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Abstract


Modeling, Predicting and Reducing Energy Consumption in
Resource Restricted Computers


Selim Gürün


Recently, mobile, battery-powered embedded devices such as personal digital as-


sistants (PDAs), smartphones, and cellular devices, have become ubiquitous and in-


creasingly capable. Worldwide, approximately 42 million smartphones and PDAs are


shipped in the first half of 2006, and the predictions indicate that their sales will in-


crease more than 57 percent by 2007. Given the proliferation and importance of these


devices, users demand more capability from, and execution of increasingly complex


applications on, these devices.


A key limitation on the utility of these devices is the battery. Since it is extremely


difficult to increase battery supply, the best option for extending battery life is to use


software techniques and systems that are power aware. The two most important tech-


niques that reduce energy consumption are computation offloading and dynamic volt-


age scaling. In our work, we extend these techniques and investigate novel software


solutions to enable power-awareness for real devices and real software.


The goal of both offloading and DVS systems is to extend battery life without im-


pacting negatively the user’s perception of program performance. Unfortunately, extant
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approaches to both of these systems fall short in doing so. The primary reason for this


is due to inaccuracies both in the measurement of past energy consumption and in the


prediction of future program and workload behavior and resource availability. Thus, it


is the goal of our work to devise novel techniques and infrastructures to improve the


efficacy of these two power-aware optimizations.


In our work, we first develop techniques that measure energy consumption of tasks


accurately. Our approach provides task energy estimations with a very low error margin


(3.8% to 4.6%) Second, we present a set of prediction tools and strategies that make


accurate forecasts of future application and resource behavior. Finally, we show how


these techniques can be used to enable more effective offloading (27% to 56% less


wasted energy when compared to its competitors, and DVS (31% to 49% savings of


that has been previously possible). In all of our work, we consider real devices in use


today and popular software systems and workloads.


Professor Chandra Krintz


Dissertation Committee Chair
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Chapter 1


Introduction


Recently, mobile, battery-powered embedded devices such as personal digital assistants


(PDAs), smartphones, and cellular devices, have become ubiquitous and increasingly


capable. Worldwide, approximately 42 million smartphones and PDAs are shipped in


the first half of 2006, and the predictions indicate that their sales will increase more than


57 percent by 2007 [83]. Concurrently with the proliferation and growing importance


of these devices, users demand more capability from, and execution of increasingly


complex applications on, these devices.


A key limitation on the utility of these devices is the battery. There are three ways to


increase the battery lifetime in these devices: by increasing battery supply, by decreas-


ing battery demand, or both [4, 14, 71, 18, 53, 59, 17, 16, 41, 88]. Unfortunately, it is


very difficult to add to battery supply. The capacity of a battery depends on the chem-


ical properties of the material that the battery is made of. New materials with more


energy capacity are only made possible through complex, expensive and time consum-
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ing research. The capacity of the most efficient battery has only increased 3 to 4 times


in the last three decades despite significant effort [14]. Alternatively, it is possible to


extend battery capacity by simply adding more batteries of the same type, however,


this is highly undesirable since doing so increases the size, cost, and the weight of the


device, which reduces devices mobility and cost-effectiveness.


To reduce the demand placed on the battery, we can reduce device hardware (ca-


pability) or use software techniques to optimize battery use. Reducing energy demand


by cutting back hardware functionality is undesirable. The market trend and consumer


interest continue to be towards devices that are more capable [82]. Newer and higher


performance hardware components (which consume the battery at a faster rate), such


as short and long range wireless interfaces, high capacity flash storages, and 32-bit


CPUs are becoming increasingly common in mobile devices. The existence of these


components is critical in many, key applications.


Thus, the best option for extending battery life is to use software techniques and


systems that are power aware. Effective software approaches have become increasingly


common in an effort to address this mobile computing energy crisis. In our work,


we extend these techniques and investigate novel software solutions to enable power-


awareness for real devices and real software.


In particular, this dissertation focuses on the infrastructure to support and enable the


two most effective, extant, software optimizations for energy: Computation offloading
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and dynamic voltage scaling [77, 28, 17, 18, 53, 26, 65, 41, 88, 64]. Computation of-


floading is a technique for executing parts of an application remotely on a more capable


or wall-powered computer. This application uses reachable computer systems to extend


the battery life and capability of resource-constrained mobile devices. The importance


of this approach comes from the fact that offloading can reduce power consumption


potentially with no performance degradation. Thus, it is very suitable for applications


such as wearable computing, augmented reality, image processing, and speech recog-


nition [53, 41].


However, the benefits of remote execution are highly dependent on numerous vari-


ables including computational complexity of the offloaded task, performance and inter-


activity expectations of the user, suitability of local and remote computation platforms,


and network capacity. Offloading systems must measure past and predict future behav-


ior, resource availability, and energy consumption for a wide range for resources: task


execution and response time, network bandwidth, network latency, and CPU load and


performance of the local and remote computer systems. If measurement or prediction


is inaccurate, offloading systems can degrade performance significantly and consume


additional energy.


Dynamic voltage scaling (DVS) is the process of changing the clock frequency


and voltage of the mobile device during execution of programs and workloads [77,


28, 17, 26, 41, 88, 64]. DVS trades off performance for energy savings. By reducing
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the voltage and the frequency of the CPU, we can have a quadratic effect on energy


reduction. As a result, dynamic voltage scaling has the potential for reducing energy


consumption significantly. However, to ensure that DVS is transparent to the user, we


must use it in a way that best balances performance for energy savings. In particular,


we must predict when the future CPU demand and unused CPU capacity enables us to


reschedule the CPU clock without any perceived execution latency. As is the case for


computation offloading, the prediction of these resources and program behaviors must


be very accurate for DVS to be useful.


The goal of both offloading and DVS systems is to extend battery life without im-


pacting negatively the user’s perception of program performance. Unfortunately, extant


approaches to both of these systems fall short in doing so. The primary reason for this


is due to inaccuracies both in the measurement of past energy consumption and in the


prediction of future program and workload behavior and resource availability. Thus, it


is the goal of our work to devise novel techniques and infrastructures to improve the


efficacy of these two power-aware optimizations. First, we identify and develop new


techniques for accurate measurement of energy consumption. Surprisingly, the only


mechanisms available on existing mobile devices for energy measurement are coarse-


grain battery monitors that are highly inaccurate. With inaccurate measurements of past


consumption behavior, it is virtually impossible to make accurate predictions of future


behavior. Second, we present a set of prediction tools and strategies that can be used on
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resource-constrained devices, with low overhead, that make accurate forecasts of future


application and resource behavior, including task execution time, interactivity session


length, wired and wireless network bandwidth and latency, and CPU load and availabil-


ity. Accurate forecasts for these behaviors and resources are vital for the efficacy and


thus, wide-spread use of computation offloading and DVS. Moreover, we provide these


forecasts in a unified prediction framework that requires no input, calibration, offline


execution of programs, or any other type of user participation. No such system exists


that does so to our knowledge, prior to our work. Finally, we show how our approaches


and energy-aware software systems can be used to enable more effective offloading and


DVS that has been previously possible. In all of our work, we consider real devices in


use today and popular software systems and workloads.


We organize the dissertation as follows. Chapter 2 presents the necessary back-


ground of our work and overviews existing systems on which we build and extend.


This section describes two power saving strategies on which we focus: dynamic volt-


age scaling and computation offloading in greater detail. We also use this section to


describe the characteristics of our empirical evaluation platform and to and present the


energy metrics that we use. Chapter 3 discusses novel ways we can model energy con-


sumption to enable accurate measurement of energy consumption on battery-powered,


mobile and resource-constrained devices. Chapter 4 presents a run-time, dynamic en-


ergy estimation mechanism for these systems. Chapter 5 discusses prediction mecha-
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nisms that exist in current systems and shows how they can be improved. Chapter 6


and 7 discuss how we extend battery life by using our measurement and prediction


techniques for offloading and dynamic voltage scaling. Finally, Chapter 8 concludes


the dissertation presents a summary of our key contributions.
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Chapter 2


Background


While there are many strategies to reducing energy consumption of an application,


two have proven to be the most effective in doing so: Computation offloading and


dynamic voltage scaling (DVS) [77, 28, 17, 18, 53, 26, 65, 41, 88, 64]. In this disser-


tation, we present the infrastructure and support system to improve and enable these


optimizations to achieve energy saving levels that are significantly higher that those


that are available today. In this chapter, we overview each of these complementary op-


timizations and their related work to expose the infrastructure necessary to enable their


efficacy in extending battery lifetime in battery-powered, resource-constrained devices.


We also overview the target platforms on which we focus and detail the empirical eval-


uation setup that we use (Section 2.3).
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2.1 Computation Offloading


Computation offloading (which is also known as remote execution in the litera-


ture) extends the computational power and battery life of battery-powered devices by


partially executing tasks on more suitable computers [19, 65, 64, 41, 88]. Offloading


systems attempt to reduce power consumption potentially with no performance degra-


dation. Thus, it is very suitable for interactive tasks and multimedia applications with


soft deadlines that impose implicit performance restrictions on hardware. Offloading


has been shown to be effective for reducing demand on the local device and extending


battery life for applications such as wearable computing, augmented reality, and speech


recognition [53, 41, 18, 65, 64].


The benefits of remote execution are dependent on numerous variables which in-


clude the computational complexity of the offloaded task, the performance and inter-


activity expectations of the user, the suitability of the load on the local and remote


computation platforms, and the network capacity. Consequently, if not executed ap-


propriately, remote execution can lead to decreased performance and increased energy


consumption.


Figure 2.1 depicts the general design of a remote execution system. A remote exe-


cution system offloads application tasks from battery-powered mobile devices to wall-


powered, higher-performance servers. To decide whether a particular task should be
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MOBILE DEVICE


Memory


CPU


SUPPLY
RESOURCE


CPU


Battery


Memory


DEMAND


Application


− Fidelity


− Execution
Time


RESOURCE


SUPPLY
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Figure 2.1: Components of a typical remote execution system. The decision process
includes forecasting the available resource supply both at the client and server and
application resource demand.


offloaded, a remote execution system must first compute the resource demand of the


application task. Demand can be defined using different metrics such as CPU cycles,


network bandwidth, memory pages, etc., according to the overall goals of the system.


