
pular
Java
L, or
tten

ation
for a
ince
 again
fy and
bout
alyze
ML/
].

n part

listic
k suite
 Most

st the
judge
n and

from
te its
A Study of the Allocation Behavior of the
SPECjvm98 Java Benchmarks

Sylvia Dieckmann and Urs Hölzle

Department of Computer Science
University of California

Santa Barbara, CA 93106
{sylvie, urs}@cs.ucsb.edu

Abstract. We present an analysis of the memory usage for six of the Java
programs in the SPECjvm98 benchmark suite. Most of the programs are real-
world applications with high demands on the memory system. For each
program, we measured as much low level data as possible, including age and
size distribution, type distribution, and the overhead of object alignment.
Among other things, we found that non-pointer data usually represents more
than 50% of the allocated space for instance objects, that Java objects tend to
live longer than objects in Smalltalk or ML, and that they are fairly small.

1 Introduction

Java has brought garbage collection to the mainstream, being the first truly po
language in the C/C++ tradition that requires garbage collection (GC). Since 
differs in many respects from other languages requiring GC, such as Smalltalk, M
Lisp, the GC behavior of Java programs may well differ from that of programs wri
in other languages.

To understand the GC performance of a system, one must study the alloc
behavior of the targeted applications. Every GC implementation leaves room 
waggonload of knobs and levers which impact performance, but tuning is difficult s
the right settings depend on the characteristics of the executed program, which
depends greatly on language features and implementation style. To better identi
optimize garbage collectors, implementors need detailed empirical information a
the allocation behavior of applications. For that reason, many published studies an
the allocation behavior in the context of several languages, including Smalltalk, S
NJ, Lisp, C, and C++ [Ung86, SM94, HMN97, HH+98, Zor89, ZG92, DDZ94
However, no in-depth analysis of Java programs has been published to date, i
because of the lack of a standardized benchmark suite.

In this paper, we present the first in-depth analysis of the memory usage of rea
Java programs. Our study is based on the programs of the SPECjvm98 benchmar
recently released by the System Performance Evaluation Corporation [SPEC98].
programs are real-world applications with high demands on the memory system.

For each program, we measure as much low-level data as practical. To te
generational hypothesis, we measure age distributions. To allow implementors to 
the impact of segregating objects by type or size, we analyze the heap compositio
identify object groups (e.g., reference-free instance objects) which might benefit 
a special treatment. To determine the impact of 8-byte object alignment, we simula
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effects. Since every system is different and there are so many possible GC varian
generally refrain from making recommendations based on the data. Instead, our 
tive is to provide the GC community with detailed data that allows researchers to pr
the impact of many GC implementation decisions for Java applications.

The remainder of this paper is organized as follows. Section 2 discusses re
work and previous studies of allocation behavior, and section 3 describes the b
marks. Section 4 presents our experimental setup. In section 5 we discuss the 
including our observations on object lifetimes, reference density, heap compos
and others. Section 6 compares our numbers to those reported for other languages
possible, and section 7 summarizes our results.

2 Related Work

When implementing a language with garbage collection, it is essential to under
the expected allocation behavior. Since allocation patterns not only depend o
executed applications but also more generally on language characteristics, resea
have studied this question independently for several programming languages. M
the earlier papers focus on lifetime and survival rates in order to estimate the ove
for generational GC. Later, after the basic characteristics of GC were unders
researchers became more interested in segregation approaches, special allocatio
egies and others.

Ungar, for example, who first implemented Generation Scavenging [Ung84
Berkeley Smalltalk (BS), analyzed the dependencies between survival rate and n
size for Smalltalk-80 [Wil92]. Baker suggested theoretical models to explain alloca
behavior [Bak94, Bak93]. Hayes analyzed survival rates for long-lived object
Cedar, a Modula-like language, and found that objects that survive a certain age t
die in clusters [Hay91].

Zorn presented statistical numbers on eight large Lisp applications analyzed w
object-level runtime system simulator [Zor89]. Unlike in most other studies (includ
ours), Zorn used memory reference counts as a metric for object lifetimes. M
recently, Zorn et al. have studied large C/C++ programs, often in the context of life
prediction and memory allocation [BZ93, ZS98, GJS96, ZG92, ZG94].

Stefanovic and Moss analyze the allocation behavior of SML/NJ [SM9
Gonçalves discusses object age distribution in his study on cache performance [G
We discuss these studies further in section 6.

Nettles et al. developed Oscar [MHN97], a language-independent GC testbe
can be used to analyze object allocation behavior. Unlike our simulator, Oscar do
trace heap activity but records frequent heap snapshots. Hicks et al. used Os
analyze both SML/NJ and Java applications [HMN97, HH+98] but mostly focus
execution time. Except for those studies, Java has not yet been the focus of an in
allocation behavior study. To the best of our knowledge, no other analysis o
SPECjvm98 benchmark suite has been published yet.
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3 Benchmarks

All of our measurements are based on six programs from the SPECjvm98 b
mark suite [SPEC98], released in August 1998 by the System Performance Evalu
Corporation (SPEC). SPEC is a nonprofit organization of hardware vendors w
objective is to establish a standardized set of vendor-neutral, relevant, applica
oriented benchmarks applicable to the newest generation of high-perform
computers. Other popular SPEC benchmarks measure various system aspects 
CPU, NFS, and Web server performance.

