
SuperContra: Cross-Language, Cross-Runtime
Contracts As a Service

Stratos Dimopoulos, Chandra Krintz, Rich Wolski, Anand Gupta
Department of Computer Science

University of California, Santa Barbara
stratos@cs.ucsb.edu

Abstract—This paper presents SuperContra - a Design-by-
Contract (DbC) framework that can ship with future PaaS
offerings to enforce lightweight contracts across different pro-
gramming systems, as-a-service. SuperContra is unique in that
developers employ a familiar, high-level language to write con-
tracts regardless of the programming language used to implement
the component under test. We evaluate SuperContra using widely
used, open-source software and compare its performance against
existing DbC frameworks. Our results show that SuperContra
performs on par with non-service-based DbC approaches and in
some cases similarly to code running without contracts.

I. INTRODUCTION

The wide number of libraries and application programming
interfaces (APIs) offered by current Platform-as-a-Service
providers, has enabled the rapid deployment of software devel-
oped with multiple languages and runtimes. In order to ensure
the reliability and robustness of these complex, multi-language
components, in large-scale PaaS settings, thorough testing is
necessary. A mature testing methodology that developers use to
eliminate bugs and improve exception handling is Design-by-
Contract 1 (DbC) [1]. Nevertheless, current PaaS offerings do
not provide a built-in DbC service to allow a unified evaluation
of software contracts across languages and runtimes.

To address this need, we have developed SuperContra, a
cross-language, cross-runtime DbC framework for PaaS that
offers contracts as-a-service and enforces them efficiently at
runtime. With SuperContra, developers specify contracts for
each application component using a single, familiar speci-
fication language, regardless of the programming language
they use for component implementation. Such unification of
contract specification across languages saves developers the
time and effort required to learn and make use of potentially
multiple, per-language DbC frameworks. Moreover, the same
contracts can be re-used when code is ported to another
language and can constitute an up-to-date documentation that
drives new code development. Finally, offering contracts as-
a-service promotes a loose-coupling between the different
contract service components, giving PaaS providers the ability
to incrementally add new capabilities to the contract evaluation
engine.

SuperContra includes a dependency injection mechanism,
a run-time interceptor, a reusable contract evaluator, and
a cross-language communicator. The dependency injection
mechanism, identifies the annotated contracts and injects the
interceptor code. The interceptor, forms the contracts from

1Trademark by Eiffel Software in the United States

the annotations and delegates their validation to the evaluator.
The contract evaluator, evaluates the contracts and returns
the result to the interceptor. Finally, the communicator allows
for the seamless communication between the interceptor and
the evaluator across programming languages, by transforming,
serializing and transferring the contracts and the corresponding
outcomes. The current implementation of SuperContra ex-
emplifies its cross-language and cross-runtime capabilities by
evaluating contracts between Java clients and a Python contract
evaluator.

We evaluate the performance of SuperContra using Apache
JMeter [2], a popular open-source load testing application,
with which we generate traffic on an instrumented with
contracts version of Synapse [3], a widely-used open-source
Enterprise Service Bus (ESB). We compare it’s performance
to existing DbC frameworks (Cofoja [4] and DBC Guice [5])
and unmodified code (the same programs without contracts).
Our results show that SuperContra performs similarly to non-
service-based DbC approaches and in many cases similarly to
code running without contracts.

In summary, the contributions of this paper are twofold:

• We present the design and implementation of a new
DbC framework that enables uniform contract evalua-
tion and contracts as-a-service. SuperContra decou-
ples contract evaluation from client-side execution,
and gives developers a single, familiar, yet universal
language (a simple subset of Python) that they use to
write (and reuse) contracts across components imple-
mented in different programming languages.

• We evaluate SuperContra with widely used soft-
ware technologies and a wide range of precondi-
tion/postconditions. We compare SuperContra against
traditional (client-integrated, single language/runtime)
technologies and evaluate its overhead.

II. SUPERCONTRA

We overview the SuperContra design in Figure 1. The
framework includes a dependency injector, a run-time intercep-
tor, a contract evaluator and a cross-language communicator.
In the heart of SuperContra is the contract evaluator, a service
that accepts a unified specification language and is responsible
for evaluating the contracts and send the answers back to
the clients. These clients can execute via different runtime
environments and include a dependency injector and a runtime
interceptor. The injector component identifies the contracts all

Fig. 1: The SuperContra system design

the way up to the class hierarchy and injects the interceptor
code that simply delegates the contract evaluation to the
evaluation engine. Finally, the communicator, is responsible for
the communication between the interceptor and the evaluator
across different run-time environments and consists of a client
and a server component.

