
GreenCoin: A Renewable Energy-Aware
Cryptocurrency

Nazmus Saquib, Shivaansh Kapoor, Chandra Krintz, Rich Wolski
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, USA

{nazmus, shivaansh, ckrintz, rich}@cs.ucsb.edu

Markus Mock
Department of Computer Science

University of Applied Sciences
Landshut, Germany

mock@haw-landshut.de

Abstract—In this paper, we propose GreenCoin – an energy-

efficient cryptocurrency system with mining protocols designed

to favor locations with relatively higher availability of renewable

energy. Traditionally, crypto coin mining involves solving complex

mathematical problems by high-end computing devices consum-

ing an enormous amount of electricity, thus adversely affecting

net carbon emissions. To reduce cost and emissions, GreenCoin

uses a modified proof of stake (PoS) consensus algorithm, which

itself is more energy efficient compared to other state-of-the-art

methods. Our modified PoS algorithm, called Green PoS (GPoS),

allows GreenCoin to favor nodes (with reward and privilege)

located in regions with higher availability of renewable energy.

We present a detailed system architecture of GreenCoin and

explain the operating method of GPoS. We also provide results

from empirical studies demonstrating the renewable energy-

aware approach of GreenCoin.

Index Terms—renewable energy, blockchain, cryptocurrency

I. INTRODUCTION

Cryptocurrencies are a set of technological innovations that
have the potential to revolutionize society along several dimen-
sions, from commerce to political and corporate governance,
to social trust. These innovations and potential benefits carry
environmental costs largely (but not exclusively) accruing to
the energy required by distributed cryptocurrency implemen-
tations. At a high level, a “crypto coin” (an unforgeable value-
carrying token) represents some amount of “work” associated
with its production.

In the original formulations of cryptocurrencies (cf. [1],
[2]) “miners” solved computationally intensive or memory
intensive [3] puzzles, the solutions they announced to all
participants, which could easily verify the solutions. These
“proof-of-work” (PoW) protocols created a consensus among
all participants about the temporal order in which puzzles were
solved that could only be subverted by an adversary controlling
a substantial fraction [4] of all of the participants. By attaching
a transaction to each puzzle solution, then, the overall system
could achieve consensus on transaction order in a way that is
difficult (or expensive) to subvert. In particular, it was possible
to determine the “earliest” transaction that achieved consensus
thereby preventing one puzzle from being used to represent
multiple transactions. That is, the solution to a puzzle (termed
the “minting” of a crypto coin), could only be spent once.

PoW protocols are currently in use by many cryptocurren-
cies, e.g., Dogecoin [5], Monero [6], Litecoin [3], and most
notably Bitcoin [1]. However, they all require the comput-
ers solving the puzzles (i.e., the “miners”) to expend much
electrical energy on each puzzle solution. Furthermore, puzzle
solutions are deliberately made rare to prevent inflation. Thus
as solver technology improves (often due to greater energy
expenditure), energy consumption by miners increases.

To address the environmental concerns associated with PoW
protocols, particularly concerning the use of fossil fuels to
generate the electricity they require, cryptocurrencies have
been turning to new “Proof-of-Stake” (PoS) protocols that
are far more energy efficient. PoS protocols, unlike their
PoW counterparts, rely on economic penalties to incentivize
truth-telling concerning transaction order and uniqueness. With
these new protocols, “miners” announce transactions without
solving a puzzle associated with each. Instead, each miner is
“staked” to a hoard of crypto cash (that carries value) which
can be confiscated should a miner make a false announcement
where veracity is determined by consensus.

By eliminating the need to solve energy-consuming puzzles,
PoS protocols are far more energy efficient than corresponding
PoW protocols. As a result, many current cryptocurrencies (c.f.
[7]–[9]) have begun to use them, most notably Ethereum [10].

Regardless of whether a cryptocurrency uses a PoW pro-
tocol or a PoS protocol, however, they require a distributed
collection of computers to achieve consensus on a global
transaction order in a way that can be recorded (again by all
participants) that is tamper-proof. These computers must con-
sume electrical power to implement the protocol functionality.

In this paper, we describe GreenCoin – a cryptocurrency
that marks each crypto coin with an indelible measure of
the renewable energy that was used to create it. GreenCoin
relies on a new PoS protocol (GPoS) to attach a “green
score” (that maps to renewable energy available at the time
of the transaction proposal) to each crypto coin in a way that
cannot be removed. Further, GreenCoin and GPoS permit the
formulation of “green” smart contracts that specify a minimum
greenness score that must be presented to execute the contract.
Note that we have defined GPoS as a PoS protocol as we
believe future protocols are likely to take this form, but the
fundamental tenets of GreenCoin apply to PoW protocols as

well.
Implementing GreenCoin and GPoS requires that we
• develop a way to score each coin with a greenness score

and to compose/decompose scores from multiple coins
when they are used to represent transactions,

• develop an incentive system that favors (i.e., attaches
greater value to) greener coins, and

• develop a system for securely determining the amount of
renewable energy used when minting a coin.

In this paper, we describe research results addressing these
three challenges. We describe a methodology for attaching a
green score to each coin, each wallet (containing multiple
coins), and for transacting green scores. We also describe
the use of Trusted Execution Environments (TEEs) and at-
testation [11] to determine the location of each machine
proposing a transaction. This location information then indexes
fuel mix data by location either from a publicly available
database such as the US Energy Information Administration
(EIA) database [12] or from energy utility records that must
be published in the ledger. In this work, we assume that
fuel mix data by geographic region is available in real-time
(or near real-time) from a trusted data source. We validate
these results using a prototype “permissioned” implementation
of GreenCoin designed to support Internet of Things (IoT)
deployments comprising participants whose identities are not
anonymized. Our results indicate that GreenCoin feasibly
captures and publishes into the ledger the relative renewable
energy usage associated with each blockchain transaction and
also enables smart contracts that are contingent upon sufficient
use of renewable energy.

II. BACKGROUND AND RELATED WORK

In this section, we provide a literature review on the
basic building blocks of GreenCoin. GreenCoin requires (i)
an energy-efficient consensus protocol for blockchain, (ii) a
trusted and secure way to find the location of a blockchain
node, and (iii) a method to incorporate a trusted source of
fuel mix data for use by the system. Hence, we first compare
different protocols used in current cryptocurrency systems
and explain our choice of PoS. Next, we discuss the current
state-of-the-art in location verification and justify our choice
of using trusted execution environments. Finally, we present
sources of fuel mix data, review methods to incorporate third-
party data into blockchain, and introduce our chosen system
to do so, called Depot. Depot is an open-source data lake
that is designed to allow community data contribution with
contributor-defined access control policies and shared hosting
costs. Depot was developed as part of the RiPiT project
(cf. [13], [14]) to host carbon-emissions data from public
sources and community-contributing researchers.