SPECjvm98 is shipped as a set of Java class files and is intended to measure t
ciency of Java Virtual Machine (JVM) implementations, i.e., the combination of 
compiler, runtime system, OS, and hardware platform. The individual programs 
chosen by the SPEC member companies based on several criteria including high
code content, flat execution profile (no tiny loops), repeatability, heap usage
allocation rate, and either I-cache or D-cache misses on the reference platform. M
the tests represent real applications and use both integer and floating-point com
tion, library calls, and some I/O; however, AWT (window), networking, and graph
are not covered in this suite. As a result, the SPEC benchmarks all execute little 
code in the Java System Classes, and no program contains application-specific 
code. All programs except one (mtrt) are single-threaded.

SPECjvm98 consists of eight different programs (see Table 1); seven are us
computing the performance score, one (check) validates the correctness of the VM. Thi
test does not contribute to the result but must be executed correctly in order to ob
valid score; we omit it from all our numbers. We also excludempegaudio since it barely
allocates any data.

For all benchmarks, SPEC provides three different inputs referred to as “pro
size 100, 10, and 1”. Although the input names may suggest so, SPECjvm98 do
scale linearly (i.e., input size 10 does not run in 1/10th the space or 1/10th the 
Only the largest input may be used to publish benchmark results; all our runs us
input unless mentioned otherwise. Some of the programs (compress, jack, javac) iterate
multiple times over the same input, which explains the repetitive shape of some g
(for an example, see Figure 3).

In order to produce valid results, SPEC requires the user to run all applica
through a harness which sets up the environment and times the experiment. In this
we too use the harness to start our programs and therefore add a constant bu
amount of mostly long-lived data to all our results.

3.1 Program Descriptions
We now describe the six analyzed programs in more detail.
compress implements file compression and uncompression. It performs five ite

tions over a set of five tar files, each of them between 0.9 Mbytes and 3 Mbytes 
Each file is read in, compressed, the result is written to memory, then read a
uncompressed, and finally the new file size is checked.

In every cycle,compress allocates two large byte arrays for input and output; oth
than that, it allocates very few heap objects. As a result, the live profile ofcompress
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looks somewhat odd—rather than a continuous curve it shows several vertica
only, because we plot large object allocations as single data points followed by 
whose length corresponds to the age of the object. Sincecompress has no long sequence
of small allocation requests, no continuous curve can form. (Section 5.1 discusse
treatment of large objects in more detail.)

Although we believe thatcompress is not a typical representative of an objec
oriented application we did not drop it from our suite since we assume that Java 
cations in the style ofcompress do exist. However, we sometimes exclude it fro
summarizing statements made in this paper where it doesn’t conform with the ge
trend.

db is the only program in this study that is not derived from a real-world applicat
It simulates a simple database management system with a file of persistent recor
a list of transactions as inputs. The task is to first build up the database by parsi
records file and then to apply the transactions to this set. Accordingly,db has a very
distinct live heap profile: the heap size grows linearly during the building of the d
base but stays at a fixed level for the entire time of the execution of the transactio

a Total size of all class files that where delivered as part of the actual application. These numbers 
include the harness code or JVM system classes.

b These numbers are based on our simulation and exclude space consumed by alignment, handle sp
header words etc.; see section 4.3 for a details. The SPECjvm98 documentation reports significantly
numbers, but we have verified that real JVM implementations (e.g., Sun’s JDK 1.2) closely correlat
the numbers given here.

c Run time on the SPEC reference machine, a 133MHz IBM PowerPC 604 running an interpreter.

Program Description
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check test JDK and Java features 5.8 n/a n/a

compress
Utility to compress/uncompress large
files based on Lempel-Ziv method;
several passes over same input

17.4 6.7 105 1175 2,423 49 592 0

db
Small data management program;
performs DB functions on memory
resident database

9.9 7.2 231 505 712 56 42 70

jack
Parser generator with lexical analysis,
early version of what is now JavaCC;
several passes over same input

129.4 1.2 61 455 627 49 289 46

javac
The JDK 1.0.2 Java compiler compil-
ing 225,000 lines of code

548.3 6.5 111 425 331 42 92 21

jess
Java expert system shell; based on
NASA’s CLIPS expert system

387.2 1.1 161 380 341 57 30 26

mpegaudio MPEG-3 audio stream decoder 117.4 insignif. 1100 n/a

mtrt Dual-threaded raytracer 56.5 3.0 147 460 372 54 54

Table 1. SPECjvm98 programs
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jack is a commercial application (a parser generator) and is therefore shi
without source code. From our traces, we know thatjack performs 16 iterations of
building up a live heap structure and collapsing it again. According to the SPEC d
mentation, it repeatedly generates a parser from the same input. Because n
survives between iterations,jack can run in a fairly small live heap.

javac is the JDK 1.0.2 Java compiler iterating four times over several thousand 
of Java code; the source code ofjess serves as input forjavac.

jess is an expert system which reads a list of facts about several word games
an input file and attempts to solve the riddles. Although the run is computation
intensive and allocates a lot of memory,jess does not store temporary results for 
prolonged time. Thus, the live heap stays at a relatively constant level for the entir
of the application, even though new objects are allocated continuously.

mtrt  raytraces a picture by dividing the input data in sections and starting a 
working thread for every section. It is the only multithreaded application in our su
Unfortunately, even the largest problem size currently does not create more tha
work threads. In addition, the threads do not yield voluntarily which means that
tracer, which is based on a JDK with cooperative thread model, executes them se
tially [Hol98]. We therefore hesitate to considermtrt a truly multithreaded program.