To determine how best to accommodate demand, a remote execution system must


evaluate how best to employ its supply – the set of resources, local and remote, that it


has available to it for task execution. The system computes whether computation off-


loading will be beneficial, according to its set of constraints, using a cost model. When


cost of local execution exceeds that of remote execution, the system off-loads work to


the server. The cost model must consider both the task execution characteristics as well


as the highly-variable performance of the underlying resources that dictate computation


and communication performance. However, constructing an exact cost function is non-


trivial since hardware components have many shared resources, such as buses and DMA


devices, that implement specific arbitration and priority policies.
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While computation offloading is a powerful technique that can reduce computa-


tional requirements and power consumption significantly, its abuse can easily lead to


counterproductive results. When the cost of network transfer is too high, or when the


remote server is too loaded, the cost of offloading can exceed the cost of local exe-


cution. To prevent this, we have to identify and compute the energy cost of major


offloading cost constituents; offloading to remote server, waiting for remote computa-


tion, and bringing the results back to local machine. We also have to compute the local


energy consumption, so we can compare which path (offloading vs. local execution) is


best.


Computing the local and remote cost requires predicting local and remote CPU


availability and demand, network state (latency and bandwidth), and energy consump-


tion of tasks. In Chapter 4, we discuss how to measure task energy consumption. In


Chapter 5, first we describe how extant systems measure and predict resources that are


important for computation offloading (Section 5.1), and next we suggest an adaptive,


dynamic resource prediction technique for these resources (Section 5.2). Finally, in


Chapter 6, we discuss how much extra power savings are possible as a result of extra


accuracy that our prediction technique provides.
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2.2 Dynamic Voltage Scaling


In modern, embedded-device CPUs, a significant portion of energy is dissipated in


the form of dynamic power consumption [67, 51]. Dynamic power is a function of CPU


voltage and frequency and is approximated by:


P ∝ V 2f (2.1)


Thus, reducing the voltage level provides energy savings that are proportional to the


square of the voltage reduction.


As the above equation indicates, it is possible to reduce power consumption of a


general-purpose processor by reducing its clock speed. However, reducing clock speed


alone does not conserve energy since any reduction in CPU performance are offset


by a proportional increase in task execution time. Key to the dynamic clock scaling


is the dependency between voltage and clock speed; the CPU voltage can be lowered


in proportion to CPU clock frequency. This provides substantial savings –executing a


task in a 0.75V setting instead of 1.5V one reduces CPU energy consumption by almost


75%. In practice, the savings are slightly less because of static leakage.


Figure 2.2 shows the power consumption of an Intel PXA-270 CPU [32] at different


voltage/frequency settings. The x-axis shows CPU frequency. The y-axis shows CPU


power consumption. The numbers in the plot area show corresponding CPU core volt-


age for each frequency level. The upper and lower boundaries of the gray area show the
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Figure 2.2: PXA-270 power consumption for different voltage-frequency pairs. The
x and y axis show CPU frequency and power, respectively. The numbers in the plot
area show corresponding CPU core voltage for each frequency level. The upper and
lower boundaries of the gray area show the typical and idle energy consumption for the
CPU, for each power/frequency pair. There are two 312 MHz setting, one with lower
bus speed, and the other with a higher one.
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Figure 2.3: CPU performance scaling on a typical embedded processor. Executing
Task A at full performance level causes it to finish well before the deadline, using more
energy. Executing same task at lowered performance level uses less energy, and still
completes the task before its deadline. We took the power numbers from PXA-270
manual [32].


typical and the idle energy consumption for each power/frequency pair. There are two


312 MHz settings, one with a lower bus speed, and the other with a higher one. For in-


creasingly higher performance levels, the idle energy consumption is significantly less


than typical active energy consumption level.


Scaling of the voltage requires scaling the frequency in the same proportion to meet


signal propagation delay requirements [62]. Frequency scaling, and thus voltage scal-


ing, results potentially in linear performance loss and reduced system responsiveness.


Figure 2.3 illustrates how dynamic voltage scaling attempts to reduce power con-


sumption without imposing a perceivable performance loss on the application or work-


load. When the CPU has more CPU cycles available than a task demands, executing
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the task at a lower performance level uses less energy, and completes the task before


its deadline, while executing the task at full performance level uses more energy for


executing the task and while idling.


To minimize perceivable negative performance impact and to enable energy con-


servation of voltage scaling, DVS policies must estimate future workload and choose


the most appropriate CPU level. Accurately predicting future workload is challenging


yet vital for efficacy and widespread use of DVS systems. Mis-prediction can result in


setting the CPU level too high, curtailing power savings, or in setting the CPU level too


low, producing an unresponsive system. There are two major existing approaches that


address this challenge; interval schedulers and interactive task scheduling.


2.2.1 Interval Scheduling


Interval schedulers [77, 28, 26, 72, 3] divide the workload into fixed-length time


intervals. These techniques use measurement history to estimate the workload in a fu-


ture interval. For example, the PAST interval scheduler [77] assumes that the load in


the next interval will be same as that in the last interval; the AV GN interval sched-


uler [77, 28] assumes that the next interval is an exponential moving average (using


a decay factor) of the N previous intervals. Other interval schedulers use observation


heuristics [26] and more sophisticated statistical estimation methods [72] to estimate


workload.
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The efficacy of interval scheduling however, has proven to be limited in practice.


Extant approaches use fixed-length, short intervals, i.e., 1-50ms, to accommodate for


responsiveness requirements of interactive applications. However, for most applica-


tions the utilization pattern is visible only when deploying functions that span a larger


period. For example, for an MPEG application, this pattern may not be visible even


with a one second moving average [28].


Another limitation of prior approaches to interval scheduling is that they require a


very short voltage switch latency (on the order of hundreds of microseconds) [28, 16].


Even though this rate is achievable in high-end specialized CPUs, e.g., the Transmeta


Crusoe, most low-end handheld devices such as the HP iPAQ use much simpler hard-


ware. Moreover the operating system must alert all synchronized peripheral devices


that CPU speed is changing. These implementations can significantly increase the time


required to complete a switch between frequency levels. Even though the improve-


ments in CPU/hardware technology mitigate this problem a little bit, it may still be an


important issue in practical implementations.


2.2.2 Interactive Task Scheduling


Prior DVS studies have focused on classifying tasks into different groups, each


with a customized policy. [17] suggests three groups: Interactive, periodic, and back-


ground tasks. For interactive tasks, the system computes the optimum performance
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factor (OPF). The OPF is the fraction of CPU speed required to complete a task no


later than the user perception threshold. [17] defines this threshold as 50 milliseconds.


The system in this prior work estimates the CPU load for a particular task in an inter-


active episode using an average of past CPU demand of the task, weighted by episode


duration.


A periodic task consists of a producer-consumer pair. The system schedules a pe-


riodic task using an estimate of the time period between the completion of a producer


and the start of a consumer. The system computes CPU speed such that producer ends


immediately prior to when the consumer starts; the system uses the same CPU speed


for both the producer and consumer.


Vertigo [16] is a refined and simplified implementation of this approach. Instead


of categorizing tasks as producer and consumer, Vertigo maintains individual CPU uti-


lization statistics for each task. It recomputes CPU utilization each time it attempts to


reschedule a task. To identify interactive tasks, Vertigo monitors GUI events. When


an event arrives, it marks the window manager and the recipient of GUI event as in-


teractive. If any task communicates with an interactive task, Vertigo marks it also as


interactive. The interactive period continues until all marked tasks are pre-empted by


other tasks. Marking can be quite complex to implement, as tasks can use a variety of


methods to communicate. Unfortunately, the implementation details and source code


of Vertigo are not publicly available.
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Lorch et al. suggest an approach that specifically targets user interactivity [49]. The


system labels a user event with the type of GUI event that initiates it, e.g., a key-press,


mouse-click, or drag event. Each event type has a separate DVS policy. The authors


of this approach compute the CPU schedule using PACE [48]. PACE is a heuristic that


the authors have proven to be optimal for computing CPU speed when (a) CPU can


change frequency on a continuous scale, (b) all task deadlines are known, and (c) the


cumulative distribution function (CDF) of task CPU demand is known.


All approaches that target user interactivity must overcome the challenge of de-


termining when a task will complete without assistance from the application. The ap-


proach in [17] requires task completion time to update task execution time; the approach


in [49] uses task completion time to compute task CDF and deadline. The former so-


lution is precise, but is inherently complex; it requires monitoring system calls and


communication between threads. The latter solution suggests an event is complete if a


new event is posted or the idle thread is running and no I/O is ongoing. Even though this


second approach can occasionally mis-classify a task as complete, it is more attractive


due to its simplicity.


For the dynamic voltage scaling to be beneficial, we must make sure that, (1) energy


cost of task execution at reduced performance level is lower than executing the task at


higher performance level, (2) extra execution latency at lower performance level is


transparent (or at least acceptable) to the user. While it is possible to compute (1) by
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approximating the energy cost using Equation 2.1, achieving (2) requires measuring and


predicting task demand, CPU availability and user expectations (tolerance to latency).


In achieving (2), the techniques above use past resource measurements to predict the


future, using exponential smoothing techniques. Chapter 5 discusses these prediction


techniques. Here, we also discuss our own approach to predicting future state of CPU,


both for demand and availability.


The interactive scheduling techniques do not try to predict an acceptable user la-


tency (which is hard), instead, they assume a fixed deadline (user perception threshold


of 50 milliseconds [69]) for each user interactive task and schedule the tasks such that


they execute within the deadline. However, task demand has to be known. They do


this either using cumulative distribution function, or profiling, or at run-time, dynami-


cally. Furthermore, they have to measure and predict CPU availability to compute task


execution latency. Section 5.1 of Chapter 5 discusses these in great detail.