A. Consensus Protocols
Most cryptocurrencies use blockchain as the core underlying

technology [15]. When it comes to blockchain, there are
multiple consensus protocols, such as proof of work (PoW),
proof of stake (PoS), proof of authority (PoA), proof of

retrievability (PoR), proof of elapsed time (PoET), etc. [16].
However, two of the most widely used protocols are PoW and
PoS [17].

In PoW, any node that wants to participate in mining,
i.e., block generation must solve a computationally complex
problem to ensure the validity of the newly mined block [18].
Although finding the solution to this problem is challenging,
verifying the solution is easy. The main criticism against PoW
is its high energy consumption required to solve these crypto
puzzles. The Bitcoin network, which uses PoW, was estimated
to consume 2.55 gigawatts of electricity in 2018 [19]. This
consumption was projected to reach 7.67 gigawatts, making it
comparable to the energy consumption of entire countries such
as Ireland (3.1 gigawatts) and Austria (8.2 gigawatts) [19].
As of July 2021, Bitcoin’s carbon footprint showed 64.18
megatons of CO2 emission, close to the emissions by Greece
and Oman [20]. This high CO2 footprint has led to a spike in
research interest in energy-efficient protocols.

In contrast, PoS does not involve computationally intensive
crypto puzzles and hence it is comparatively energy-efficient.
In PoS, a blockchain node can opt to stake, i.e., set aside a
portion of its coins as collateral. Instead of mining power as in
PoW, the probability of a node being selected as the proposer,
i.e., the entity permitted to create the next block (and hence
earn the associated reward), is proportional to the stake. Just
as a node can receive a reward for honest behavior, it can be
penalized for malicious behavior. This penalty is executed in
the form of slashing, i.e., taking away a portion of the stake.
Due to the energy efficiency of PoS over PoW, we base our
protocol, Green PoS (GPoS), on PoS.

B. Location Verification
Location-aware Internet applications commonly use IP ad-

dresses to determine the location of a connected device [21].
There are two primary methods of IP geolocation: (i) IP geolo-
cation databases and (ii) active network measurements [22].

IP geolocation databases provide a mapping between an IP
address and (lat, long) coordinates [23]. These databases can
be either proprietary [24] or public [25], [26]. Although the
exact methods of constructing these databases are not always
divulged to the public, they are often based on a combination
of whois services, autonomous system (AS) numbers, DNS
LOC records, etc. [22], [23]. While these databases can
achieve country-level accuracy, discrepancies among databases
are prevalent regarding city-level accuracy [27]. The accuracy
of these databases starts diminishing with increasing granu-
larity. As the availability of renewable energy can vary even
within the same city, IP geolocation databases are inadequate
for supporting GreenCoins.

Measurement-based geolocation algorithms heavily depend
on a set of geographically distributed landmarks with known
locations [21], [22]. These landmarks measure different net-
work properties between them and the target IP, such as
the delay and path taken by traffic [28], [29]. However, the
availability of such landmarks can be sparse [21], resulting in
lower geolocation accuracy. Moreover, studies suggest that an

adversarial target can falsify measurements without detection,
thus advertising itself to be at a different location than it truly
is [22]. Hence, measurement-based geolocation algorithms are
also insufficient for our application.

A relatively accurate approach to determining the location
of a machine is to equip it with a GPS module [30]. How-
ever, having a tamper-proof GPS module does not prevent
a machine from falsifying its location. In addition, we must
ensure that both the process that retrieves data from the GPS
device and the communication channel between the process
and the GPS device are tamper-proof. A prime candidate
for such a system is a trusted execution environment (TEE).
Studies suggest that using TEEs coupled with GPS devices can
provide a secure and tamper-proof way of location verification
(cf. [31]–[33]).

Trusted Execution Environments: A trusted execution
environment is an isolated processing environment in which
applications can be executed while precluding malicious inter-
ventions of the host OS [34]. Examples of popular technolo-
gies used to provide a TEE are Arm TrustZone [35] and Intel
SGX [36]. A TEE provides isolation for programs from the rest
of the device, called the rich execution environment (REE).
REEs typically include an operating system, e.g., Linux, and
user space applications. The TEE uses a combination of
software and hardware-based security mechanisms to ensure
that applications running inside the TEE remain secure even
when the REE is compromised [37]. Figure 1a shows a
high-level diagram of the interaction among REE, TEE, and
peripherals within a single device. Desired security features
of a TEE include isolated execution, secure storage, remote
attestation, secure provisioning, and trusted path [38]. Many
TEEs provide most of these features, while some can be built
upon the existing functionalities provided by the TEE. For
example, Intel SGX provides built-in remote attestation, which
verifies three things: (i) the identity of an application, (ii)
whether it is intact, i.e., that it has not been tampered with, and
(iii) that it is running securely inside the TEE [39]. Although
Intel SGX does not provide a trusted path between peripherals
and itself out-of-the-box, multiple studies show it is possible to
establish secure paths between I/O devices and Intel SGX [40],
[41].

Security Concerns of TEEs and Countermeasures: De-
spite the promising security features of TEEs, multiple stud-
ies have demonstrated that TEEs are susceptible to some
attacks [42], [43]. Many of these are side-channel attacks
that compromise the secure keys used for attestation, render-
ing the software running in these TEEs untrustworthy [37].
Cache-based side-channel attacks such as prime+probe [44]
and flush+reload [45] observe the timing differences of dif-
ferent measurements to identify whether data is retrieved
from the cache or the main memory, thereby allowing the
attacker to learn about the memory access patterns of the
victim. Transient execution-based side-channel attacks exploit
branch misprediction leading to discarded instructions after
a pipeline flush [46]. SgxPectre [47] and Foreshadow [48]
are examples of transient execution-based side-channel attacks

capable of extracting secret keys from the victim TEE. One
study suggests using a secure co-processor such as Google’s
Titan M [49] accessible by TEE but separate from the main
processor can circumvent side-channel attacks [37]. The study
assumes a secure communication channel between the TEE
and the co-processor, which makes the setup free of side-
channel attacks. The co-processor is entrusted with performing
sensitive cryptographic operations and storing cryptographic
secrets.