4 Experimental Setup

Or experimental setup consists of two independent phases (Figure 1). Firs
instrumented version of Sun’s JDK 1.1.5 VM produces a trace file while executing
benchmark application. In the second phase, a simulator (written in Java) read
trace and simulates allocation, pointer assignments, and garbage collections 
computing the statistics shown in the rest of the paper. The next two sections de
these two components.

4.1 Tracer
We modified the Sun JDK1.1.5 VM to log all runtime information of interest. T

recorded events include object creation, updates to the heap, stack, and operand

Heap

Zombies

Java Stack

Age Distribution

Thread Locality

Live Heap Size

...

...

thread.dat

age.dat

live.dat
JDK 1.1.5

SPECjvm98
trace file

TRACER
SIMULATOR

tracing

C
a

ll B
a

ck

spec output

Figure 1. Experimental Setup
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and method invocation. To reduce the trace size, we do not record updates to non
ence variables. Despite this restriction, and even with a reasonably space-eff
encoding of the trace events and subsequent compression with GNU gzip, trace l
range up to 1.5 gigabytes. Together, the traces for all benchmarks comprise mor
4.5 gigabytes of data.

On object creation, the tracer records the class, bytes allocated (for arrays
object ID. Since the JDK1.1.5 can relocate heap objects, we usehandle addresses rather
than real addresses for identification. The JDK VM assigns a handle to every 
object to support heap compaction. This handle is nothing more than a forwa
pointer; all object references use the handle rather than referring to the object dir
If the VM now decides to relocate an object, it updates the forwarding pointer
opposed to all object references). Consequently, a handle address never changes
the lifetime of its object, which makes it an ideal object identifier.

Together with the recorded heap stores, the object creation data is sufficie
reconstruct heap structures and the complete object allocation history from the 
The trace also contains method invocation/return events as well as the operands
bytecode that affects pointers in the stack or operand stack; these trace records
the simulator to reconstruct pointers from the stack.

We currently ignore pointer stores from C code, since the JDK 1.1.5 VM cont
too many places that directly manipulate Java objects without going through the
interface. In order to determine the impact of this simplification, and to compensat
it in the simulator, the trace file augments some events with the expected value 
result, even though the simulator should be able to deduce it from the current stat
example, pointer loads record not only the address of the location but also the 
being loaded. For the same reason, the trace also records the handles of objects f
the JDK VM, although we are not interested in (or dependent on) the JVM’s GC a
rithm. Fortunately, omitting stores from native code has a negligible impact on
results; we will discuss the exact impact in detail in the next section.

4.2 Simulator
The second component of our experimental setup consists of a heap sim

written in Java. The simulator reads and interprets the trace file to reconstruct hea
stack activity, and performs a garbage collection at fixed intervals to determine o
lifetimes. For every Java object allocated by the application, the simulator crea
SimObject instance to hold the pointer fields of the application object, to captu
variety of GC-relevant information, and to provide additional space for tempo
counters and markers.

While simulating the heap activity of the application, the simulator gathers a va
of statistics. All of our experiments are coded as independent units, each of w
creates its own, sometimes partially redundant, output data. Most experiment
event-driven, registering their interest in certain events (e.g.,new_object, free_object)
so that the simulator calls them back whenever these events occur.

Since most of our experiments distinguish between live and dead objects, the 
lator performs exact garbage collections on the simulated heap. Currently, we fo
full collection after every 50 Kbytes* of allocation; we believe that a finer resolution i
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unlikely to improve the result but would slow down the simulation significantly. 
typical simulation currently takes about four days on a 300MHz UltraSPA
workstation.)

When the simulator determines that an object is unreachable, it notifies the r
tered statistics objects and moves theSimObject to a “zombie” region. Because the trac
does not contain references from the JVM’s C code, an object might appear dead
simulated heap but actually is still alive in the real application. Once the trace re
that the JDK GC has indeed freed the zombie object, the simulator discards it. How
if the object is still live, the simulator will discover that the next time it is referenc
In that case, the simulator resurrects the object and notifies the statistics obje
correct their data. As discussed in the previous section, the trace data contains
redundant information to detect these premature deaths and to recover from them

Table 2 shows that the simulator often resurrects fewer than 250 objects. On
javac andjack does it retrieve a larger amount of zombies, but even there those ob
make up for less than 0.4% of all allocated objects. In addition, a single object m
get resurrected multiple times, so that the actual error would be even smaller
shown. Also, any error will show up only for a limited segment of the simulation, 
is, from the point where the simulator falsely collects an object until it gets resurre
(detected error) or the JDK1.1.5 frees the original.

We believe these numbers are a strong indication that the inaccuracies intro
by ignoring native code are minor and do not influence our results. Because none
applications in SPECjvm98 adds its own native code, only native code in the sta
Java system classes could potentially cause a discrepancy.