Interactive tasks are not the only type of tasks in an interactive system; there are


batch tasks that are executed either in association with the interactive ones, or as stand


alone (MP3 decoding, OS daemons, etc). An interactive DVS system has to combine


both to successfully schedule task execution in a power effective way. In Chapter 7,


we discuss the design, and validation of such a system in a popular resource-restricted


computer.
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Figure 2.4: Test bed


2.3 Our Hardware And Software Setup


Accurately understanding and characterizing energy behavior is critical for the tech-


niques that are developed and evaluated in this dissertation. We do this using a state-


of-the-art test bed. The test bed includes a high-precision oscilloscope, a variety of


embedded computers, a power supply and a desktop computer that collects and ana-


lyzes data.


Figure 2.4 shows the the test and measurement setup. It includes a tightly integrated


suite of four tools to monitor program energy, power, and CPU performance.
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• A device driver and Linux kernel patches, called VPerfmon, that enable and con-


trol HPM, power, and energy profiling.


• A user program, called VPMon, that executes a submitted program under the


control of VPerfmon.


• A user program, called SCL, that dynamically switches CPU frequency level.


• A Windows XP GUI program called the PowerTool, that monitors and controls


the lab equipment (oscilloscope and power supply), and sets the experimental


parameters.


The test setup monitors program power consumption at a very fine granularity


(thousands of times/second) and high accuracy (1mW resolution) using the data ac-


quisition device. The setup can measure the energy consumption of the device and its


PCMCIA cards (the wireless card and the compact flash) independently, and concur-


rently.


VPMon executes on a Linux-operated target device. It acts as the user interface to


the target device that executes the submitted program and controls and collects hard-


ware performance monitors (HPM) data by interacting with VPerfmon. VPMon and


VPerfmon are portable to any platform that runs Linux and implements hardware per-


formance counters.
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Our target device is the Stargate sensor network intermediate node. The Stargate


is representative of modern battery-powered, resource constrained devices as it imple-


ments the recent PXA-255 XScale processor and a wide range of popular I/O devices.


Architecturally, and it terms of computational resources, it is similar to an HP iPAQ


H5550 without any LCD display. Both devices have 400 MHz CPU, 64MB RAM,


and can operate under same Linux operating system. The Stargate however, has its


power supply pins exposed. Thus, it is more suitable for measuring computation and


communication power consumption.


The test setup consists of an Agilent N54621A deep-memory oscilloscope that mon-


itors the current passing through a high-precision resistor connected to the Stargate


power supply. The oscilloscope has a connection to a workstation through a general


purpose interface bus (GPIB). The PowerTool executes on the workstation and reads,


analyzes, and saves the collected data. The PowerTool also controls a high-precision,


programmable power supply, the Agilent E3648A. In power measurement setups that


are powered by battery or wall power, fluctuations in supply voltage introduce an ad-


ditional error. The Agilent E3648A minimizes these errors by providing a precise,


constant voltage supply to the embedded test board.


The oscilloscope samples the voltage drop on the resistor 10000 times per second


and records the measurements in its memory in real time. We create the waveform at


offline by interpolating measurements after we download them from the oscilloscope
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to our local machine. We use the interpolated data to measure energy consumption


at a particular time. Mapping this information to operating system/software threads


requires knowing when these tasks were executing –in oscilloscope time (since the en-


ergy samples were collected using oscilloscope timestamps). Unfortunately, the oscil-


loscope and our target embedded board operate their own, independent clock domains,


thus this information is not readily available. We solve this problem by synchronizing


oscilloscope clock. By connecting one oscilloscope channel to an output port of the


embedded computer, we signal the enter/exit times of operating system threads to the


oscilloscope. We then use this information to identify when a task entered and exited,


and how much energy it consumed. Again, this computation is done at offline, with no


overhead to run-time system.


The SCL driver scales the CPU speed of the Stargate if desired. The Stargate pro-


cessor, the PXA-255, has a very flexible CPU clock implementation that users can


configure to set memory, bus, and CPU core speed independently. There are currently


five valid configurations (due to timing constraints). SCL enables users to manipulate


the configurations at runtime and compiles a log of the new speed, device, and the time


at which it implemented the changes the clock speed (using microsecond resolution).
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2.3.1 VPerfmon


VPerfmon is the control center for program profiling. VPerfmon provides virtual


hardware performance counters to each application. The HPMs by default count global


CPU events, i.e. they do not track events at the program or thread level. VPerfmon


provides a layer that multiplexes the counters and that enables selective monitoring of


particular programs and threads. VPerfmon implements a virtual instruction per cycle


(IPC) counter by tracking instructions (cycles are tracked by default on most devices).


The virtual counters are 64bits in size to reduce overflow problems. It is possible to


selectively enable/disable sampling during the monitoring. This functionality is similar


to the middlewares like PAPI [58]. However, the extant middleware does not support


our target CPU at present.


In our target device, the Stargate processor, the PXA-255, implements three 32-bit


event counters; the hardware uses one to monitor dynamic clock cycles. VPerfmon sets


the remaining counters to any two of the 14 events supported. The VPerfmon virtual


counters reflect the same architecture ( (i.e. extended to 64 bits), it uses one counter to


count CPU clock cycles and the other two to monitor events.


VPerfmon interfaces to and monitors other system events to increase the accuracy


of the HPM profiles. When the VPMon initiates a new program, it contacts VPerfmon.


The VPerfmon driver allocates a set of virtual counters for the new task. Similarly,


VPerfmon allocates a set of virtual counter when a process under the control of VPerf-


23







Chapter 2. Background


mon forks a child process. When the kernel performs a context switch to a task under


VPerfmon control, VPerfmon configures and enables the counters. When the task is


suspended or terminates, VPerfmon stores the virtual HPMs.


To isolate application and operating system performance, the VPerfmon kernel


patch disables HPMs on interrupt entry and re-enables them on exit. This operation


requires a read-modify-write cycle that is equal to three XScale instructions. As a re-


sult, the patch does not significantly increase interrupt latency.


VPerfmon facilitates interval-based data collection via the GPIO pin on the develop-


ment board. Initially the GPIO pin is reset to logic 0 on program start. During program


execution, VPerfmon toggles the pin’s value at then end of every interval. VPerfmon,


as mentioned above tracks interval lengths (arbitrary or fixed) using some performance


event specified by the user. For the data in this paper, we use instruction counts as the


event and fixed-length intervals of 10 million instructions. The oscilloscope is equipped


with two channels. One channel monitors the voltage shunt resistor to measure power


consumption. The second channel monitors the GPIO pin that VPerfmon toggles. Us-


ing this setup, our setup is able to log and track power, energy, and performance data at


interval boundaries.


We use the described setup to measure task energy consumption, to develop our


power models and to validate our results. In Chapter 3 and Chapter 4, we discuss


energy modeling, measurement and prediction at run-time. Developing and validating
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these models require collecting an enormous amount of data, including thousands of


samples over a large number of benchmarks (given in respective chapters). Having


such a setup reduced the overhead of data collection time significantly while improving


the accuracy of the collected data.
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Modeling Energy Consumption


Understanding and accurately characterizing energy consumption is key to opti-


mizing energy consumption of resource-restricted devices. Energy consumption of a


program is highly variable depending on executed instruction type, CPU performance


level, memory and I/O activity. In order to optimize power behavior effectively, power


aware systems have to know how much a program task costs in terms of energy. While


it is possible to define this cost using program execution time, CPU cycles, or simi-


lar metrics, these metrics cannot capture the variation in program power consumption.


Power must be measured using its own metric, Watts and Joules.


There are extant tools that measure program energy consumption accurately. How-


ever, these tools require highly specialized setups. Powerscope [21] and JouleTrack [73]


are two of these. Using very precise lab equipment, and power simulators, they create


profiles that attribute program energy consumption to individual tasks and threads. De-


velopers can use this information to identify and optimize the tasks that consume sig-
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nificant amounts of energy. The progenitors of these tools have shown that significant


power savings are possible from optimizing tasks during program development.


Without similar tools however, we cannot accurately measure task power consump-


tion on the device itself while it executes applications. This is because, current device


technology exports only inaccurate, coarse-grained battery level information. This data


can only be detected at large measurement intervals (precluding attributing energy con-


sumption to fine-grained program activities such as instructions). Moreover, this data


fluctuates, is non-monotonic, and inaccurate due to environmental and chemical effects


and to efforts to keep the cost of batteries low. Unfortunately, accurate, online mea-


surement is key to enabling dynamic optimization techniques that extending battery


life. Such techniques use dynamic profile information of the battery consumption of


a task or program to estimate future energy consumption and to identify opportunities


for optimization [87, 65, 55, 86, 47]. If the measurement data of task activity is coarse-


grained and inaccurate, these techniques will make incorrect decisions that limit their


energy savings or actually cause the system consume more energy than it saves.


The goal of this chapter is to analyze and understand the difficulties in modeling


full system energy consumption. While its main goal is to pave the way to a dynamic,


run-time power prediction system (which we present in next chapter), this chapter lim-


its itself to exploring challenges in a static, offline model. This chapter starts with a


discussion of use of hardware performance monitors in modeling energy consumption.
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It proposes that these counters should be complemented with software counters for high


level energy estimation. Section 3.2 presents modeling methodology. Section 3.3 dis-


cusses modeling computational energy consumption and presents a way to resolve the


dependency related problems within the linear model. Section 3.4 discusses how to


model I/O devices that do not have hardware performance monitors. Section 3.5 evalu-


ates the proposed ideas by comparing model output to measurements collected using a


real device. Section 3.6 discusses other modeling approaches. Section 3.7 gives related


work. Finally, Section 3.8 discusses our findings and concludes the chapter.


3.1 HPMs To Model Program Power Behavior


Most modern processors have a hardware performance monitoring unit (HPM) that


capture CPU performance data and make it available to developers and users. The


monitoring unit has a set of accumulator registers. When enabled, these registers count


the occurrence and duration of major hardware events, such as TLB misses, cache hits,


branch mispredictions, etc.


HPM events provide significant insight into program behavior –indeed, these events


have been used successfully to model CPU energy consumption in many studies [7, 12,


36, 35, 39]. These studies develop models for energy consumption of the CPU alone


and CPU and memory subsystem in isolation. Their findings show that first-order,
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linear models that map HPM events into CPU power consumption can achieve high


accuracy. In our study, we use HPM counters to model full system power consumption.


Modeling full-system energy consumption is more complex than modeling CPU en-


ergy consumption. First of all, it is hard to monitor memory activity accurately [12, 39].