Contracts are expressed with a simple, common specifica-
tion language independent of the programming language used.
For each of the supported programming languages though,
there is an injector and an interceptor written in this particular
language that identify the contracts on the code, intercept
the program execution at runtime and send the contracts for
evaluation to the common contract evaluation service. The
evaluator can be written in a different programming language
or even running on a different runtime environment than other
components.

The current implementation of the SuperContra framework
exemplifies our cross-language and cross-runtime approach us-
ing Java and Python. To implement SuperContra, we leverage
on existing open-source frameworks. The interceptor is based
on the DBC Guice [8] DbC framework for Java that expresses
preconditions, post-conditions and invariants as Java annota-
tions and integrates Google Guice to identify the contracts
and inject evaluation code at runtime. The contract evaluator,
is a modified version of the PyContracts [9] DbC framework
for Python and evaluates the contracts that are expressed in a
Python-like specification language. Finally the communicator
parses the contracts, resolves incompatibilities between data
types and uses Apache Thrift [10], as the RPC framework, to
enable cross-language communication between the interceptor
and the evaluator. We describe our implementation choices in
detail in an extended tech report [6].

A. Specification Language

SuperContra specification language is a strict subset of the
language used on the PyContracts framework. The types that
SuperContra supports can be seen in listing 1.

Listing 1: Types supported by SuperContra
str, list, float, int, long, bool, bytearray,

None

We can also specify constraints on lists, tuples, sequences,
dictionaries, arrays and maps. Some examples for list specific
expressions are shown in listing 2.

Listing 2: List specific expressions
list[x] //Examines if a list has x elements

length
list(int) //Argument is a list of integers
list[x](int) //Argument is a list of x

integers
list[x](int, >y) //Argument is a list of x

integers greater than y
list[>=x](int, >y) //Argument is a list of at

least x integers great than y

//Example usage of list[x] in a contract
@Precondition("{‘l’: ‘list[2](int, >0)’}")

public boolean listExample(List<Integer> l)

SuperContra supports all the built-in functions of Python
that accept as an argument one of the supported types men-
tioned above, or the object type.

Listing 3: Built-in Python functions usage examples
@Precondition("{‘name’: ‘lambda name:

isinstance(name, str) and len(name)>4’}")
public boolean addPerson(String name, int age)

@Precondition("{‘distance’: ‘lambda distance:
abs(distance) < 5’}")

public boolean neighborhood(int distance)

We next provide examples of how we use the language to
express boundary conditions checks (Listing 4), non-nullness
checks (Listing 5) as well as postconditions (Listing 6). In the
last listing we see the use of lambda expressions to define
type checks, a particularly useful feature for weakly typed
languages, like Python.

Listing 4: Preconditions for numeric variables boundaries
check

@Precondition("{‘currentPrice’: ‘>0’,
‘discount’: ‘>=0’, ‘bonusCount’: ‘>=0’,
‘bonusNo’: ‘>=0’}")

public Double calculateDiscountPrice(double
currentPrice, int discount, int
bonusCount, int bonusNo)

Listing 5: Using lambda expressions for non-nullness checks
@Precondition("{‘row’: ‘lambda row: row is

not None’, ‘family’: ‘lambda family:
family is not None’}")

public long incrementColumnValue(final byte
[] row, final byte [] family,final byte
[] qualifier, final long amount, final
boolean writeToWAL)

Listing 6: Post-condition check
@Postcondition("{‘returns’: ‘lambda price:

price>0’}")
public Double calculateDiscountPrice(double

currentPrice, int discount, int
bonusCount, int bonusNo)

Listing 7: Type-checking for weakly typed languages
@Precondition("{‘name’: ‘lambda name:

isinstance(name, str) and len(name)>4’,
‘age’: ‘int,>10’}")

@Postcondition("{‘returns’: ‘bool’}")

B. Lightweight Contracts

SuperContra supports the evaluation of lightweight con-
tracts. Light-weight contracts are any expression that does
not contain method calls or object references. By focusing
on lightweight contracts, we preclude the need for the server
side to implement the object model of the client. Moreover,
types are converted to the closer type supported by the server’s
contract evaluation framework (Currently PyContracts), simi-
larly to other cross-language frameworks like Apache Thrift.
Nevertheless, light-weight contracts as type, boundary and
nullness checks can be extremely effective in detecting the
plethora of system bugs encountered in practice ([7], [8], [9]).