To verify the correctness of the simulator, we compared the simulation resu
numbers reported by the tracing VM. For example, we ran the tracer with-verbosegc
and compared the result to our simulator data in order to verify total allocation size
also added extra counters to monitor the overhead of 8-byte alignment, the amo
memory still live at the end of the applications, and many others. All numbers obta
by the tracer agreed closely with those of the simulator. When adding experime
the simulator, we usually implemented two algorithms and made sure the outcom
identical. For example, we would update the live heap counter dynamically on e

* All graphs in this paper are based on 50 Kbyte intervals. During our analysis we also used 10 Kbyte
vals for better accuracy. However, we found no significant differences between 10 Kbytes and 50 Kby

total objects
 allocated

objects
resurrected % resurrected corrected

references

compress 6,607 142 2.15 3

jess 7,924,698 226 0.00 3

db 3,211,569 146 0.00 3

javac 6,099,430 21,336 0.35 78,203

mtrt 6,587,012 106 0.00 3

jack 6,863,757 16,278 0.24 3

Table 2. Error due to simulation
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death event. In addition, we would periodically scan a snapshot of the live heap
determine the size. Finally, we cross-checked all our experiments for consistency
sum of all ‘live bytes of type X’ numbers in one experiment, for instance, must co
spond to “currently live bytes’ measured in another experiment.

To make sure that our tracer did not miss important events, we kept a log of all w
ings issued by the simulator due to resurrection, recovery points and other 
inconsistencies.

4.3 Object Model
To keep this study as general as possible, we only consider aspects that are li

occur universally in Java implementations. That is, we abstract away effects tha
implementation dependent, such as fragmentation, special object headers, et
resulting object model (see Figure 2) is simple yet close to that of a realistic imple
tation.

Regular objects contain a class pointer and an arbitrary number of fields; we as
that there are no additional header words. All fields are 32-bit aligned and the simu
does not attempt to pack smaller fields. For example, aPoint object with integer fields
x andy consumes 12 bytes of heap space. Similarly, arrays contain a class po
followed by a 32-bit length field and enough space to hostcell_size x length array
elements, where the cell size (1, 2, 4, or 8 bytes) depends on the array element ty
example, an integer array of size 1, achar array of size 2, and a byte array of size 4 a
consume 12 bytes. Since virtually all processors either require 32-bit aligned addr
or impose a significant penalty on nonaligned addresses, we assume that all obje
aligned to 32 bits, so any fractional words (e.g., in a byte array of size 1) are padd
to the next word boundary. We make no further alignment assumptions (such as 
alignment for long or double) since the space impact of such alignments depe
heavily on allocator choices (e.g., unified heaps vs. size-segregated allocation).

Similarly, we do not reserve space for an element type pointer in reference a
even though this type is required for array store checks. Some VMs (e.g., Sun’s
1.1.5 VM) add this extra word to all reference arrays. But a VM could also store
element type in the array class object, eliminating the per-array overhead. Since
ence arrays are usually fairly large, we don’t expect this issue to make a differenc
way or the other.

class pointer

INSTANCE 

field

field

...

...

...

class pointer

CLASS

static

static

...

...

class pointer

length

ARRAY

cell

cell

cell

...

...

...

...

Figure 2. The simulator’s object model.
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Finally, we assume class objects to have a class pointer and enough space to 
modate the static fields, but we ignore all metadata such as method blocks, field b
constant pools, etc. Even though the class metadata might add up to several Kb
data, it is up to the JVM implementor to decide where and how it should be stored
example, the JDK 1.1.5 allocates a 100 bytes struct on the heap for every class 
which points to the remaining metadata in the C heap. In any case, the total allo
for all six SPECjmv98 programs is so high that the overhead added by class o
should have no influence on any of our results.

5 Experimental Results

5.1 Heap Size and Object Lifetimes
Figure 3* shows the amount of live data for each application; for better readab

the graph on the right shows an enlarged subsection of the same data. As is cus
in GC-related work, we measure time (x-axis) in terms of Mbytes allocated. This m
is popular because the number of bytes allocated correlates directly with the amo
work that allocator and GC have to invest.

The peak value of each curve in Figure 3 indicates the minimum heap size req
to run the program to completion. The data points of all graphs are spaced 50 K
apart since the simulator performs a garbage collection after every 50 Kbytes of a
tion. jack, for example, generates a very distinct live heap curve which oscillates six
times between 0.4 and 1 Mbyte, with peaks spaced at 9 Mbytes, becausejack allocates
approximately 9 Mbytes in every of its sixteen iterations. Most of this data dies s
but a little more than 1 Mbyte stays alive until the end of one cycle, at which poi
collapses into a remainder of 0.4 Mbytes.

If an allocated object is larger than 50 Kbytes, the graphs will show a gap w
length corresponds to the size of the object just allocated. This effect is espe
apparent incompress which allocates mostly large arrays. Becausecompress allocates

* Color versions of all graphs are available at http://www.cs.ucsb.edu/oocsb/papers/.
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Figure 3. Minimal size of live heap (total and enlarged)
The graphs show the amount of bytes that are currently live over the total amount of space allocated up to tha

For example, after 10 Mbytes of allocation, the live heap of db is slightly larger than 6 Mbytes. The right graph sho
enlarged portion of the left graph.
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virtually no other data, these arrays cause the curve to take the shape of a se
vertical bars where the height of each bar and the distance from the one to the
represents the size of the allocated object. (Refer to section 3.1 for a descripti
compress.)