The challenge in memory is that, at present, HPM events provide little insight into mem-


ory behavior –there is no direct HPM event that monitor memory access rate in most


CPUs. In addition there are no hardware events that provide insight into I/O activ-


ity. Many I/O devices have their own firmware or microcode that can asynchronously


change their power states. These state changes are completely transparent to CPU and


the HPM unit. Furthermore, large I/O data transactions generally use direct memory


access (DMA), –the HPMs cannot capture these.


Even though these micro level transactions cannot be captured by HPM counters,


[46] shows that macro level changes (i.e. a lower instructions per clock cycle, higher


data stalls, etc.) in program behavior are enough to model I/O power consumption.


The study in [46] is developed using a device with a SCSI disk, 3-level memory hier-


archy and a MIPS CPU. It uses a static, customized linear regression model for each


individual operating system routine, and demonstrates a high prediction accuracy.


Unfortunately, modeling each I/O call individually is not trivial. There are numer-


ous I/O devices and same I/O call (such as read, write) can be used to access a number
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of different devices. Modeling and maintaining a power model for each I/O device and


an operating system call is not scalable.


This chapter proposes a different approach to monitor I/O energy consumption.


Here, our approach is to capture I/O behavior with a carefully chosen combination of


software and hardware performance counters and combine it with a carefully chosen set


of HPM counters to predict full system energy consumption. The rest of this chapter


substantiates this approach. The next section develops a computational model using


only hardware counters. It only models energy consumption of core components; CPU


and memory. Next, Section 3.4 develops a communication energy consumption model


to evaluate the idea of monitoring I/O energy consumption.


3.2 Modeling Methodology


To explore the relationship between program behavior and power consumption, We


use the Stargate platform instead of the iPAQ handhelds. Even though, both platforms


are similar in their hardware and software capabilities, Stargate has many advantages


over iPAQ for such a study. In Stargate, the power supply pins of both the main board


and PCMCIA cards are easily accessible without breaking apart the device, which is


not the case for iPAQs. Furthermore, the Stargate has multiple I/O ports that become


quite handy in designing a power measurement setup.
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The experimental setup includes multiple Stargate sensor network gateways and


H5550 iPAQs running Linux 2.14.19, an Agilent 54621A oscilloscope and an Agilent


E3648A variable power supply. The oscilloscope profiles energy consumption of one


of the Stargates. We monitor energy consumption in fixed length intervals of 10 mil-


lion instructions. A device driver on the Stargate configures the hardware performance


counters, (i.e. HPM), to generate an interrupt after each interval. The interrupt han-


dler collects HPM data and forces a logic transition on an output port. The Agilent


oscilloscope records these transition times and voltage/current data at a rate of 10000


samples/second. Offline, we analyze this data to extract the length of each interval,


peak and average power consumption, and total energy consumption.


To validate the idea of using software counters for modeling communication device,


we profile the energy consumption of a Netgear 802.11b during wireless communica-


tion. In the setup, there is a Netgear 802.11b network card on each Stargate; the iPAQs


have their own internal 802.11b cards. We configure all the hosts to the 11MB/s ad-hoc


mode, in direct line of sight of each other.


We construct two models to evaluate the counter-based profiling idea. The first one


profiles the energy consumption of software when I/O is not a concern. The second one


profiles I/O heavy applications. When there is no I/O present, the software counters


do not provide any additional information. Therefore the first model uses only HPM
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Training Benchmark Set Reference Benchmark Set
Application Description Application Description
basicmath Math Test gsmdecode GSM decoder
dijkstra Dijkstra shortest path gsmencode GSM encoder
matmult Matrix multiplication jpegdecode JPEG decoder
stringsearch String search jpegencode JPEG encoder
memri* Memory read in-cache mpegdecode MPEG decoder
memro* Memory read out-of-cache mpegencode MPEG encoder
memwi* Memory write in-cache em3d (Java) Graph processing
memwo* Memory write out-of-cache bisort (Java) Sorting
reg* Register operations treeadd (Java) Recursive depth-first


traversal
scps secure file send scps secure file send
scpr secure file receive scpr secure file receive
netpipe network analyzer game of life MPI life game


pvnx MPI solver (small)
pvkx MPI solver (medium)
pvkxb MPI solver (large)


Table 3.1: Training and reference benchmarks. Training benchmarks (left) parame-
terize the model and Reference (right) benchmarks evaluate the accuracy of it. The
benchmarks above the line are to model/evaluate computation; those below for com-
munication. The applications with asterisks are home-grown.


counters to predict computational energy. The second one uses both. We call the former


the computation model and the latter the communication model.


To develop these models, we use a large set of applications. The first suite, to which


we refer to as the training set, we use to define our model. The second suite, to which


we refer to as the reference set, we use for the empirical evaluation of the accuracy of


our model. We present the suites and their brief description in Table 3.1. The left half


of the table is the training set and the right is the reference set. We use the benchmarks
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above the line to model/evaluate computation and those below for communication. We


execute all programs from RAM drive to minimize the effect of flash read/write latency.


The wireless network card is on for all experiments regardless of whether it is used or


not.


The applications come from popular benchmark suites (e.g. MediaBench [45],


Mibench [29], and Java-Olden [5]). The communication benchmarks include the se-


cure copy protocol (scp) receive and transmit and netpipe [63]. For scp, we transfer a


1.7 MB file. Netpipe is a network analyzer. We also include distributed (message pass-


ing interface (MPI)) applications: Game of life [24], pvnx, pvkx and pvkxb [75]. MPI


is typically employed for distributed computing applications in larger systems. These


MPI applications have moderate computation requirements that are within the limits of


the Stargate.


The characteristics of the MPI applications are analogous to the requirements of


high-performance sensor network applications. For example in Life, the first processor


divides the problem space into subspaces and distributes them to the other processors.


Once the other processors complete the execution, they return the results back to the


first processor. Then the first processor combines the results, and reiterates the process


if necessary. This mechanism is very similar to recent query processing and vehicle


tracking architectures for sensor networks. For instance in [68], the nodes are organized


in a tree structure. The root node distributes a query to the network. Each node partially
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processes the query and returns the results to the parent node. It is the parent node which


combines the results. In [76], the remote sensor nodes collaborate with a central sensor


node for airport security and tracking moving objects. The remote nodes do partial


stream processing and filtering using computationally expensive algorithms, while they


continuously exchange updates with a central node. The central node produces the


results.


A device driver collects profile information of these applications during their exe-


cution. We develop and validate our proposed power profiling model using this data.


The next section describes the model in detail.


3.3 Linear Regression For Modeling Computational Power


Consumption


A linear regression equation models the relation between an output (response) vari-


able y and input (explanatory) variables x1, x2, ..., xk using:


y = β0 + β1x1 + β2x2 + ... + βkxk (3.1)


Here βi are model coefficients. Assume we observe the physical relation between y and
xi, n times:
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y x1 x2 ... xk


y1 x11 x21 ... xk1


y2 x12 x22 ... xk2


. . . .
yn x1n x2n ... xkn


We can rewrite this relation using the matrix form y = Xβ + ε and solve it using


b = (X ′X)−1X ′y [52]. Here, b is the least squares (LSQ) estimator for linear model


coefficients β. In our model, xi are hardware and software event counts that are highly


influential in energy consumption and yi are the energy measurements (in Joules). We


experiment with different model sizes k. We collect event counts and energy mea-


surements by sampling program execution every 10 million instructions. LSQ models


are simple and robust and they do not require a priori knowledge of the distribution


associated with the observations [23].


Our proposed energy estimation model consists of a computation and a communi-


cation component. This chapter only describes the computation model. The communi-


cation model is described in Section 3.4. The computation model estimates the energy


consumption on average per instruction for tasks that do not have any significant persis-


tent storage access or communication behavior. In other words, the computation model


models the energy consumption of three most important unit; CPU, memory, and the


memory bus.


To understand the relation between hardware events and the power consumption,


we designed a large model that contains all major power related events. This model
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employs 6 parameters: cycles per instruction (CPI) (x1), instruction cache misses (x2),


instructions not delivered (x3), data stalls (x4), instruction TLB misses (x5) and data


TLB misses (x6). These and similar events has been shown to be effective for power


estimation of the CPU and memory [12, 36, 34]. The power model that we use is as


follows;


E(nanojoules) = α0 + α1x1 + α2x2 + ... + α6x6 (3.2)


where x’s are the model input and the α’s are the weights determined by the model.


The model inputs are expected number of events for an average instruction, for instance


x2 gives the expected number of cache misses during the execution of an instruction.


We compute this value by dividing the number of event counts in an interval by the


interval length (10 million). The model outputs the estimated energy consumption of


an instruction on average, in nanojoules. We estimate the parameter weights using least


squares linear regression (i.e. LSQ) as we described above.


Since the XScale processor is only able to monitor two events at once, we execute


the same program many times to monitor the different events. The measurement data


can differ across runs (of the same program/input) as a result of hardware state or op-


erating system events. To be able to better understand the extent of such perturbations,


we monitor each event 5 times. However, since averaging causes linear regression to


look stronger than it really is [23], We only use the 3rd dataset for each event. We


36







Chapter 3. Modeling Energy Consumption


Computation Energy Consumption Model
Description Coefficient T-stat P-Value


α0 Constant −0.19 −0.73 0.46
α1 CPI 7.06 38.78 0.00
α2 Inst. Miss 678.07 0.55 0.58
α3 Inst. Not Dlvrd −4.28 −1.61 0.11
α4 Data Stalls −1.07 −5.99 0.00
α5 Inst. TLB Miss 686.06 −0.02 0.98
α6 Data TLB Miss −593.39 −8.33 0.00
R2 0.99
Average Error 3.80%


Table 3.2: Coefficient and fit statistics for the computation model.


use the remaining 4 observations to evaluate the impact of such perturbations on model


accuracy.


The benchmarks that we use are significantly different in their durations. Since we


do not want any single benchmark to be represented more than its share in our model,


we choose an equal number of observations from each benchmark. To extend the range


of possible behaviors, we select the first, middle, and last 10 intervals from each profile.