III. SYSTEM EVALUATION

We evaluate the performance and scalability of our ap-
proach using the Apache Synapse Enterprise Service Bus
(ESB) v2.1.0. We drive this PaaS service using Apache
JMeter v2.9 and employ a configuration in which Synapse
interoperates with an Axis2 server [10]. We also evaluate
SuperContra for a NoSQL service implemented via Apache
HBase. Due to space constraints however, we omit these results
herein. A complete description of our evaluation setup and
these and other results can be found in an extended technical
report version of this paper [6]. We compare the performance
of SuperContra against unmodified implementations of the
services. We employ DBC Guice and Cofoja, two popular DbC
frameworks for the Java language, to evaluate and compare
different contract implementations.

For contract evaluation in Synapse, we modify the Dis-
countCodeMediator within this sample configuration by adding
contracts to the method that calculates the discounts on the
input price. The contracts we consider are (i) a precondition
on one argument, (ii) a precondition on each of four arguments,
and (iii) configuration ii with the addition of a postcondition
on the return value. A JMeter client sends HTTP requests to
the Axis2 server which then communicates with Synapse, at
which point the contracts are evaluated prior to returning the
result to the client.

We present performance results (in seconds) for each of
our three configurations in Figure 2 for 10000 JMeter requests.
With only one precondition check (Figure 2a), the time needed
to evaluate the contracts is so small that there is almost
no performance difference between the different frameworks
tested. When there are more contract checks (Figures 2b

 0

 20

 40

 60

 80

 100

 120

 1 2 5 10 20

Ti
m

e
(s

ec
)

Number of Threads

Without Contracts
SuperContra

DBC Guice
Cofoja

(a) Precondition Check

 0

 20

 40

 60

 80

 100

 120

 1 2 5 10 20

Ti
m

e
(s

ec
)

Number of Threads

Without Contracts
SuperContra

DBC Guice
Cofoja

(b) Heavy Preconditions

 0

 20

 40

 60

 80

 100

 120

 1 2 5 10 20

Ti
m

e
(s

ec
)

Number of Threads

Without Contracts
SuperContra

DBC Guice
Cofoja

(c) Heavy Preconditions+Postcondition

Fig. 2: Synapse/ JMeter: Total execution time for 10k op-
erations for one precondition check (Fig. 2a), multiple pre-
condition checks ((Fig. 2b) and the combination of multiple
precondition checks plus a postcondition (Fig. 2c).

and 2c), the services experience some overhead. In all settings,
SuperContra outperforms DBC Guice and imposes negligible
overhead. With 10 or more threads, the performance of Su-
perContra is similar to the code running with Cofoja and the
unmodified code.

IV. RELATED WORK

DbC has been extensively studied, e.g. [7], for sequen-
tial [1], [11], [12], [13], [14] and concurrent [15], [16], [17]
programs. There are programming languages [18], [12] that
consider contracts as first-class structures, and DbC frame-
works that extend existing programming languages [11], [19].
Contracts can be checked at compilation time [20], [12], [21],
at runtime [19], [22], or both [11]. SuperContra supports a
python-like type system and specification language regardless
of the language used to implement the program or component,
and evaluates contracts at runtime.

Previous research tried to ease the burden of learning a
new specification language for each different DbC tool [13],
[23] by embedding contracts into the programming language.
SuperContra goes beyond such approaches to provide DbC that
is both language and run-time agnostic. Other DbC advances
target runtime overhead [24] and the complexity of writing
contracts [25], [26]. SuperContra shares this motivation, but
addresses the problem in a different way. To decrease the
runtime overhead and to minimize the programming effort
needed to write the contracts, SuperContra targets lightweight
contracts and uses a common specification language across
run-times to simplify contract specification for multi-language
applications.

V. CONCLUSIONS

This paper presents the design, implementation and evalua-
tion of SuperContra, a DbC framework that provides program-
ming language agnostic contracts as-a-service, appropriate in
PaaS settings. We compare the performance of our approach
and prototype implementation against existing DbC frame-
works via popular, open-source tools. Our results show that
SuperContra performs similarly to or outperforms extant DbC
approaches. The negligible runtime overhead and the reduced
programming effort needed to specify the contracts across
multi-language components make SuperContra an effective
and easy-to-use option for improving software reliability and
robustness of PaaS applications.

VI. ACKNOWLEDGEMENTS

This work was funded in part by NSF (CNS-0905237 and
CNS-1218808) and NIH (1R01EB014877-01).

REFERENCES

[1] B. Meyer, “Applying’design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[2] “Apache JMeter,” http://jmeter.apache.org/, 2014, [Online; accessed 7-
December-2014].