Although all but one of the SPECjvm98 programs allocate more than 100 Mb
of memory, they can all run in a fairly small heap (less than 8 Mbytes) if runtime pe
mance is not an issue. Also, the maximum live heap size is established at a rela
early point in time, which may be important in the presence of automatic heap ex
sion; none of the applications would require a heap expansion after the first quar
execution.jack and javac both repeatedly build up large live structures that collap
instantaneously when the phase terminates.db, jess andmtrt, on the other hand, main-
tain a constant amount of live data until the very end of the application, either bec
the same data structure is kept alive or, as injess, because dying objects are continu
ously replaced with new allocations.

Figure 4 shows the object age distributions. As in the previous figure, the x ax
measured in Mbytes of allocation, but for age distribution we treat large alloca
requests differently by clipping them at 50 Kbytes. In other words, if a one-mega
array becomes garbage before the allocation of the next object, its age is 50 Kbyte
1 Mbyte. We believe that clipping makes sense because the main reason th
community is interested in age distribution is to estimate the success of generation
and to determine the optimal configuration. Without clipping, large objects wo
otherwise automatically look long-lived even when, in fact, they die shortly after a
cation. Although the allocation of a large object uses up heap space, it would not t
an equal amount of GC work, thus justifying an age definition that presents 
“young”.*

In the SPECjvm98 suite, clipping only affectscompress, which allocates around
105 Mbytes but whose age distribution appears to end at 8 Mbytes. Essentially,
allocating a large byte arraycompress performs long allocation-free computations afte
which the array becomes garbage. Thus, even though the array is live for many se
of real time, it appears very short-lived to the garbage collector.
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Figure 4. Age distribution in total allocated (total and enlarged)
The graphs show the fraction of bytes that are still live at time X after their creation; time is measured in allocated 

All curves must start at 1 since objects are always live immediately after their creation. For example, roughly 27% 
allocated bytes survive for 200 Kbytes in javac. Note that the two graphs are stretched in different dimensions; for 
readability we clipped the y-axis of the left graph and the x-axis of the right graph.
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The age distributions of the SPECjvm98 applications confirm the weak generat
hypothesis [Hay91] that most objects die young, although the effect is no
pronounced as for other programming languages. For example, Stefanovic and
report that only 2-8% of all allocated bytes survive for more than 100 Kbytes in 
SML/NJ applications [SM94], and Ungar measured that only 6.6% of Smalltalk obj
survive 140 Kbytes of allocation [Ung86]. In contrast, 1%-40% of the SPECjvm
objects are still live after 100 Kbytes (withjess on the lower anddb on the upper end,
ignoringcompress). Even after one megabyte of allocation, 21% of all allocated by
are still live injavac, 12% indb, and 8% injack.

This data implies that Java, too, can benefit from generational GC, which allow
collect younger objects more aggressively. However, the nursery of a Java heap s
be substantially larger than for functional languages such as ML or Smalltalk.

The age distribution for older objects is very application-dependent; most app
tions show clusters of objects dying at roughly the same age, leading to sudden
drops in the age distribution graph. Onlyjack and javac show relatively smooth age
distributions. This observation is consistent with Hayes’ study of the behavior of
objects [Hay91], and suggests that multi-generation collectors would not neces
work for Java. Instead, it may be worth investigating techniques such as Hayes
object opportunism.

5.2 Instance Objects vs. Arrays
We now turn to analyses of heap composition, starting with the distinction betw

instance objects and arrays. A garbage collector may want to treat arrays spe
particularly if they are reference-free (e.g., strings). The left graph in Figure 5 sh
that all applications initially allocate mostly arrays. Part of these objects can be a
uted to JVM initialization; the VM allocates the first 160 Kbytes—mostly byte array
before the user application is even started. The SPEC benchmark harness and th
benchmark setup also appear to perform a higher ratio of array allocations. How
after 10-20 Mbytes of allocation most applications stabilize with an array to insta
object ratio of around 1:1. Onlymtrt allocates more than twice as many instance obje
than arrays over the entire run.

The right graph of Figure 5 shows arrays as a fraction of live objects only. Here
trends are less clear, and we cannot easily generalize them. However, although th
tion of arrays in the live heap varies significantly from 25% to close to 100%, e
application appears to maintain a fairly constant ratio over the entire execution. 
applications do show several extreme spikes, but when correlated with Figure

* We are aware that our decision to clip large objects in this manner is disputable. We looked into alter
approaches such as allocating all large objects in a special area but found each technique arbitrary 
sense and rather unsatisfying for our simulation.
However, most applications do not allocate many objects over 50 Kbytes, and the question of how t
these cases never arises. Only for compress, treating large objects in one way or the other affects ou
But compress is not a normal application in the sense that it allocates mostly very large arrays, and it is 
what an age curve for such an application means in the first place. Thus, we believe that no matter 
age curve for compress is computed, one always has to be aware of the unusual allocation behavio
application.
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becomes clear that these spikes occur when most instance objects die at the en
input data set. Apparently, the arrays are live for the entire execution time, thus ca
the variations to appear disproportionately large when the live heap contracts sha

5.3 Reference Density
We now investigate how much of the allocated space contains references rathe

primitive types (e.g., bytes or integers). Again, we distinguish objects by insta
objects vs. arrays, since only instance objects can mix reference and non-refe
fields. Although our object model includes a class pointer in every object, we do
count it as a reference but rather as a non-reference in this section. The class poin
well be special-cased in a GC implementation since it is immutable unless class o
are copied. If garbage collection of class objects is switched off altogether (
JDK1.1.5 with-noclassgc), it does not even have to be scanned.