Table 3.2 presents the coefficients of model and evaluate its fit on the training bench-


mark. The top portion of the table shows the coefficients for each of the HPMs. The


bottom portion of the table shows the fit statistics. We evaluate the accuracy of compu-


tation model for the reference set in Section 3.5.


The coefficient of determination, i.e., the R2 fit statistic, indicates the amount of


variation that the model explains. Under most circumstances, it is a reliable indicator
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of model goodness. The R2 varies between 0 and 1, and larger values are better. The


high R2 value of presented model is a positive indicator of its high quality.


The average error statistic shows the absolute model estimation error. We compute


this value using 1/n × ∑


(|measured− estimated|/measured) × 100, where n is the


number of measurements. The model fits very well to the data with an average error


of 3.8%. The rightmost two columns show the statistical significance for the model


coefficients. The t-statistic values show whether we can reject the null hypothesis that


the coefficient of the parameter is zero. The larger values indicate that we have a better


chance of rejecting the hypothesis. The final column shows the probability of having


null hypothesis true (not reject) (i.e. the coefficient has a high probability that it does


not influence the model output variable). It is equal to Pr(|t| > t − stat), where t is


a student’s t-distributed random variable with (n-k) degrees of freedom. Here, n is the


number of observations k is the number of regressors. In our experiment, n is equal


to 260, and k is 6, since there are 6 regressors including the intercept. The t-statistic


values indicate that only three of the coefficients in our model, CPI, DSTALL, and


DTLBMISS are statistically significant (have a high probability of being different than


0).


There are two problems with the presented power consumption model. The minor


one is that the model requires more input parameters than what Intel XScale can moni-


tor at a given time. However since more sophisticated processors, like Pentium IV, can
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CPI IMISS INDLVR DSTALL ITLBMISS DTLBMISS
CPI 1.00
IMISS -0.04 1.00
INDLVR -0.14 0.89 1.00
DSTALL 0.71 -0.05 -0.15 1.00
ITLBMISS -0.04 0.97 0.84 -0.04 1.00
DTLBMISS 0.74 -0.03 -0.11 0.05 -0.03 1.00


Table 3.3: Correlation among model parameters. The darker entries show events that
have strong correlations.


easily support monitoring a dozen or more events at a time, it is highly possible that


future embedded processors will have the same functionality. The second problem is


more serious. Most of the coefficients that the model generates are negative –which is


perfectly fine from a regression point of view, but highly disturbing since energy con-


sumption cannot be negative. To understand the root reason, we investigate the model,


its parameters and their dependency relations. The next section details this.


3.3.1 Problem Encountered In Modeling


Our approach to negative coefficients problem is two-fold. First, we use statistically


valid ways to reduce the number of parameters in power consumption model. Here,


the goal is to develop a model that is accurate but that employs a small number of


parameters. A smaller model is more attractive since it can easily expose the complex


relationship between parameters and let me validate the model.
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To eliminate model parameters, we first analyze the statistical correlations between


the events. Table 3.3 shows the correlation data. A correlation coefficient that is close


to 1.0 means that event pairs are highly correlated.


The correlation matrix shows that CPI, data stalls (DSTALL) and data TLB misses


(DTLBMISS) have high correlation. Among those three, we retain the CPI, since it


has the highest t-statistic, and discard the others. Furthermore, the instruction cache


(IMISS, INDLVRD) and instruction TLB miss (ITLBMISS) events also have strong


correlation. Using similar reasoning, we retain IMISS and discard ITLBMISS and


INDLVRD events. Next, we form a model from IMISS and CPI data that we refer to as


MMISS. Furthermore, we also form a model, MCPI, which uses the CPI metric alone.


Our second method focuses on enabling the extraction of meaningful information


from the coefficients of the model. That is, we would like to be able to understand


the contribution of each component on model output. By doing so it becomes possi-


ble to estimate energy consumption of each hardware event -and it may be easier to


understand why some are negative.


An interesting phenomenon in HPM data is the existence of multicollinearity. Mul-


ticollinearity indicates that some linear relationship exists between the model param-


eters. For example, data cache misses are related to data stalls. As the amount of


linearity increases between metrics, the stability of the coefficient estimates decreases
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precluding us from extracting useful information from the coefficients in computation


model [23].


If the purpose of regression is only to estimate a variable y using a set of model


inputs xi, without assigning any particular meaning to the values of xi, multicollinearity


is not a significant problem and model predictions will still be accurate. However,


if the goal is to understand how much each xi effects y, then multicollinearity can


lead to misleading results. Models that suffer from multicollinearity have much larger


confidence intervals in parameter estimations, that is, the parameter estimations can


shift substantially when there are small changes in input. Another side effect of such


wide confidence intervals is that the t-statistic value of individual parameters cannot be


used confidently to remove arbitrary parameters from the model.


Our approach for reducing multicollinearity is to apply principal component anal-


ysis [37] to transform the correlated variables into a smaller number of uncorrelated


variables called as principal components. The first principal component captures as


much of the variability in the data as possible, and the succeeding components capture


the rest of the variability.


As a first step to PCA, we standardize the dataset, that is, we subtract sample mean


from each observation, and then divide the result by standard deviation of each param-


eter.
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Let the variables xij are model inputs,( i.e the explanatory variables), such that xij


is equal to jth observation of ith variable. The variable x̄i gives the observed mean of


variable xi that is x̄i =
∑n


1 xij/n, and si is the sample standard deviation of xi that is


si =
√


∑n


1 (xij − x̄i)2/(n− 1). In both formulas, n is the number of observations.


After standardization, the goal is to find the coefficients γi that best fit to the linear


equation:


yj = γ0 + γ1x
s
1j + γ2x


s
2j + γ3x


s
3j + ... + γ6x


s
6j + εi (3.3)


In the equation above, xs
ij are the standardized observations of HPM counters. yj is


called the response variable or model output and here it gives the energy consumption


per instruction. The ε is the error term (which we assume to be normally distributed).


One can rewrite Equation 3.3 as


y = γ0 + Xsγ + ε (3.4)


where Xs is an n × 6 matrix whose columns Xs
i are standardized HPM observations,


x0, x1, ..., xi respectively. γ is a column vector of size 6 and its entries are coefficients


γ0, γ1, ..., γi.


Our goal is to transform the model explanatory variables, X s, into a new set of


uncorrelated variables, which are the principal components of the correlation matrix


Xs′


Xs. We then remove the components that explain the least amount of variance.
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Coefficients of Principal Components
1 2 3 4 5 6
0.17 0.68 0.00 0.10 0.02 -0.71
-0.57 0.18 -0.02 -0.25 -0.77 -0.02
-0.55 0.08 0.01 0.81 0.16 0.06
0.14 0.47 -0.72 0.02 0.00 0.48
-0.56 0.18 -0.02 -0.52 0.62 -0.02
0.12 0.50 0.69 -0.01 0.00 0.51
% of Variance Explained
47.61 33.44 15.77 2.75 0.40 0.04


Table 3.4: Principal components. Table shows the coefficients of principal components
and the amount of variance explained. Principal components sorted in decreasing order,
wrt. variance explained.


By doing so, we can decrease the effect of multicollinearity, and therefore narrow the


confidence interval in our coefficient estimates.


As Xs′Xs is a square matrix, one can decompose it into its eigenvectors Vi and


eigenvalues λi such that (Xs′Xs − λiI)Vi = 0, where I is the identity matrix. The


eigenvectors are orthonormal, that is ViVj = 0 for i 6= j. Let eigenvector matrix be


V = [V1, V2, ...V6]. Again, as eigenvectors are orthonormal, V V ′ gives the identity


matrix I . Thus, one can rewrite Equation 3.4 as:


y = γ0 + XsV V ′γ + ε


One can substitute XsV with Z and V ′γ with θ:


y = γ0 + Zθ + ε (3.5)
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The normalized eigenvectors Vi of squared matrix Xs′Xs give the coefficients of


principal components. In other words, the principal components matrix Z is equal to the


product of parameter observations Xs with eigenvector matrix V . After computing the


principal components of the data, one can remove the multicollinearity by discarding


the components that account only a fraction of the total variability. The penalty however


is a decrease in model accuracy in exchange of an increase in confidence level of model


parameter estimations. The eigenvalues show this variation. Let Vi is an eigenvector


and λi is the corresponding eigenvector. The ratio λi/
∑6


1 λk, gives the amount of


variation that the corresponding principal component explains. Figure 3.4 shows the


principal components of the data and the amount of variance that they explain (the


largest first). As the figure suggests, the first three principal components account for


more than 95% of model variability. Hence, we retain the first three components and


discard the rest.


Next, we do regression using the principal components Z and compute the coeffi-


cients of principal components, that is the column vector θ. The estimated regression


coefficients are free from the correlation (and thus, are more stable). Using θ, we com-


pute the coefficients of standardized HPM counters, γ:


γ = V θ


However, the γ gives the coefficients of the standardized HPM counters. Finally, as


described in [52], We transform the coefficients back to the original HPM variables.
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Computation Energy Consumption Models
Description MPCA Coefficients MMISS Coefficients MCPI coefficients
Constant 6.6 1.90 1.90
CPI 2.8 5.74 5.74
Inst. Miss 2814.5 180.0 −−
Inst. Not Dlvrd −18.6 −− −−
Data Stalls 3.05 −− −−
Inst. TLB Miss 83039.4 −− −−
Data TLB Miss 1055.8 −− −−
R2 0.99 0.99 0.99
Average Error 12.9% 5.81% 5.88%


Table 3.5: Coefficient and fit statistics for improved models.


We do this using:


αi =
γi


si


, 1 ≤ i ≤ 6


α0 = γ0 −
6


∑


i=1


γix̄i


si


We call this model MPCA.