C. Energy Mix Data
The total energy consumed in a given geographical region

can be broken down by primary energy sources. This mapping
between what fraction of consumed energy is generated by
which source is known as fuel mix or energy mix [50].
Throughout this paper, we refer to the renewable energy
portion of the energy mix as the energy mix score. Thus
the energy mix score can be between 0.0 (no fraction of
energy was obtained from renewable sources) to 1.0 (all
consumed energy was obtained from renewable sources). This
is essentially a greenness score of a region at a given time.
The higher this score is, the more green the region is, i.e.,
the proportionally more the region has energy generated by
renewable sources.

Independent System Operations (ISOs) maintain renewable
energy data for different regions, e.g., California ISO [51]
maintains renewable energy data for California. We can query
these data sources to get an estimate of renewable energy
that was available at a specific time and region. Hence, when
minting a coin in GreenCoin the proposer can query these
sources and assign a score to the minted coin. GreenCoin
uses an existing system called Depot that pools multiple
ISO data sources and exposes an API to query the sources.
Note that traditionally, third-party data is incorporated into
blockchain networks using oracles [52]. Due to the absence
of a competing system providing data similar to Depot, Depot
itself acts as an oracle. In Section III, we describe how Depot
and a blockchain node securely communicate with each other.

III. GREENCOIN SYSTEM ARCHITECTURE

In GreenCoin, the location of a blockchain node, i.e., a
machine running the blockchain protocol, plays a significant
role. The system favors accounts maintained by nodes with a
higher fuel mix score when it comes to endowing rewards, e.g.,
for block creation, and privileges, e.g., executing smart con-
tracts. Hence, there is a strong coupling between a blockchain
node and a blockchain account. Although a blockchain node
can maintain multiple different accounts, for the simplicity of
exposition, we assume there is a one-to-one mapping between
a blockchain node and a blockchain account. Throughout this
paper, we use the terms node and account interchangeably.

Figure 1 shows the high-level system architecture for Green-
Coin using Green PoS (GPoS). As described in Section II-B,
each node runs a TEE. Each node is also equipped with
a tamper-proof GPS device. This GPS device is connected
to the TEE through a secure I/O channel. Blockchain nodes

Isolation

TEE OSREE OS

public peripherals

rich execution environment trusted execution environment

communication agent communication agent

message

TEE client API TEE internal API

Trusted applications for location
advertisement and smart contract

execution
Client applications

hardware layer

trusted GPS device

(a) Details of a single node running a TEE.

nodes running GPoS

Depot

(b) Interaction between nodes and Depot.

Fig. 1: High level system architecture of GreenCoin.

contact Depot to retrieve their fuel mix score. As TEEs can be
resource constrained, we opt to run only functions which need
an extra layer of security and trust on TEEs rather than the
full blockchain system. There are two cases when we execute
operations inside a TEE: for (i) block proposal, and (ii) smart
contract execution.

At the time of block creation, a node must determine the fuel
mix score for its location. The location data must come from
the TEE to ensure the node cannot advertise a false location.
Therefore, to retrieve the fuel mix score, the client application
first requests the trusted application running inside TEE to read
the location data. In response, the trusted application reads the
location from the tamper-proof GPS device through the secure
I/O provided by the TEE, signs the location reading, and
sends it back to the client application. The client application
itself cannot tamper with this location data as the TEE signs
it with a tamper-proof hardware key. Once it receives the
location data, it sends a request encapsulating the location
data to Depot to retrieve the fuel mix score. Depot can check
the trustworthiness of the trusted application through remote
attestation. Once Depot verifies the program run by TEE, it
decrypts the location data and sends the signed fuel mix score
to the client application. Upon receipt of the fuel mix score,
the client application finalizes the block by adding the signed
fuel mix score to the block and propagating it to other nodes.
The other nodes do not need to execute any extra verification
steps, as they can simply decrypt the signed fuel mix score.
Figure 2 delineates the steps involved in retrieving the fuel
mix score as a part of the block creation process.

Smart contracts in GreenCoin are also executed inside
TEEs. GreenCoin imposes single-node execution of a smart
contract (cf. Section IV-F), where the smart contract is exe-
cuted only by the block proposer, which proposes the block
containing the transaction to execute that contract. Hence other
nodes must have a mechanism to verify that the proposer
executed the intended contract along with the appropriate input
and output. GreenCoin uses TEEs to implement this trust
mechanism. Whenever a proposed block contains a transaction

to execute a contract, the proposer executes the contract in the
TEE and propagates supplementary information along with
the proposed block to other nodes. The supplementary data
includes a verifiable report of the code executed by the TEE,
along with its input and output.

In this work, our primary focus is on the underlying
blockchain protocol and not the inner workings of off-the-
shelf TEEs. Hence, we assume the nodes are running TEEs
and implement a proof of concept distributed system executing
GPoS using Python. We empirically evaluate GPoS-driven
GreenCoin using multiple cloud instances and present our
findings in Section V.

IV. GPOS IMPLEMENTATION

This section describes the details of the GPoS building
blocks. We first present how coins are represented and how
their greenness score is determined. Then, we define the
greenness score of a collection of coins, i.e., the wallet or
balance of an account. Next, we describe how stakes in GPoS
differ from other PoS protocols. Following that, we present
how honest proposers are incentivized through block reward
and malicious proposers are disincentivized through slashing.
Then, we explain the different aspects of a smart contract.
Finally, we wrap up this section with an overview of the
cryptoeconomics of GPoS-powered GreenCoin.

A. Coins
Each coin in GreenCoin is tagged with a greenness score,

which signifies the percentage of renewable energy available
during the time and at the site of coin generation. Hence, in
contrast to other cryptocurrencies, each coin in our system
is represented by two values – one to represent the greenness
score of the coin and the other to represent the amount of coin.
Throughout this paper, we use the tuple (score, amount) to
represent a coin. For example, (0.5, 10.0) represents a coin
of amount 10.0 having a score of 0.5. The amount of a coin
is divisible, but not the score. For example, the owner of the
above coin can decide to transfer half the amount of the coin
to another account. In this case, the second account receives

client
app
(CA)

trusted
app
(TA)

1. CA requests location
data from TA

client
app
(CA)

trusted
app
(TA)

2. TA reads location data
from GPS device

through secure channel

client
app
(CA)

trusted
app
(TA)

3. TA sends location
data back to CA

client
app
(CA)

trusted
app
(TA)

4. CA sends signed
location data from TA to

Depot

client
app
(CA)

trusted
app
(TA)

5. Depot sends signed
fuel mix score to CA

client
app
(CA)

trusted
app
(TA)

6. CA creates the block
with signed score from
Depot and propagates
block to other nodes

...