Figure 6 shows that all applications allocate a high percentage of non-refe
fields during startup. But even later, most programs allocate less than half of their 
for references. Onlyjess anddb allocate a higher fraction of references; the latter en
with a total of 66% allocated for references. Three of the programs,jack, javac, andjess,
generally have a balanced live heap with between 45-50% of non-reference b
Again, the periodic heap contractions in these programs let these applications a
more irregular than they are. The other three programs also maintain a fairly con
reference density in their live heap with between 65% and 98% of the live space 
cated to non-references.

This data helps estimate the number of pointers a collector must scan and u
However, some non-reference fields are easier to skip than others; in particular
reference arrays are faster to skip than non-reference fields scattered throu
instance objects. Thus, we now refine the data presented in Figure 6 by separati
arrays (Figure 7) and instance objects (Figure 8).*

* Unlike in Figure 6, the complements in these graphs do not show(reference arrays) and(reference fields
in instances) but rather (reference arrays + all instances) and(reference fields in instances + all arrays),re-
spectively.
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Figure 5. Fraction of array bytes
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The graphs show the amount of array bytes (right graph) and live array bytes (left) as a fraction of total bytes all
(left) and the live heap size (right); time is measured in allocated bytes. For example, after 100 Mbytes of allocation
of jess’ heap is used for arrays but close to 70% of all live objects are arrays.
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Figure 6. Fraction of non-reference bytes

The graphs show the amount of non-reference bytes (left graph) and live non-reference bytes (right) as a fraction
bytes allocated (left) and live heap size (right); time is measured in allocated bytes. In jess, for example, after 50 Mb
allocation, 55% are allocated for non-reference fields, but 47% of the live objects at this point are non-reference field
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Figure 7. Fraction of non-reference bytes in arrays

The graphs show the amount of non-reference array bytes (left graph) and live non-reference array bytes (rig
fraction of total bytes allocated resp. live heap; time is measured in allocated bytes. In jess, for example, after 50 Mbf
allocation, only 1.5% of the space is allocated for non-reference arrays, but over 25% of the live objects at this po
non-reference arrays.
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Figure 8. Fraction of non-reference bytes in instances
The graphs show the amount of non-reference instance bytes (left) and live non-reference instance bytes (rig

fraction of total bytes allocated resp. live heap; time is measured in allocated bytes. In jess, for example, after 50 Mbf
allocation, over 50% of the space is allocated for non-reference instance field bytes, but only 20% of the live bytes
point are non-reference instance field bytes.
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The behavior for arrays varies widely among programs, with some allocating 
reference arrays almost exclusively (compress), others allocating hardly any non-refer
ence arrays (jess), and the rest in-between. Non-reference fields from instance obj
show a somewhat more uniform pattern, with three applications around 25%,jess and
mtrt considerably higher, andcompress at zero.

Since we were surprised to see such a high fraction of non-reference fiel
instances, we investigated the possibility of segregating instances that contain no
ences other than the class pointer. However, Figure 9 suggests that segrega
unlikely to work well in the general case; onlymtrt creates a significant amount of refer
ence-free instance objects.

5.4 Heap Composition
Since the previous section revealed that arrays and even non-reference arra

fairly frequent, we now show what kinds of arrays occur most frequently.* None of the
SPECjvm98 programs allocates a significant number of arrays of typeboolean, double,
float, int, or short. In Figure 10 as well as in all following graphs, these arrays 
summarized as “other arrays.” All programs allocate less than 2% for those a
except formtrt (up to 20%).

Other object kinds (instance objects,byte, char, and reference arrays) are all fairly
common throughout the entire suite, although individual programs may not use ce
types of arrays. Only instance objects are represented with at least 45% in a
compress. Often, instance objects and one other array type consume 85-99% of all
cated space. However, the dominant kinds depend entirely on the application:db and
jess contain a high fraction of reference arrays,jack andjavac both allocate around 40%
for char arrays, andmtrt allocates instance objects almost exclusively. For so
programs, the distribution stabilizes after some time (jack, jess) but not in others (db,

* Note that Java does not have true multidimensional arrays; for example, Java represents a two-dime
int array as a one-dimensionalreference array whose elements are int arrays (the rows of the two-dimensio
array).
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Figure 9. Fraction of bytes from reference-free instances
The graphs show the amount of bytes consumed by reference-free (expect for the class pointer) instance obje

and reference-free live instance objects (right) as a fraction of total bytes allocated resp. live heap; time is measuredlo-
cated bytes. In mtrt, for example, after 100 Mbytes of allocation, 65% of the space is allocated for reference-free in
objects; 45% of the live bytes at this point are from reference-free instance objects.
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mtrt). An informal study of other applications confirmed this trend: many applicati
allocate the bulk of their space for very few kinds, with one or two of them domina
the heap. These results suggest that it may be worthwhile to segregate non-ref
arrays.