We develop MMISS and MCPI using the same method that we applied previously in


Section 3.3. Table 3.5 summarizes the new models and their coefficients. As expected,


the removal of three principal components reduces the accuracy of MPCA model, and


consequently its error rate increases to 12.9%. However, this model enables us to extract


information about the impact of each component in the model. The MPCA coefficients


provide significant insight into memory and CPU energy consumption. We find that,


(1) an instruction miss is approximately 1000 times more expensive than a clock cycle,


(2) a data stall cycle (a clock cycle where pipeline stalls and waits for data) is slightly
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more expensive than an instruction execution cycle (probably due to memory access


activity), and (3) an instruction TLB miss is 75 times more expensive than a data TLB


miss. However, the most interesting coefficient is instructions not delivered, which has


a negative coefficient. A negative coefficient here does not mean a flaw in the method-


ology, but it indicates that the CPU (and memory) energy consumption drops below


average level, which is the sum of constant factor, CPU clock counter and other events


that the power model includes. This indicates that the CPU applies several techniques


such as clock gating to reduce its energy consumption once pipeline is stalled.


The MCPI and MMISS model perform similarly and both are more accurate than


MPCA. However, the t-statistic for the IMISS event is only 0.49 which indicates that


this parameter is not significant. We therefore, remove MMISS from our model set.


The results show that CPI is a significant metric in the estimation of energy con-


sumption. This is similar to the findings of prior study [7, 12]. Section 3.5 evaluates


these models using a reference benchmark suite.


3.4 Modeling Communication Energy Consumption


We next introduce our model for wireless interface cost. This model is independent


from the computation model to enable portability, i.e., we can swap the model for


others for comparison or to improve accuracy. We combine the models via arithmetic
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addition of the two estimates. Modeling the network interface is more challenging than


modeling the processing unit because the network interface is significantly impacted by


external effects such as RF interference, network congestion, asymmetric links due to


badly calibrated hardware, etc. We do not consider these conditions since our goal is to


explore the challenges of combining software counters with hardware counters.


As we did for the computation model, we employ a wide range of empirical obser-


vations from benchmarks to develop our communication model. The wireless network


includes a set of 6 hosts, including PDAs and laptop computers. The network load


varies from idle to a few megabits/second and is susceptible to interference from two


separate wireless networks. Wireless speed rate is fixed at 11Mbits/sec.


The communication model is a linear parametric function like the computation


model, and has four parameters: transmit bytes (TXB), receive bytes (TXB), trans-


mit packets (TXP ), and receive packets (RXP ). The model uses these parameters as


follows:


En(Joules) = TXBβ1 + RXBβ2 + TXPβ3 + RXPβ4 + K


The communication training benchmark suite considers three different scenarios:


(i) upload heavy communications (ii) download heavy communications and (iii) almost


symmetrical, mesh type communications. For the first two scenarios, we use the scp


benchmark. To collect behavior from the symmetric communications, we use the net-


pipe benchmark to generate network load. Typically, netpipe transfers are ping-pong
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Communication Energy Consumption Model
Coef. Description Bytes+Packets Bytes
TXB TX bytes 2.40× 10−6 6.29× 10−6


RXB RX bytes −4.78× 10−7 −1.69× 10−6


TXP TX packets −2.90× 10−3


RXP RX packets 5.50× 10−3


K Constant 2.37× 10−2 2.00× 10−1


R2 0.972 0.796
Average 26.9% 208%
95th Percentile 59.6% 470%
Wireless Idle Power 562± 146 mWatts


Table 3.6: Communication energy model. The energy consumption of wireless card as
a function of transferred bytes and packets.


like, it transfers one packet to a server and receives another packet before continuing.


This forces the network to transmit every single packet, without opportunity to stream


multiple small packets together. Netpipe also exposes idiosyncrasies that result from


the internal hardware buffer, by re-evaluating each packet size using a constant per-


turbation factor. There are four transfer size categories: (1) small: < 100 bytes; (2)


medium: 100 to 1000 bytes; (3) large: 1000 to 4000 bytes; and (4) very large: 4000


bytes to 200KB. We repeat each transfer 100 times for the first three categories and 10


times for the last category.


We consider two different models, one that considers both bytes and packets trans-


fered and one that only considers bytes transferred. We refer to the former as (Bytes+Packets)


and the latter as (Bytes). We present the LSQ coefficients for both models as well as


the fit statistics for the training data set for the selected intervals in Table 3.6.


48







Chapter 3. Modeling Energy Consumption


Both models exhibit much higher error rates than those from the computation model.


The error is due to the difficulty of capturing external effects. However, these results


are for energy consumption of the wireless card only. The evaluation section discusses


benchmarks that perform both computation and communication. The error for the latter


will impact overall estimation depending on the amount of communication performed


by the application.


Interestingly, these results show that it is very important to consider both packet


count and bytes transfered to produce an accurate model. By extending the byte model


to include the packet counts, we improve the error rate of the model by almost an


order of magnitude. The low accuracy of byte model reflects the non-linearity between


transfer sizes and packet sizes. Small packets have a disproportionately large overhead


due to protocol headers.


3.5 Validation


Here, we evaluate the efficacy of the proposed techniques. For comparison pur-


poses, we use the closest published energy consumption model, that was described


in [12]. We refer to this model as MCPUMEM.


MCPUMEM was developed for the same Intel XScale CPU and memory con-


figuration and uses similar HPM-based techniques. One primary difference is that
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MCPUMEM is limited to modeling and measuring memory and CPU energy consump-


tion; it does not consider the full system. In contrary, our measurements and model in-


clude all I/O devices and other system components that exist on the embedded device.


Thus, some divergence in the results is normal. However, the comparison of the two


models are extremely useful in understanding and visualizing modeling challenges.


To correct and better understand the behavior of MCPUMEM, we (1) add the idle


power consumption of wireless card to MCPUMEM (a constant factor), and (2) ana-


lyze MCPUMEM’s mean error and its deviation. Deviation indicates how much the


mean prediction error varies from one benchmark to another. As mean error can be


affected by the idle energy consumption of hardware components, the deviation of the


estimations better describes the quality of model. The following subsections discuss


the models in detail.


3.5.1 Computation Model


Figure 3.1 shows the error rate for the reference benchmark set for proposed mod-


els. These models include MLARGE – the original model without the removal of


multicollinearity; MPCA – the original model that uses principle component analy-


sis for multicollinearity removal; MCPI – the original model with HPM metrics CPI;


MCPUMEM – the CPU-only HPM-based model. MCPI and MLARGE perform sim-


ilarly with an average error of 7%. The error is slightly lower for the MediaBench
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Figure 3.1: Error rate for the computation model.


benchmarks than for the Java benchmarks, this is because the behavior of the Java


benchmarks is much more variable due to benchmark activity, garbage collection, class


loading, interpretation, and other factors.


MPCA produces an average error of 22% making it unsuitable for energy estima-


tion of computation-bound tasks. As explained previously, removing some principal


components can reduce model accuracy while improving the parameter estimates. On


the other hand, MPCA error rate is particularly low for two benchmarks, jpegencode


and jpegdecode. These two benchmarks are less data intensive and more processor


bound than the other benchmarks. Collected HPM data indicates that jpeg executes one


instruction per data stall. The MPCA is particularly successful in modeling processor


than the memory –the lack of a memory access counter reduces its memory model-
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ing accuracy. However, since we remove some principal components from the model


to improve model coefficient estimations, MPCA looses significant information about


memory access cost.


MCPUMEM produces an average error rate of 30%. Moreover, its error rates vary


from 20% to 40% across benchmarks, with a standard deviation that is twice that of the


other models. The reason for this is that MCPUMEM is designed to estimate the power


consumption of the CPU alone and not the full system.


A significant result is the success of MCPI model. The MCPI has an error rate close


to the MLARGE model, using a single model input -the clock cycles per instruction.


On XScale, one can gather this information accurately by reading the two hardware per-


formance monitors; the clock cycle counter and the instruction counter. This can lead


to a run-time power model since an ordinary XScale is already capable of collecting


this information using its two HPM counters.


3.5.2 Communication Model


We next integrate the computation and communication model and evaluate the accu-


racy of the combined model. We estimate the energy consumption using Et = El + En


where Et is the total energy consumption, El is the computation model output and En


is the network model output. We use the names of the computation models that was


discussed in the prior section to identify the integrated models in this section.
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Figure 3.2: Error rate for the communication model.


Figure 3.2 shows the percent error for all the models. MCPI and MLARGE perform


similarly with an average error rate of 11%. The error rate is 38% on average for


MCPUMEM.


Interestingly however, in communication dataset the MPCA is as accurate as the


other models, with an average error of 13%. The prediction error of MPCA is below


25% for all programs. MPCA is significantly different than all other models. As Ta-


ble 3.5 shows, MPCA gives much higher weight to instruction pipeline events (TLB


miss, instruction not delivered, etc) than the other models. Due to frequent I/O between


wireless card and CPU, such events play a significant role in describing program en-


ergy consumption. Hence, MPCA is important as it addresses the deficiencies in other


models.
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3.6 Why Linear Regression?


In this chapter, we limit ourselves to a linear model to explain the relation between


power consumption and hardware (and software) events. In other words, given the


events xi and energy consumption E


E = β0 + β1x1 + β2x2 + ... + βkxk (3.6)


we develop our models based on the assumption that the parameters βi are linear. Here,


we do not consider non-linear models. Our reasoning is two-fold. First of all, a large


body of extant work has already demonstrated highly accurate linear models for various


hardware components including memory [39], CPU [7, 38, 78, 39, 35, 12], and I/O [46].


Second, as we show in Section 3.3, the high R2 of our model is a strong indication that


our linearity assumption is true.


An alternative way of estimating linear model parameters from observed data is


maximum likelihood [9]. The goal of maximum likelihood is to find the parameters that


make the observed data most likely. This method assumes a fixed observation vector


x, and defines a function L(θ|x) which shows the likelihood of parameters θ given the


observations x. A maximum likelihood estimator for θ(x) is a value that maximizes the


value of L(θ|x) for the given observations x.


To explain this better, imagine a coin toss experiment using a biased coin. Here,


let θ is the probability of having heads as experiment outcome. If we observe 60 heads
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and 40 tails in 100 experiments, we can find the likelihood of having model parameter


θ = 0.5 (a fair coin) using binomial distribution:


L(θ = 0.5|x) =
100!


60! 40!
0.560 0.540 = 0.01


Even though maximum likelihood is known to perform well when the sample size


is large, its estimators are biased when sample size is small. Furthermore, maximum


likelihood is rather complicated when multiple parameters are involved in the model


and an efficient run-time implementation of it is not obvious to us (which is our major


goal as we discuss in next section), given the constraints of our target platform. For this


reason, we do not evaluate this approach further in this dissertation, and leave it as a


future direction.