Fig. 2: Steps involved in retrieving fuel mix score for block creation.

the coin (0.5, 5.0) and the first account is left with (0.5, 5.0).
However, the first account cannot send (0.25, 10.0) to the
second account.

B. Wallet Score

Algorithm 1 getWalletScore
Input: list of coins in (score, amount) tuple format, C
Output: wallet score

1: sumDot 0; sumAmount 0;N LENGTH(C)
2: for k 1 to N do

3: c C[k]
4: sumDot sumDot+ c.score⇥ c.amount
5: sumAmount sumAmount+ c.amount
6: end for

7: if log(sumAmount) 0 or log(sumDot) 0 then

8: return 0
9: else

10: return log(sumDot)/log(sumAmount)
11: end if

Over time, an account may consist of an array of
coins with different greenness scores. We term the col-
lection of coins owned by an account as its account
balance or wallet and represent it as a list of coins
[(score1, amount1), . . . , (scoren, amountn)]. As our goal is
to favor accounts having greener coins, we need a metric to
evaluate the overall greenness score of an account, which we
term the wallet score. We define wallet score as the ratio
of the logarithm of the dot product between the scores and
amounts to the logarithm of the sum of amounts. Algorithm 1
shows the wallet score calculation. Note that our choice
of wallet score calculation over a normalized dot product
allows us to assign different scores for wallets having coins
with the same score but different amounts. For example, two
different wallets [(0.5, 10.0)] and [(0.5, 100.0)] have a score
of 0.50 according to the normalized dot product. However, our
approach differentiates these two cases and assigns the scores
0.70 and 0.84 to the two wallets, respectively. Our method,
as evident from line 7 of Algorithm 1, uses only non-negative
wallet scores setting the value to 0 when either logarithm is
negative.

C. Stake

In PoS protocols, an account can “stake” or set aside a
portion of its balance as collateral. The higher the stake
compared to other accounts, the greater the probability of

the account becoming a proposer. Malicious behavior by the
account results in a portion of the stake being lost, i.e., slashed
(cf. Section IV-E). As our goal is to favor accounts with higher
greenness scores, stake in GPoS is not dependent only on the
amount of coins owned by an account but on the overall wallet
score of the account. However, an account can not selectively
stake its balances, as this can give a false representation of
the greenness of an account. For example, the wallet score
of an account with balance [(0.1, 1000), (1.0, 10)] is 0.68. If
the account had been able to stake a portion of its balance,
it could have chosen to stake [(1.0, 10)] and advertise itself
as having a greenness score of 1.0. Hence, GPoS does not
allow an account to explicitly stake balances, instead, the full
wallet acts as the stake. Consequently, slashing impacts the
full wallet of the account rather than a portion of it.

D. Block Reward

Algorithm 2 endowBlockReward
Input: block with embedded signed fuel mix score from Depot, b

minimum reward amount for empty transactions, m
Output: none, ensures appropriate state change

1: amount 0;N LENGTH(b.transactions)
2: for k 1 to N do

3: tx b.transactions[k]
4: amount amount+ tx.score
5: end for

6: amount amount/N
7: if amount = 0 then

8: amount m
9: end if

10: UPDATEBALANCE(b.proposer, b.depotScore, amount) .
adds the coin (b.depotScore, amount) to the block proposer’s
balance, followed by updating its wallet score.

A proposer generates a coin c as a reward when a block
is successfully proposed with approval from at least 51%
of the nodes. The score of c is the fuel mix data received
from Depot. This data represents the fraction of energy that
is renewable at the time of generation of the coin and the
location of the node on which the account is running. The
amount of c is the average score of the transactions within
the proposed block. Just as a coin has a score, so does a
transaction. The score of a transaction depends on its type
as presented in Table I. Making the amount of c dependent
on the scores of the transactions incentivizes the proposers
to include transactions with higher scores in blocks, which in
turn encourages all the nodes to maintain a high greenness

TABLE I: Different types of transactions and their scores.

type description score

TRANSFER transfers a coin c from
one account to another

score of c

SLASH slashes an account predefined default
PEN SLOW penalizes slow node predefined default
CREATE SC creates a smart contract product of score and

amount of gas1

EXEC SC executes a smart contract product of score and
amount of gas2

1,2 cf. Section IV-F

score throughout the GreenCoin deployment. If the proposed
block contains an empty transaction list, a predefined default
value is used as the amount of c. Algorithm 2 presents the
calculation of block reward.

E. Slashing

Algorithm 3 slashAccount
Input: public key of slasher, pslasher

public key of slashee, pslashee
list of coins in (score, amount) tuple format owned by slashee,
Cslashee

minimum amount of coin at or below which the amount is set
to 0, m
factor by which amount of coin is reduced at each slashing step,
f , (0.0 f < 1.0)

Output: none, ensures appropriate state change
1: SORT(Cslashee) . sorts Cslashee in descending order of score
2: Sc GETWALLETSCORE(Cslashee) . current wallet score
3: St Sc ⇥ 0.5 . target wallet score
4: N LENGTH(Cslashee)
5: Cinitial COPY(Cslashee) . creates a copy of Cslashee

6: Cdiff [] . list of slashed coins is populated here
7: for k 1 to N do

8: while Sc > St and Cslashee[k].amount > 0 do

9: if Cslashee[k].amount < m then

10: Cslashee[k].amount 0
11: else

12: Cslashee[k].amount Cslashee[k].amount⇥ f
13: end if

14: Sc GETWALLETSCORE(Cslashee)
15: end while

16: amount0 Cinitial[k].amount� Cslashee[k].amount
17: APPEND(Cdiff , (Cslashee[k].score, amount0)) . appends a

coin to the list Cdiff

18: if Sc St then

19: break

20: end if

21: end for

22: ASSIGNBALANCES(pslashee, Cslashee) . sets the balance of
slashee to Cslashee, followed by updating its wallet score

23: ADDBALANCES(pslasher, Cdiff) . adds the coins in Cdiff to
the balance of slasher, followed by updating its wallet score

In PoS algorithms, slashing is used to discourage malicious
behavior by taking away a portion of the stake of the slashee,
i.e., the node being slashed. At the same time, by rewarding a
portion of the stake to the slasher, i.e., the block proposer
whose block included the slashing transaction, nodes are
encouraged to punish malicious behavior actively. In GPoS,

slashing performs a similar functionality. However, slashing is
relatively complex in GPoS due to the coin being not only a
single value but an amount tagged by a score. GPoS slashes
a faulty proposer so that its wallet score falls below half its
pre-slashed value. Potentially numerous combinations of coins
can be taken away to achieve this condition. However, GPoS
starts slashing by taking away the coins with higher scores
first. At each iteration of slashing, GPoS takes away a portion
of the amount of the highest-scored coin and calculates the
new wallet score. It stops if the new wallet score is half of
the initial score. Otherwise, it continues slashing a portion of
the highest-scored coin. If the amount of this coin falls to
zero or a predefined minimum value, this coin is completely
removed from the account, and the process continues from the
next highest coin. Once the set of coins that must be deducted
from the malicious node’s wallet is determined, those coins are
added to the wallet of the slasher as a reward. Algorithm 3
delineates the steps in slashing.