[3] “Apache Synapse,” http://synapse.apache.org/, 2014, [Online; accessed
7-December-2014].

[4] “Cofoja,” https://github.com/nhatminhle/cofoja, 2014, [Online; accessed
7-December-2014].

[5] “DBC Guice,” https://code.google.com/p/dbcguice/, 2014, [Online; ac-
cessed 7-December-2014].

[6] “SuperContra Tech Report,” http://www.cs.ucsb.edu/research/tech-
reports/2014-09, 2014, [Online; accessed 7-December-2014].

[7] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller, and M. Parkinson,
“Behavioral interface specification languages,” ACM Computing Surveys
(CSUR), vol. 44, no. 3, p. 16, 2012.

[8] M. Barnett and W. Schulte, “Runtime verification of. net contracts,”
Journal of Systems and Software, vol. 65, no. 3, pp. 199–208, 2003.

[9] L. C. Briand, Y. Labiche, and H. Sun, “Investigating the use of analysis
contracts to improve the testability of object-oriented code,” Software:
Practice and Experience, vol. 33, no. 7, pp. 637–672, 2003.

[10] “Apache Synapse Samples,” http://synapse.apache.org/userguide/samples/,
2014, [Online; accessed 7-December-2014].

[11] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of jml tools and
applications,” International journal on software tools for technology
transfer, vol. 7, no. 3, pp. 212–232, 2005.

[12] M. Barnett, K. R. M. Leino, and W. Schulte, “The spec# programming
system: An overview,” in Construction and analysis of safe, secure, and
interoperable smart devices. Springer, 2005, pp. 49–69.

[13] M. Fähndrich, M. Barnett, and F. Logozzo, “Embedded contract lan-
guages,” in Proceedings of the 2010 ACM Symposium on Applied
Computing. ACM, 2010, pp. 2103–2110.

[14] M. Barnett and W. Schulte, “The abcs of specification: asml, behavior,
and components,” Informatica (Slovenia), vol. 25, no. 4, 2001.

[15] M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte,
“Vcc: Contract-based modular verification of concurrent c,” in Software
Engineering-Companion Volume, 2009. ICSE-Companion 2009. 31st
International Conference on. IEEE, 2009, pp. 429–430.

[16] W. Araujo, L. Briand, and Y. Labiche, “Concurrent contracts for java
in jml,” in Software Reliability Engineering, 2008. ISSRE 2008. 19th
International Symposium on. IEEE, 2008, pp. 37–46.

[17] P. Nienaltowski, B. Meyer, and J. S. Ostroff, “Contracts for concur-
rency,” Report-University of York Department of Computer Science
YCS, vol. 405, p. 27, 2006.

[18] B. Meyer, “Eiffel: A language and environment for software engineer-
ing,” Journal of Systems and Software, vol. 8, no. 3, pp. 199–246, 1988.

[19] N. Minh, “Contracts for Java: A Practical Framework for Con-
tract Programming,” Google Switzerland GmbH, Tech. Rep., 2010,
http://cofoja.googlecode.com/files/cofoja-20110112.pdf.

[20] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata, “Extended static checking for java,” in ACM Sigplan Notices,
vol. 37. ACM, 2002, pp. 234–245.

[21] D. N. Xu, S. Peyton Jones, and K. Claessen, “Static contract checking
for haskell,” in Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’09.
New York, NY, USA: ACM, 2009, pp. 41–52.

[22] Y. Cheon and G. T. Leavens, “A runtime assertion checker for the
java modeling language (jml),” in Proceedings of the International
Conference on Software Engineering Research and Practice (SERP02),
Las Vegas, Nevada, USA, 2002, pp. 322–328.

[23] M. Fahndrich, M. Barnett, D. Leijen, and F. Logozzo, “Integrating a
set of contract checking tools into visual studio,” in Developing Tools
as Plug-ins (TOPI), 2012 2nd Workshop on. IEEE, 2012, pp. 43–48.

[24] C. Dimoulas, R. B. Findler, and M. Felleisen, “Option contracts,”
in Proceedings of the 2013 ACM SIGPLAN international conference
on Object oriented programming systems languages & applications.
ACM, 2013, pp. 475–494.

[25] D. Qi, J. Yi, and A. Roychoudhury, “Software change contracts,” in
Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM, 2012, p. 22.

[26] J. Yi, D. Qi, S. H. Tan, and A. Roychoudhury, “Expressing and checking
intended changes via software change contracts,” in Proceedings of
the 2013 International Symposium on Software Testing and Analysis.
ACM, 2013, pp. 1–11.

