Bogda and
Hölzle apply their analysis to synchronization elimination rather than stack
allocation. Choi et al [CGS+99] and Whaley and Rinard [WR99] present es-
cape analyses for Java based on building points-to style graphs. These analyses
achieve greater precision, and allocate more objects on the stack, at the ex-
pense of a much more complex analysis. Direct use of alias and points-to analy-
sis [CWZ90, Deu90, Hic93, JM81, SF96, VHU92] and other miscellaneous tech-
niques [Bar77, BS93, JM90, JL89, Sch75] have also been considered for compile-
time garbage collection. These analyses are generally expensive and their effec-
tiveness is unclear.
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Dolby and Chien’s object inlining techniques [DC98] can also be applied to
stack allocation, but the details are only alluded to.

The presented escape analysis assumes that any reference assigned to a
field escapes. It seems likely that incorporating a points-to analysis algorithm
(like [Ste96]) could help the escape analysis to allow stack allocation of objects
referenced in fields of other stack allocated objects.

A general discussion of the kinds of constraint problems that can be solved
in linear time appears in [RM98].

7 Conclusion

The simple escape analysis algorithm presented has demonstrated its useful-
ness by using the results as the basis for a simple stack allocation system that
allocates Java objects on the call stack instead of on the heap. This system is ef-
fective, allocating 10–20% of all objects on the stack. When used in Marmot, the
transformations described yield speedups of 5–10% on a collection of non-trivial
benchmark programs.
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