F. Smart Contract

Smart contracts are an integral part of any general-purpose
blockchain which intends to extend beyond the application of
cryptocurrency. Traditionally, a smart contract is an executable
piece of code that is immutable once created and executes
on every node when invoked. This is extremely wasteful
but imperative when contract execution cannot be verified
by other nodes in the system. Conversely, since GreenCoin
aims to be an energy-aware blockchain and stipulates that
each node is equipped with a TEE, GreenCoin is capable of
imposing a single-node execution model. In this, the account
which invokes a smart contract can set a minimum threshold
for the executor’s energy mix score, and a block proposer
can only add the invocation transaction to a block if their
energy mix score is greater than or equal to the specified
threshold. As discussed in Section III, the block proposer sends
supplementary data containing a verifiable report of the code
executed by the proposer’s TEE along with its input and output
during block propagation. The other nodes in the system can
verify the execution of the smart contract along with necessary
state changes from this supplementary data.

Algorithm 4 getMaxExecutionTime
Input: gas in (score, amount) format, g

upper range of execution time, tupper
lower range of execution time, tlower

Output: maximum execution time in seconds
1: if g.score⇥ g.amount 1 then

2: return tlower

3: end if

4: n = log(g.score⇥ g.amount)
5: d = log(g.amount)
6: return dtupper ⇥ n/de

Since the languages used to write smart contracts are
expressive enough to be Turing complete, they are susceptible
to the halting problem. Therefore, smart contract systems
generally use the concept of gas to ensure termination. Gas

refers to the unit of measurement for the computational effort
required to execute a particular operation or transaction. If a
node executing a smart contract runs out of gas before the
computation finishes, the contract execution stops. Since only
a finite amount of gas is made available to nodes, the execution
is guaranteed to terminate.

In GreenCoin, Gas is an up-front remittance paid by a node
R which requests the execution of a smart contract. This is a
fee paid by R for using resources on the executor’s machine.
Gas is represented as a single coin (score, amount). One unit
of gas is essentially a coin that is burnt, i.e., not paid to any
particular entity but removed from the wallet of R. At the time
of execution, gas is used to calculate the CPU time allotted to
the contract for execution.

Algorithm 4 shows how we determine the amount of time
that can be purchased with a unit of gas. This procedure
accepts a predefined range of time [tlower, tupper] and returns
a time within this range that can be purchased per unit of
gas. If an execution runs out of the time that it paid for, the
execution is halted and any state changes that were made are
reverted. Given two different units of gas with the same value
of (score⇥amount), the unit with a higher score component
yields a longer execution time according to Algorithm 4. For
example, consider the case in which [tlower, tupper] is [1, 10]
and compare gas (0.5, 10) to gas (0.8, 6.25). Both gas tuples
generate the same product of amount and score but the first can
afford a maximum execution time of 7 seconds while the latter
can afford a maximum execution time of 9 seconds, when
computed on line 6 of Algorithm 4. Note that the conditional
statement in line 1 of Algorithm 4 imposes a natural cutoff
for the combination of score and amount below which the
unit can buy the minimum execution time only.

In GreenCoin, contracts are effectively accounts, known as
contract accounts, controlled by the logic in their code rather
than by cryptographic key pairs. Contracts can receive coins
and send coins programmatically from accounts and contract
accounts. Contracts also have access to some additional in-
formation: account balances, contract account balances, the
states of all contracts, and the invoking transaction’s details.
This allows contracts to act dynamically based on the current
state of the blockchain.

G. Cryptoeconomics

GreenCoin’s principal cryptoeconomic goal is to provide
incentives that encourage nodes to use renewable energy
for every interaction in the system. We provide four key
incentives: (i) Given any two accounts with the same amount
of coins, the account having coins with a higher score has a
greater probability of proposing blocks and generating coins.
(ii) Block rewards are generated based on the proposer’s
energy mix score and the average score of the transactions
in the block. (iii) For this reason, nodes prefer including
transactions with higher scores in a block, resulting in a higher
probability of such transactions being included. (iv) Given any
two units of gas with the same product of score and amount,

more execution time for contracts can be purchased for the
unit having a higher score.

We disincentivize nodes from exhibiting byzantine behavior
by reducing their probability to participate in block proposi-
tion and, effectively, lowering their reputation. However, we
acknowledge that slashing is a severe penalty as it halves
wallet score, which has severe implications on the likelihood
of getting selected as a proposer. Thus, slashable offenses must
be provably attributable based on an invalid block proposal. An
invalid proposal consists of an invalid block number, times-
tamp, state hash, transaction set, or signature. Additionally,
to handle crash faults while disincentivizing being offline for
extended periods, nodes incur a minor penalty if they fail to
propose a block when they should.

Given these incentives and disincentives, the primary ob-
jective of GreenCoin is not to be a medium of exchange,
store of value, or unit of account. Instead, GreenCoin’s pri-
mary objective is to act as a carbon reputation credit, where
an account that possesses more coins of a higher score is
perceived as more reputable by the protocol. This reputation
is reflected in its privileges. As a node continues to act
honestly and consume a high amount of renewable energy,
its reputation and privileges increase over time. Conversely,
if a node exhibits negative behaviors, GreenCoin drastically
reduces its reputation by first removing coins with higher
scores during slashing.

As for Sybil attacks, GreenCoin is resistant to such attacks
in the permissioned context, but we are yet to validate this
property in the permissionless context. Firstly, in the permis-
sioned context, the identity of each existing and new node is
known beforehand by every party in the system, making Sybil
attacks virtually impossible. Secondly, the GPoS mechanism
ensures that the probability of a node getting selected for
block proposition is proportional to its wallet score. Thus,
generating multiple accounts with a trivial wallet balance will
not adversely affect the operation of the system with regard to
block proposition. Lastly, the TEE requirement for all nodes
prevents malicious agents from duplicating the most favorable
Depot attestation for multiple nodes at geographically distinct
locations.