3.7 Related Work


This chapter discusses full system energy consumption modeling for low power de-


vices. It models the Stargate sensor network gateway as a case study. The models it


proposes use hardware and operating system monitors to estimate the power consump-


tion of a sensor network gateway. The work most related to this is on HPM-based


models for CPU and memory energy estimation [7, 38, 78, 39, 35, 12]. In recent work,


Bircher et al. [7] presents a power model for the Pentium-IV class of processors. They


develop their power model using least squares regression (LSQ) [23] and show that two
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hardware counters are enough to model energy consumption on their target architecture.


However, they do not consider memory, and memory bus in their study.


In embedded systems, the most similar study to our approach is by Contreras et


al. [12]. In this work, the authors use LSQ to develop a power model for an Intel


XScale processor attached to a development board. Using this model, the authors are


able estimate CPU energy consumption with a 4% error rate. However, their efforts to


construct a memory power model did not perform as well due to the lack of hardware


counters in the CPU that count memory events. Here, we compare this HPM model


to estimate full system energy consumption by employing software counters. This


model considers a larger set of components including memory and memory bus and


demonstrates a lower error rate.


3.8 Summary


This chapter presents a system for estimating full-system power consumption of


Crossbow Stargate sensor network device. It couples statistical techniques that employ


empirical data from hardware and software performance monitors to model the com-


putation and communication of executing tasks. The results indicate that metrics like


instruction execution rate, memory access rate and data transfer rate are quite effec-


tive in predicting energy consumption of the full system. It finds that the model that
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predicts energy consumption does not necessarily have to be large for better precision.


Furthermore it demonstrates that larger models are more likely to suffer from higher


error rates due to multicollinearity -the linear dependencies between model parameters.


Multicollinearity reduces coefficient estimation stability and prevents extracting use-


ful information about the contribution of the model components. Finally this chapter


shows that principle component analysis can reduce multicollinearity in the model data


at a cost in accuracy.
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Chapter 4


Predicting Energy Consumption at
Run-Time


The previous chapter claimed that a run-time power measurement system is neces-


sary for new power optimizations, and it explored the challenges of modeling energy


consumption using hardware performance monitors and linear regression. This chapter


proposes a run-time power estimation mechanism for low-power, resource-restricted


embedded computers. Section 4.1 describes extant power measurement methods and


discusses their advantages and disadvantages. Section 4.2 describes the high-level ideas


behind the proposed power profiling system, Section 4.3 describes evaluation method-


ology, and Section 4.4 validates it on a popular embedded platform. Section 4.5 dis-


cusses why we choose our model, and compares it to alternative approaches. Sec-


tion 4.6 presents related work. Finally, Section 4.7 gives a summary and concludes.
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4.1 Extant OS Support For Measuring Energy Use


Current operating systems provide little support for run-time energy profiling. Usu-


ally, a simple operating system interface provides access to a device that controls the


battery charge/recharge cycles. This device has a voltage sensor for continuously mon-


itoring charge level to prevent any over-charge. By comparing the output of this sensor


to a set of voltage measurements collected at known charge levels, operating system


can roughly estimate the current battery charge and the rate of energy use. However,


this information is too coarse and imprecise for almost any kind of energy profiling.


A recent, second-generation battery monitoring unit [13] (aka BMU) enables much


higher fidelity. The battery monitoring unit continuously monitors the voltage drop


across a high-precision current sense resistor to compute the current flow. The voltage


drop, when divided by the value of the sense resistor, gives the instantaneous current


flowing into and out of the battery. The battery monitor interpolates these measure-


ments over time to compute the net charge that is left in the battery. An internal accu-


mulator holds the result of this computation. By reading the accumulator state before


and after the execution of a software task, a user application can compute the rate of


energy use.


Even given these significant improvements in energy measurement technology, they


still only enable coarse-grained and inaccurate readings. The latency of the system
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makes measurement possible at only large intervals (10s of milliseconds), precluding


our ability to attribute energy consumption to only behaviors and tasks with long dura-


tion (on the order of seconds) [13]. Moreover, the low resolution of the A/D converter


and the limited width of the internal registers restrict sample precision. In addition, the


relatively long, slow, serial path between the application, through, the operating sys-


tem, to the battery pack, prevents us from extracting battery levels in real time (e.g. the


instant a task completes) and thus, increases the granularity and decreases the accuracy


of the energy measurements that we make.


In order to better understand the capability of these devices, we analyze one such


advanced battery monitoring unit. Using [13], we can compute the energy consumption


from time t1 to time t2 by reading the accumulator register and battery voltage. More


specifically, let (v1, ac1) and (v2, ac2) be voltage and accumulated current readings at


time t1 and t2. The energy consumption at [t1, t2] is:


E = (v1 + v2)/2× (ac1 − ac2)× 3600 sec/hours


This equation does not include time since ac is the accumulated current and not the


average current. The multiplier, 3600 sec/hours, converts the result to microjoules.


In [13], each current reading may be upto 0.25 milliAmpere-hours (mAh) different


than the actual charge in battery. 0.25 mAh is equal to the aggregated electrical charge


when a current of 0.25 milli-amperes passes through battery terminals for a period of


one hour. In terms of energy, this is equal to 3.24 joules (i.e. 3600×0.25×3.6) at the full


60







Chapter 4. Predicting Energy Consumption at Run-Time


battery charge level (3.6 Volts). This is a very small error for battery lifetime estimation


but it is rather high for software profiling. Indeed, a fully loaded iPAQ uses less than


half of this energy in a second. Thus, only the tasks that are extremely long (i.e. tens of


seconds) can be power-profiled using a battery monitoring unit. However, even then, the


lengthy communication latency does not allow collecting this information accurately.


As a workaround, extant systems use execution time and CPU cycles to estimate


energy cost. These metrics can be measured quickly and precisely using operating sys-


tem clock. However, execution time and CPU cycles are hardly correlated to power


consumption. For example, on a Pentium-IV processor, the power consumption varies


from 30 Watts to 90 Watts depending on the type of instruction [35]. Energy consump-


tion also changes depending on the processor voltage, power/performance settings of


other components, etc. Thus energy should be measured directly, whenever possible.


4.2 Proposed Run-time Energy Prediction Mechanism


Figure 4.1 reveals the high-level overview of proposed power profiling mechanism.


The proposed mechanism contains a model that maps hardware and software counter


values into power values. The model is adaptive; it can continuously improve itself by


monitoring its error rate. Although a static method is more desirable from a computa-


tional point of view, it cannot adapt to the dynamics of the run-time power behavior.
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Figure 4.1: Block diagram of proposed run-time power prediction system


A static model may produce incorrect results if there is a large change in workload


characteristics, or if hardware power/performance settings are altered. To attack this


challenge, we propose a progressive model; one that can monitor its prediction error


using feedback from battery monitor and can adapt over time.


The heart of our system is the run-time profiler. The profiler polls the battery mon-


itoring unit that we described in Section 4.1 and accumulates values from software


and hardware counters periodically. After each period, the profiler updates the model


parameter coefficients iteratively to improve its prediction accuracy and to adapt to


potential changes in power behavior. We call each such period a model update period.


Due to its stability, robustness, adaptivity and modest computational demand, we


use recursive least squares linear regression with exponential decay [85] (i.e. RLS-ED)


to update model coefficients iteratively. The RLS-ED is a recursive implementation of


62







Chapter 4. Predicting Energy Consumption at Run-Time


the well-known least squares linear regression. Using a decay factor, it exponentially


reduces the weight of the oldest measurements. With the measurements uk at time k,


and the decay factor γ, RLS-ED weights the measurements using:


uk + γu(k − 1) + γ2u(k − 2) + ... + γku0


The γ adjusts the adaptiveness of the algorithm (γ ≤ 1.0). A smaller γ means the


model is more responsive to changes in the input data but less resilient to noise. In


Section 4.4.1, we discuss the effect of γ on regression accuracy and stability.


Internally, RLS-ED maintains a matrix of size n × n (n is equal to the number of


model parameters) to retain the state information between each iteration. Each RLS-ED


iteration involves eight matrix multiplications, each of which requires approximately


one hundred floating point operations when n = 2. Even though this may not be


a significant cost on high-end machines, these floating point operations can consume


significant resources on many resource-constrained platforms. To reduce this cost, we


explore policies to reduce RLS-ED iteration frequency, in the next section. In addition,


since the asymptotic complexity of the algorithm is O(n3), the model must be as small


as possible to keep n small and the computational cost of the algorithm low. We discuss


RLS-ED execution period (i.e. model update period) and execution cost in next section.


The power estimator uses hardware and software counters and model coefficients


to estimate corresponding power consumption. To estimate the energy consumption of


a task (i.e. here, we use intervals of 10 million instructions instead of software tasks), a
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software component has to collect the values of these counters immediately before and


after the execution of the task. This can easily be done by using and extending portable


middleware systems like PAPI [58]. Since the LSQ models that we use have only a few


inputs, each estimation in our model requires fewer than 10 floating point operations.


The offline profiler is the only optional component of our system. As the RLS-ED


algorithm is recursive, it requires an initial state to start its iterations. Without the exis-


tence of an offline profiler, the error rates can be high until the algorithm reaches a stable


state. While the offline profiler has the potential to improve model accuracy consider-


ably, the extra effort associated with profiling makes it undesirable. The forthcoming


section discusses the extra accuracy such a profiler can provide.