The picture changes when taking only live objects into consideration (Figure
As seen previously, the “live only” graphs contain some noise caused by the 
contractions at the end of each repetition. Ignoring these spikes, the live heaps s
relatively even distribution that often differs markedly from the numbers presente
Figure 10. For example,db allocates 58% of its space for instance objects, 34% 
reference arrays, and only 6% forchar arrays, but appears to keep most of thosechar
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Figure 10. Heap composition for total allocated
For every application the graphs show the fraction of the total allocated space that is dedicated to a certain obje

time is measured in allocated bytes. For example, after 100 Mbytes of allocation, the heap for javac consists of 48% i
objects, 40% char arrays, 9% reference arrays, 1% byte arrays, and 2% other array types.
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arrays alive. Thus, its live heap contains about 50%char arrays but only 13% of refer-
ence arrays. In general,char arrays are more common in the live heap than th
percentage of total allocation might suggest.

The differences between the composition of the live heap versus the total allo
suggest that basic types have different age distributions. For example, one would
itively expectchar arrays, which often represent strings, to be rather small and e
very short-lived (for temporary results) or permanent. In the next few graphs we in
tigate age distribution and average object size separated by object kind.

Figure 12 and Figure 13 both show the same numbers (age distribution), bu
former organizes the data per application whereas the latter presents it by objec
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Figure 11. Heap composition for live objects only
For every application the graphs show the fraction of the current live heap that is dedicated to a certain objec

time is measured in allocated bytes. For example, after 100 Mbytes of allocation, the live portion of the heap for jess cs
of 46% ref arrays, 32% instance arrays, 16% char arrays, 5% byte arrays, and 1% other array types.
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for the three most frequent kinds. To make the graphs easier to read, we eliminate
line that would represent less than 5% of total allocation; in that case, the line’s la
marked with the letter X. However, is still useful to keep in mind that not all ob
kinds are equally important, and to correlate these graphs with the actual heap c
sition shown in Figure 10.

As discussed in section 5.1, a large fraction of objects dies very young. Injess, for
example, most objects don’t even survive the first 50 Kbytes of allocation which a
resolution makes the upper graph in Figure 12 appear blank. Often, most longer-
data is of one type.db keeps mostlychar arrays,jack retains reference arrays, andmtrt
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Figure 12.a Age distribution (total)
For every application the graphs show the fraction of bytes of a certain type that are still live at time X after the

ation; time is measured in allocated bytes. For example, 22% of all instance object bytes, 13% of all reference arra
and 3% of all char array bytes survive the first 20 Mbytes of allocation in jess.

For better readability we prune all object types that represent less than 5% of the total allocation and mark thei
with the letter X.
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uses some longer living arrays of various types. Again, the age distribution graphs
a steep drop; onlyjess shows a smooth age distribution (especially for instance obje
and reference arrays). It might be worthwhile to use an adaptive strategy which r
nizes those long-lived types and collects them less aggressively.

Evencompress seems to keep only instance objects for a prolonged time. Howe
in this case the numbers might be slightly misleading due to the fact that we clip 
object allocations to 50 Kbytes when measuring the age.compress uses several large
byte arrays for arithmetic computation but it does not allocate more space durin
lifetime of each of those arrays. Consequently, the byte arrays seem to die young
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Figure 12.b Age distribution (enlarged)

For every application the graphs show the fraction of bytes of a certain type that are still live at time X after the
ation; time is measured in allocated bytes. For example, 22% of all instance object bytes, 13% of all reference arra
and 3% of all char array bytes survive the first 20 Mbytes of allocation in jess.

For better readability we prune all object types that represent less than 5% of the total allocation and mark thei
with the letter X.
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Figure 13 shows that reference arrays tend to survive longer than instance o
and especiallychar arrays. They also have a smoother age distribution than the o
two types. Character arrays, on the other hand, either die very young (as injack and
javac) or to stay alive for most of the execution time (as indb). This observation
suggests that segregating all arrays into type-specific heaps and applying dif
collection strategies to them might pay off. However, our benchmark suite may b
small to draw reliable general conclusions about type-specific age characteristics
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Figure 13. Age distribution for selected types (second row shows enlarged grap
For every type the graphs show the fraction of bytes in any application that are still live at time X after their cre

For example, 90% of all char object bytes in db, 3% in javac, and 0.5% in jack survive the first 20 Mbytes of allocati
For better readability we prune all object types that represent less than 5% of the total allocation and mark thei

with the letter X.
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5.5 Object Size
Table 3 lists the average object sizes, computed separately for each of th

frequent object kinds. Again, these normalized numbers can be misleading in 
where they are based on a small sample size. Thus, for each type the table inclu
percentage of total allocation per entry, and entries based on less than 5% of tota
cation are shaded.

Instance objects clearly are the smallest objects on the heap. Depending on the
cation, their average size varies between 16 and 23 bytes. Butchar arrays are also fairly
small, with an average size between 26 and 42 bytes. All other array types ar
predictable; depending on the application they can range between a few byte
several Kbytes. Given the small average object size, it appears imperative for im
mentors to keep the number of header words to a minimum; for example, even a 
extra header word per object will increasemtrt’s heap by about 20%.