V. EVALUATION

In this section, we evaluate multiple aspects of GPoS and
their impact on individual nodes in the GreenCoin environ-
ment. The prototype implementation of GreenCoin is designed
for permissioned deployment in regional settings where users
are not anonymized. That is, each user is authenticated into
the system and only authenticated users may participate.

This use case originates with Internet of Things (IoT)
applications for ecology (cf. [53]) and agriculture (cf. [54],
[55]) where regional participants (who are concerned about
carbon footprint) wish to use a tamper-proof ledger (with attri-
bution) to share data, but not necessarily with an anonymized
global community of users. Examples of data that these users
wish to share include data on pest infestations (agriculture),
predator movement (ecology), aquifer health, etc. Indeed, we

Fig. 3: Wallet scores after mining 1000 blocks. The red dashed
line represents the initial wallet score. Fuel mix range increases
from node 1 ([0.00, 0.04]) to node 25 ([0.96, 1.00]) at an
increment of 0.04.

plan to use the GreenCoin prototype with our collaborators as
part of ongoing field deployments of IoT applications [56]–
[58]. We note, however, that GreenCoin and GPoS are not
specific to these use cases; we have developed this prototype
implementation for these domains to facilitate “real world”
validation by and feedback from a user community.

To evaluate GreenCoin, we first study how fuel mix affects
block rewards and in turn wallet score of an account. To
demonstrate the impact of slashing on wallet score, we then
present experimental results for running with both honest and
malicious nodes. Finally, we evaluate the impact of the fuel
mix score of a region on the ability of a node to execute smart
contracts.

We perform our experiments using 25 virtual machine
instances in a private cloud running Eucalyptus [59]. Each
instance has a 2GHz CPU and 4GB of memory. Each instance
is a node in a GreenCoin deployment. We assume that there
are 25 accounts, each tied to a different node for the duration
of the experiments. Unless otherwise specified, we perform
each experiment 10 times and present the average values. We
also present the standard deviation along with the mean when
applicable, as error bars.

A. Block Reward

To demonstrate how the fuel mix score of a region affects
block reward, we assume each of the 25 nodes is located in
a region with a different fuel mix score. The node with ID
1 has the lowest range of fuel mix scores ([0.00, 0.04]). Each
subsequent node with a higher ID has a range of fuel mix
scores that is 0.04 higher than the previous node. Hence, the
node with ID 25 has the highest range of fuel mix scores
([0.96, 1.00]). We manipulate the interface to Depot to get a
random fuel mix score for each node within the appropriate
range. Irrespective of its location, each account starts with a
collection of 100 coins total – 10 of each score ranging from
0.1 to 1.0 at an increment of 0.1. This amounts to a wallet
score of 0.8702. We run the experiment until 1000 blocks
are mined, each block having a single transaction. In each of

Fig. 4: Effect of slashing on wallet score of a single malicious
proposer. All the nodes have the same range of fuel mix scores.

these transactions, a node sends a coin with a score of 0.5
and an amount of 1.0 to the node with the next higher ID
(the last node sends the coin to the first node). We keep the
score and the amount of transferred coins constant so that the
final wallet score is dependent exclusively on the fuel mix of
a region rather than the executed transactions.

Figure 3 shows the final wallet score of the nodes. The red
dashed line represents the initial wallet score. As expected,
nodes situated in regions with higher fuel mix scores expe-
rience an increase in their wallet score. The node with the
highest range of fuel mix score reaches a wallet score of
0.9533, an increase of 0.0831. Conversely, nodes situated in
regions with lower fuel mix scores experience a decrease in
their wallet score. The node with the lowest range of fuel mix
score reaches a wallet score of 0.7709, a decrease of 0.0993.

B. Account Slashing

To demonstrate the effect of slashing, we divide the nodes
into two groups – 13 honest nodes and 12 malicious nodes.
We manipulate the interface to Depot to get random fuel
mix scores that fall within the same range for all the nodes
([0.96, 1.00]), so that any change in the final wallet score is
only due to the slashing of nodes without any effect from
disparate block rewards. All the nodes start with the same
collection of coins as described in Section V-A. One of
the malicious nodes proposes multiple faulty blocks. Each
of the blocks contains a single transaction that transfers a
coin with a score of 0.5 and an amount of 1.0 from the
proposer to the next malicious node. The execution of this
small number of transactions itself does not change the wallet
score of the proposer significantly. All the malicious nodes
vote dishonestly to declare the faulty blocks as valid and any
valid block proposed by the honest nodes as invalid. We run
the experiment until the wallet score of the faulty node drops
below 0.2.

Figure 4 shows the wallet scores each time the faulty
proposer is slashed. The red line represents the wallet score
of the faulty proposer. As described in Section IV-E, each
time an account is slashed its wallet score falls to half of its
pre-slashed value or less. As the faulty proposer starts with

Fig. 5: Deviation of wallet scores between honest nodes and
malicious nodes over a prolonged period. All the nodes have
the same range of fuel mix scores.

a wallet score of 0.8702, four slashing events are enough to
make the wallet score drop below 0.2. In this case, it drops to
0.0984. The wallet scores of all other nodes remain relatively
unchanged.

To understand how wallet scores of honest and malicious
nodes stabilize over time, we construct a second experiment
with the same topology and seed account balance as the previ-
ous experiment. As in the previous experiment, all malicious
nodes vote falsely. Additionally, whenever a malicious node
becomes the proposer it proposes a faulty block. This behavior
is different from the previous experiment, where only one
specific malicious node was proposing faulty blocks and the
other malicious nodes were following a more passive approach
by only voting falsely. We run the experiment until 1000
blocks are generated. Figure 5 shows the deviation in wallet
scores between the honest and the malicious nodes. Wallet
scores of honest nodes gradually creep up to ⇠ 0.95 whereas
those of malicious nodes fall drastically down to ⇠ 0.10.

C. Smart Contract Execution
As an example of smart contract execution, we use Green-

Coin to compute the Pearson correlation coefficient between
two time series of meteorological measurements (air temper-
ature and humidity, in this example). For agricultural applica-
tions such as frost prevention where the activation of (possibly
expensive) frost prevention measures depends on trustworthy
meteorological data, we believe smart contracts will be useful.

We use the El Niño dataset (temperature and humidity) from
UCI Machine Learning repository [60] for this experiment.
We assume that each participant in the GreenCoin blockchain
operates a set of local meteorological sensors and they use
GreenCoin to publish the sensor results (taken from the dataset
in this fictitious example) to the ledger via a local GreenCoin
node.

As in section V-A, we start with all the nodes having a
different range of fuel mix scores but the same wallet score.
One node creates a contract to log temperature data, one
node creates a contract to log humidity data, and another

Fig. 6: Percentage of smart contract execution by each node.
The execution threshold of each smart contract is set to 0.5.
Nodes with ID 1 to 12 have fuel mix scores falling below 0.5.
Fuel mix scores of node with ID 13 straddles 0.5 while other
nodes have fuel mix scores higher than 0.5.

node creates a contract to compute the correlation between
temperature and humidity. To make sure all nodes end up
creating the same number and similar types of transactions, the
other nodes also create such contracts, although the experiment
uses only three contracts. Each node creates a transaction to
log two temperature and two humidity values, resulting in 50
data points each for temperature and humidity. Finally, each
node creates a transaction to compute the Pearson correlation
coefficient between temperature and humidity. Therefore, there
are 125 transactions executing smart contracts. Each smart
contract has an execution threshold of 0.5, i.e., a blockchain
node must have a minimum fuel mix score of 0.5 to propose
a block containing a transaction to execute a smart contract.
As GreenCoin allows execution of a smart contract by the
proposer only, it means a node must have a minimum fuel mix
score of 0.5 to execute a smart contract. We run the experiment
until all the smart contracts have been executed. Each block
contains zero or one transaction.

Figure 6 shows the percentage of smart contracts executed
by each node. Nodes with fuel mix lower than the execution
threshold, i.e., 0.5 fail to execute any transaction involving
execution of smart contracts. All other nodes end up executing
a varied percentage of transactions involving execution of
smart contracts as expected.

VI. CONCLUSIONS AND FUTURE WORK

Cryptocurrencies provide new functionality that improves
information trustworthiness and integrity. Their energy effi-
ciency is the subject of ongoing research and commercial
development. To this end, we have investigated GreenCoin –
a cryptocurrency that uses attested location to attach indelible
attributes to each coin representing renewable energy usage
during its creation. GreenCoin relies on GPoS, which is a
new Proof-of-Stake protocol for marking each coin with a
“greenness” score, determining wallet score, slashing mali-
cious behavior, and implementing smart contracts that only

execute computations when the coins that pay for them have
green scores above a specified threshold.

We validate our assumptions using a permissioned proto-
type of GreenCoin. Our results indicate that our approach
effectively implements coin scoring, incentivizes both truthful
and “green” participation, and implements a smart contract
with “computational accountability” with respect to the use of
renewable energy in cryptocurrency systems.

As part of our future work, we plan to deploy GreenCoin in
IoT application deployments as part of ongoing collaborative
work. We also plan to investigate its feasibility in implement-
ing renewable accountability for permissionless blockchains
and cryptocurrencies.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized business review, p. 21260, 2008.

[2] A. Back et al., “Hashcash-a denial of service counter-measure,” 2002.
[3] J. Reed, “Litecoin: An introduction to litecoin cryptocurrency and

litecoin mining,” 2017.
[4] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is

vulnerable,” Communications of the ACM, vol. 61, no. 7, pp. 95–102,
2018.

[5] “Dogecoin – an open-source peer-2-peer digital currency,”
https://dogecoin.com/, accessed: 17-Apr-2023.

[6] “Home — monero – secure, private, untraceable,”
https://www.getmonero.org/, accessed: 17-Apr-2023.

[7] “Solana — web3 infrastructure for everyone,” https://solana.com/, ac-
cessed: 17-Apr-2023.

[8] “Cardano — home,” https://cardano.org/, accessed: 17-Apr-2023.
[9] “Polkadot : Web3 interoperability — decentralized blockchain,”

https://polkadot.network/, accessed: 17-Apr-2023.
[10] “The merge is here: Ethereum has switched to proof of stake,”

https://www.technologyreview.com/2022/09/15/1059520/the-merge-is-
here-ethereum-has-switched-to-proof-of-stake/, accessed: 17-Apr-2023.

[11] J. Ménétrey, C. Göttel, A. Khurshid, M. Pasin, P. Felber, V. Schiavoni,
and S. Raza, “Attestation mechanisms for trusted execution environments
demystified,” in Distributed Applications and Interoperable Systems:
22nd IFIP WG 6.1 International Conference, DAIS 2022, Held as
Part of the 17th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2022, Lucca, Italy, June 13-17, 2022,
Proceedings. Springer, 2022, pp. 95–113.

[12] USEIA, “Us energy information administration web site,” 2023,
https://www.eia.gov.

[13] “The University of California, Santa Barbara, RiPiT Project,” 2023,
https://sites.cs.ucsb.edu/ rich/ripit.html.

[14] “The University of Chicago RiPiT Project,” 2023,
http://ripit.uchicago.edu.

[15] B. Sriman, S. Ganesh Kumar, and P. Shamili, “Blockchain technology:
Consensus protocol proof of work and proof of stake,” in Intelligent
Computing and Applications: Proceedings of ICICA 2019. Springer,
2021, pp. 395–406.

[16] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[17] B. Cao, Z. Zhang, D. Feng, S. Zhang, L. Zhang, M. Peng, and Y. Li,
“Performance analysis and comparison of pow, pos and dag based
blockchains,” Digital Communications and Networks, vol. 6, no. 4, pp.
480–485, 2020.

[18] O. Vashchuk and R. Shuwar, “Pros and cons of consensus algorithm
proof of stake. difference in the network safety in proof of work and
proof of stake,” Electronics and Information Technologies, vol. 9, no. 9,
pp. 106–112, 2018.

[19] A. De Vries, “Bitcoin’s growing energy problem,” Joule, vol. 2, no. 5,
pp. 801–805, 2018.

[20] V. Kohli, S. Chakravarty, V. Chamola, K. S. Sangwan, and S. Zeadally,
“An analysis of energy consumption and carbon footprints of cryptocur-
rencies and possible solutions,” Digital Communications and Networks,
vol. 9, no. 1, pp. 79–89, 2023.

[21] Z. Wang, Q. Li, J. Song, H. Wang, and L. Sun, “Towards ip-based geolo-
cation via fine-grained and stable webcam landmarks,” in Proceedings
of The Web Conference 2020, 2020, pp. 1422–1432.

[22] P. Gill, Y. Ganjali, B. Wong, and D. Lie, “Dude, where’s that ip?
circumventing measurement-based ip geolocation,” in Proceedings of
the 19th USENIX conference on Security, 2010, pp. 16–16.

[23] P. Callejo, M. Gramaglia, R. Cuevas, and A. Cuevas, “A deep dive
into the accuracy of ip geolocation databases and its impact on online
advertising,” IEEE Transactions on Mobile Computing, 2022.