5.6 Object Alignment
Since all program heaps are dominated by relatively small objects, object align

can add a significant space overhead. All numbers in this paper are based on 
aligned object sizes as explained in section 4.3. However, real JVM implementa
may often align objects to other boundaries to simplify memory management 
satisfy hardware alignment requirements. For example, the Sun’s JDK 1.1.5 VM a
all objects to 8-byte boundaries. This extra alignment increases the heap size by
19% (see Table 4). The programs that suffer most from alignment,jack andmtrt, both
have a high percentage of small objects. The reverse implication (programs with 
small objects show high overhead) does not necessarily hold since the si
frequently-allocated objects may be a multiple of eight.

aA cell is shaded if this type comprises less than 5% of the total allocated heap space
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compress 17 16 0
238
Kb

24 87 115 46 0 948 412 0
170
Kb

1.9
Kb

13
11.4
Kb

20 100

db 12 12 58
1.2
Kb

9 2 27 22 6
1.3
Kb

48 34 227 170 0 19 12 100

jack 17 16 45 10 9 2 26 10 41 92 48 10 29 24 2 22 16 100

javac 19 16 48 460264 1 42 40 40 41 12 1 140 120 2 27 20 100

jess 23 24 51 74 9 0 64 40 0 44 48 48 385 20 0 30 24 100

mtrt 16 16 74 151 9 0 64 72 2 32 32 7 20 20 18 17 16 100

Table 3. Average object size in bytesa
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6 Comparison With Other Studies

In general, it is difficult to compare empirical GC studies because each study
different assumptions (e.g., nursery size, large object area), different techniques (
lation, code instrumentation etc.), different metrics, different benchmarks, and diffe
languages. Nevertheless, we attempt to make some comparisons below.

Barrett and Zorn report lifetime quantiles for five allocation intensive C progra
[BZ93]. They find that 75% of all objects survive less than 849-32,000 bytes, and
91%-100% of all objects are “short-lived”, i.e, die within 32 Kbytes of allocatio
Stefanovic and Moss report a similarly high object mortality for SML/NJ [SM94]; w
the smallest nursery size setting of 32 Kbytes, the three ML applications presented
survival rates of approximately 2%, 7%, and 9%. In addition, the survival rate d
dramatically if the nursery size is increased to 250 Kbytes. The four Lisp progr
measured in [Sha88] have a slightly lower mortality: between 5% and 25% surviv
first 32 Kbytes, and approximately 2% to 8% are still live after 1 Mbyte. In comparis
Java objects appear to be more tenacious, with up to 99% of objects surviving 32 K
of allocation and more than 10% still live after 200 Kbytes.

The eleven benchmarks in the study of C/C++ programs by Detlefs et al. [DD
have average object sizes between 15 and 249 bytes, with six programs over 30
In comparison, only one of our six benchmarks (compress) exceeds an average objec
size of 30 bytes. Although Wilson et al [WJ+95] do not measure the average objec
they distinguish popular object sizes when presenting the memory profile for fiv
programs. These programs, too, have larger object sizes than our Java example
objects of several kilobytes being fairly common.

A few studies report numbers on type composition, such as Shaw for Lisp [Sh
and Gonçalves for ML [Gon95]. Stefanovic and Moss analyze nursery survival
depending on object kind in ML [SM94]. Since all three studies use different categ
for types (e.g.,Cons, Vect/String, Float, Object, Ratio, Symbol, andFundef in Lisp),
their numbers are difficult to compare to ours. However, it appears that the four
programs analyzed in [Sha88] allocate less space for arrays than typical Java ap
tions (2%-48%). This effect seems even more pronounced in ML; none of th
benchmarks studied in [Gon95] uses more than 1% for arrays. In addition, three of
use over 30% of their space for reference-free objects (real).

total allocated
(Mbytes)

8-byte aligned
(Mbytes)

increase
(Mbytes)

% of total
allocated

compress 105 105 0.01 0.0%

db 61 73 11.57 18.9%

jack 147 165 18.62 12.7%

javac 161 171 10.25 6.4%

jess 231 240 9.27 4.0%

mtrt 111 115 4.26 3.8%

Table 4. Heap size increase due to 8-byte alignment
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7 Conclusions and Future Work

We have analyzed the memory allocation behavior of six large Java programs
the SPECjvm98 benchmark suite. All applications allocate significant amount
memory (between 60 Mbytes and 230 Mbytes) but can run with a minimal heap s
less than 8 Mbytes. Our observations confirm the weak generational hypothesi
young objects are most likely to die, although the result is less pronounced than in
languages—after one megabyte of allocation, up to 21% of all Java objects are sti

Regarding heap composition, we found that both arrays and instance objects c
a high fraction of non-reference fields. However, only one application (mtrt) allocates
a considerable number of instance objects containing no references except for th
pointer. When analyzing the heap for object types, we found that one kind of o
(e.g., instance objects, or byte arrays) often dominates allocation, but none dom
all applications.

Eight-byte alignment, a technique used in many real JVM implementations,
increase the allocation rate by up to 19%, with a median of 5%. Extra header word
top of the class pointer) are even costlier: given average object sizes around 20 b
single extra word would increase the allocation rate by about 20%.

We are currently working on additional experiments for an extended version of
paper. Among others, the new data will illuminate the influence of strings on the 
composition and the average density of incoming references (how many refer
point to an object?) We will also analyze different alignment and packing strategie
match the results with detailed histograms showing the distribution of object s
Furthermore we will investigate the possibility of a thread-local heap by studying th
locality.

We hope that this information too will prove useful to JVM implementors wh
optimizing Java garbage collection and memory allocation.
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