[24] “Ip geolocation and online fraud prevention — maxmind,”
https://www.maxmind.com/en/home, accessed: 15-Apr-2023.

[25] “American registry for internet numbers,” https://www.arin.net/, ac-
cessed: 15-Apr-2023.

[26] “Ripe network coordination center,” https://www.ripe.net/, accessed: 15-
Apr-2023.

[27] M. Cozar, D. Rodriguez, J. M. Del Alamo, and D. Guaman, “Reliability
of ip geolocation services for assessing the compliance of international
data transfers,” in 2022 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW). IEEE, 2022, pp. 181–185.

[28] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall, T. Ander-
son, and Y. Chawathe, “Towards ip geolocation using delay and topology
measurements,” in Proceedings of the 6th ACM SIGCOMM conference
on Internet measurement, 2006, pp. 71–84.

[29] B. Eriksson, P. Barford, J. Sommers, and R. Nowak, “A learning-based
approach for ip geolocation,” in Passive and Active Measurement: 11th
International Conference, PAM 2010, Zurich, Switzerland, April 7-9,
2010. Proceedings 11. Springer, 2010, pp. 171–180.

[30] J. Saxon and N. Feamster, “Gps-based geolocation of consumer ip
addresses,” in Passive and Active Measurement: 23rd International
Conference, PAM 2022, Virtual Event, March 28–30, 2022, Proceedings.
Springer, 2022, pp. 122–151.

[31] A. Vaish, A. Kushwaha, R. Das, and C. Sharma, “Data location
verification in cloud computing,” International Journal of Computer
Applications, vol. 68, no. 12, 2013.

[32] A. Noman and C. Adams, “Hardware-based dlas: Achieving geo-
location guarantees for cloud data using tpm and provable data pos-
session,” in 2014 17th International Conference on Computer and
Information Technology (ICCIT). IEEE, 2014, pp. 280–285.

[33] S. Park, J. N. Yoon, C. Kang, K. H. Kim, and T. Han, “Tgvisor: A
tiny hypervisor-based trusted geolocation framework for mobile cloud
clients,” in 2015 3rd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering. IEEE, 2015, pp. 99–108.

[34] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution en-
vironment: what it is, and what it is not,” in 2015 IEEE Trust-
com/BigDataSE/Ispa, vol. 1. IEEE, 2015, pp. 57–64.

[35] L. ARM, “Arm security technology-building a secure system using
trustzone technology,” PRD-GENC-C. ARM Ltd. Apr.(cit. on p.), Tech.
Rep., 2009.

[36] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” Hasp@ isca, vol. 10, no. 1,
2013.

[37] M. Crone, “Towards attack-tolerant trusted execution environments:
Secure remote attestation in the presence of side channels,” 2021.

[38] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M. McCune,
“Trustworthy execution on mobile devices: What security properties can
my mobile platform give me?” in Trust and Trustworthy Computing: 5th
International Conference, TRUST 2012, Vienna, Austria, June 13-15,
2012. Proceedings 5. Springer, 2012, pp. 159–178.

[39] H. Vill, “Sgx attestation process,” 2017.
[40] S. Weiser and M. Werner, “Sgxio: Generic trusted i/o path for intel

sgx,” in Proceedings of the seventh ACM on conference on data and
application security and privacy, 2017, pp. 261–268.

[41] J. Thalheim, H. Unnibhavi, C. Priebe, P. Bhatotia, and P. Pietzuch, “Rkt-
io: A direct i/o stack for shielded execution,” in Proceedings of the
Sixteenth European Conference on Computer Systems, 2021, pp. 490–
506.

[42] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding
the prevailing security vulnerabilities in trustzone-assisted tee systems,”
in 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020,
pp. 1416–1432.

[43] A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published attacks
on intel sgx,” arXiv preprint arXiv:2006.13598, 2020.

[44] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of aes,” in Topics in Cryptology–CT-RSA 2006: The
Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA,
February 13-17, 2005. Proceedings. Springer, 2006, pp. 1–20.

[45] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 719–732.

[46] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses.” in USENIX Security Sympo-
sium, 2019, pp. 249–266.

[47] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157.

[48] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in USENIX Security Symposium (SEC), 2018.

[49] X. Xin, “Titan m makes pixel 3 our most secure phone yet,” Google (Oct.
2018). url: https://www. blog. google/products/pixel/titan-m-makespixel-
3-our-most-secure-phone-yet, 2018.

[50] “energy mix,” https://archive.unescwa.org/energy-mix, accessed: 14-
Apr-2023.

[51] “California iso – supply, today’s outlook,”
https://www.caiso.com/todaysoutlook/Pages/supply.aspx, accessed:
14-Apr-2023.

[52] K. Mammadzada, M. Iqbal, F. Milani, L. Garcı́a-Bañuelos, and R. Mat-
ulevičius, “Blockchain oracles: a framework for blockchain-based ap-

plications,” in Business Process Management: Blockchain and Robotic
Process Automation Forum: BPM 2020 Blockchain and RPA Forum,
Seville, Spain, September 13–18, 2020, Proceedings 18. Springer, 2020,
pp. 19–34.

[53] A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, “Where’s the Bear?
– Automating Wildlife Image Processing Using IoT and Edge Cloud
Systems,” in Internet-of-Things Design and Implementation (IoTDI),
2017 IEEE/ACM Second International Conference on. IEEE, 2017,
pp. 247–258.

[54] N. Golubovic, R. Wolski, C. Krintz, and M. Mock, “Improving the
Accuracy of Outdoor Temperature Prediction by IoT Devices,” in IEEE
Conference on IoT, 2019.

[55] N. Golubovic, A. Gill, C. Krintz, and R. Wolski, “CENTAURUS: A
Cloud Service for K-means Clustering,” in IEEE DataCom, Nov. 2017.

[56] C. Krintz, R. Wolski, N. Golubovic, B. Lampel, V. Kulkarni, B. Sethu-
ramasamyraja, B. Roberts, and B. Liu, “SmartFarm: Improving Agri-
culture Sustainability Using Modern Information Technology,” in KDD
Workshop on Data Science for Food, Energy, and Water, Aug. 2016.

[57] “UCSB SmartFarm,” https://sites.cs.ucsb.edu/ ckrintz/projects/, [Online;
accessed 17-April-2023].

[58] “UCSB Edible Campus,” https://sustainability.ucsb.edu/ediblecampus,
[Online; accessed 17-April-2023].

[59] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE, 2009, pp. 124–131.

[60] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