4.3 Evaluation Methodology


Our approach to model evaluation is empirical. We collect real power measure-


ments using the setup and benchmarks described in previous chapter (i.e. Section 3.2),


inject error to them as would be expected in real battery monitor measurements, and


evaluate the models on these data by varying their parameters. We then compare pre-


diction results to real measurements. This section discusses the power models. The


next one describes the evaluation in depth.
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Computation Communication


Compact
Cpu Cycles Cpu Cycles
Data Stalls Tx Bytes


Rx Bytes


Complex


Cpu Cycles Cpu Cycles
Inst. Miss Tx Bytes


Inst. NDlvr Rx Bytes
Data Stalls Tx Packets


Inst TLB Miss Rx Packets
Data TLB Miss


Table 4.1: Input variables in derived power models


Table 4.1 shows the two models that we derive. The first one, to which we refer as


complex model, has a computation (Ec) and communication (En) subcomponent. The


components are defined as:


Ec(Joules) = α0 + α1x1 + α2x2 + ... + α6x6


En(Joules) = α1x1 + Btxβ1 + Brxβ2 + Ptxβ3 + Prxβ4 + K


where xi’s are core clock cycles, instruction cache misses, instructions not deliv-


ered, data stalls, instruction TLB misses, and data TLB misses, respectively. The α’s


are computed as described in Section 3.3. In complex communication model, (Btx),


and (Brx), specify the transmitted and received bytes as we defined earlier. Ptx and Prx


are the transmitted and received packet counts, respectively.


The computation model is same as the large model in previous chapter. We choose


this since it has the lowest error across all benchmarks. The communication model is
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different, however. Unlike the previous static model, the recursive, RLS-ED model is


very sensitive to any increase in parameter size due to O(n3) computational cost. Thus


to limit parameter size, we define the communication model as a combination of MCPI


(which was shown to be the second most effective model) and packet/byte counters.


The second model, to which we refer as compact model, also consists of compu-


tation and communication components. The computation model estimates the energy


consumption of tasks that execute without any communication or any significant access


to persistent storage. This model includes three parameters:


Ec(Joules) = α0 + α1x1 + α2x2 (4.1)


where xi’s are core clock cycles and data stalls, respectively. The communication model


uses two software performance counters: transmit bytes (Btx), receive bytes (Brx) and


one hardware counter, core clock cycles. Again, we do not include other HPM events


to reduce the cost of RLS-ED iterations. The compact communication model is:


En(Joules) = α1x1 + β1Btx + β2Brx + K (4.2)


Here, α1 is the weight of core clock cycles and β’s are weights of transmit and re-


ceive bytes. At present, the models do not incorporate low level card state (idle, etc.)


information, as we favor a simpler model at the expense of a potentially higher error


rate.
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Computation Benchmark Set Communication Benchmark Set
Application Time (s) Application Time (s)
gsmdecode 1.0 game of life (MPI) 9.02
gsmencode 1.1 pvkxb (MPI) 35.2
jpegdecode 5.4 pvnx (MPI) 37.78
jpegencode 17.1 pvkx (MPI) 69.36
mpegdecode 72.9
mpegencode 91.7
em3d (Java) 12.1
bisort (Java) 20.4
treeadd (Java) 3.8


Table 4.2: Prediction benchmarks. The set to the left are to model/evaluate computa-
tion; the rest are for communication.


We validate our model using the benchmarks described in Section 3.2. We only use


the benchmarks in the reference set; Table 4.2 reminds these for convenience.


4.4 Results


This section evaluates the models that were presented. It explores the performance


of models in terms of accuracy, under various factors, such as update rate, mesaurement


error and agility (RLS-ED decay factor). In addition, it discusses the execution cost of


both run-time computation, and battery monitor access.
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Figure 4.2: Decay factor vs. accuracy. A lower γ gives exponentially greater weight
to most recent data. However, this makes the algorithm more vulnerable to noise. The
results show that RLS-ED algorithm works best when γ is between 0.9 and 1.0.


4.4.1 Decay Factor vs. Accuracy


We first explore the relationship between decay factor, γ, and accuracy. In this ex-


periment, we do not consider execution overhead, hence, we update model coefficients


after each interval. We initialize the coefficients differently for computation and com-


munication models. For the former, we use the values described in previous chapter


(i.e. Chapter 3). For the latter, we monitor a secure file transfer (i.e. scp) of 17MB file


across the wireless network multiple times and run the offline profiler to generate the


initial values.


Figure 4.2 shows evaluation results for γ = 0.5, 0.7, 0.9 and 1. When the decay


factor is 1, the algorithm becomes ordinary recursive least squares regression and does
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not decay any of the previous values. Conversely, when the decay is 0.5, the algo-


rithm effectively remembers only the most recent four measurements. For each bench-


mark, we show the average estimation error, which we compute using |measured −


estimated|/measured× 100. The error rates vary from 0.5% to 10% in general, giv-


ing an average error of 2.6% for γ ≥ 0.9, and increasing up to 13.7% when γ = 0.5.


As expected, the error rate is higher for the communication benchmarks. We have


encountered a few atypical cases and in one of the benchmarks the error rate was equal


to almost 100%, which means the predictions were off by a margin equal to the real


value. These atypical cases were specific to low decay factors and to the pvkx bench-


mark. Pvkx is an MPI program that includes a lot of short communication and com-


putation phases. These phases generate sudden, transient changes in program behavior.


When the decay factor is very low, RLS-ED remembers a very short history and reacts


much faster than necessary, generating erroneous estimations. In other cases, the error


rates are much lower. Overall, moderate decay provides the best result.


In Figure 4.3, we compare the adaptive model, γ = 0.9, to the case when the model


is completely static. The dynamic model provides much lower estimation errors in


general (2.6% to 5.6%). The only benchmark for which the dynamic model generates


higher error is pvkxb (6.5% vs. 4.7%). Pvkxb is similar to the pvkx benchmark, how-


ever, it is much shorter. As a result, pvkxb offers very few adjustment opportunities to


RLS-ED algorithm.
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Figure 4.3: Static vs. adaptive models. Figure compares the error rate of the adaptive
model with a static one. The adaptive model generates better results in almost every
benchmark.


Figure 4.4: RLS-ED update frequency vs. accuracy. Figure compares the error rate
of 4 update policies. 1 means that the system updates the model after every interval,
5 means that the system accumulates the monitored statistics for 5 intervals before
updating, etc.
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4.4.2 Update Period


Figure 4.4 shows the error rate when RLS-ED algorithm runs infrequently to reduce


its computation overhead. The update policy combines ρ consecutive intervals into a


single super-interval and updates the model once for each. However, we estimate en-


ergy consumption after every interval as we did in our prior experiment. We experiment


with ρ = 1, 5, 10 and 20 and use a decay factor of 0.9.


As expected, the average error rate across all benchmarks increases as we increase


the value of ρ. However, the increase is not linear and produces surprising results, es-


pecially for the network applications. For pvkx and treeadd, the error rate exceeds 50%


when r = 5 at a single point. For pvkxb, which was our most challenging benchmark


in many cases, the error rate tops 350% when ρ = 10 and decreases when we increase


the r to 20.


4.4.3 Benefits From Offline Profiling


We next investigate the efficacy of using the offline profiler to reduce model error


rate during the initial warm-up period of the RLS-ED algorithm. Figure 4.5 shows the


results across benchmarks for γ = 0.9. The light colored bars show the error rate when


we use an offline profiler, the dark colored bars show the error rate when we do not.


For the offline profiler, we determine the coefficients as we outline in Section 4.4.1. In


the absence of the offline profiler, we initialize all the coefficients to 0.


71







Chapter 4. Predicting Energy Consumption at Run-Time


Figure 4.5: Benefit from an offline profiler. The offline profiler reduces error rate 2.5%
in average.


The offline profiler reduces the error rates for all cases. The benefits are more clear


for the shorter benchmarks such as gsmdecode, gsmencode, and life. The offline pro-


filer only marginally effects the network benchmarks such as pvkx, pvnx and pvkxb. In


contrast to the life application, these three benchmarks tend to transfer smaller amounts


of data between their computation period, and are more susceptible to variations in


network latency. Overall, profiling reduces error rate from 5.2% to 2.7%.


4.4.4 Battery Monitor Error Rate vs. Accuracy


A novel feature of our proposed model is the use of the battery monitor as feedback


to adjust the model coefficients at runtime. The internal BMU, however, is imprecise,


and introduces a much higher error rate than that of our external, high-precision, equip-
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ment. In our target platform, the energy readings are within 4.88mVolts and 0.25mAh


(milliampere-Hours) of real voltage and current flow of the battery pack. We assume


that the battery voltage stays stable between two readings because of the short period,


hence we only consider the current flow measurement errors.


Two other factors, although not directly related to the accuracy of BMU readings,


significantly influence our design. The first factor is related to the BMU access over-


head. The BMU and CPU is connected through a serial, one-wire link and frequent


accesses incur an overhead. The second factor is the computational cost of the RLS-ED


algorithm. Therefore, we combine ρ consecutive intervals into a single super-interval


and update the model once for each. In this section, we evaluate several factors of ρ


and algorithm accuracy.


The BMU datasheet [13] does not provide any details about measurement error


distribution. In this case, we assume a uniform distribution such that the difference


between real values and the observed values can be in the range [−0.125, 0.125] mAh.


To explore the effect of this error, we injected artificial error into the current flow mea-


surements immediately prior to running the RLS-ED algorithm. We call this amount of


error 1X precision.


To capture future improvements in battery monitoring technology, We also inves-


tigate three other precision levels; 2X, 4X, and 8X. The prefix before X is the ratio of


reduction in error rate, for example, 2X has an error range [−0.062, 0.062] mAh. We
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compare these results to a precise battery monitoring unit, which has a precision that is


equal to that of our external measurement equipment (no artificial error).


4.4.5 Performance Of Complex Model


Tables 4.3, 4.4, and 4.5 show the results for three RLS-ED update periods, ρ =


100, 200, and 400, respectively. As the unit of ρ is instructions executed, the exact


length of update period in wall clock time is somewhat arbitrary. However, in an Intel


XScale CPU running at 400 MHz, the updates are separated by at least 10 seconds


(much more in practice) when ρ = 400, and less for the other cases. In each table, we


group the results by ρ and then divide each group into columns of precision. The X in


the column header shows the precision level. ∞ means that the precision is equal to


the external equipment. The tables show results for both the compact and the complex


models.


We set the decay factor, γ, to 0.9. The offline profiler warms-up the coefficients by


running a benchmark once, and then repeatedly runs the benchmark until we monitor at


least 2000 intervals. By repeatedly executing them, we can monitor how the feedback


and adaptiveness mechanism of the algorithm behaves even for the benchmarks that are


shorter than one period.


As the results show, there is a large discrepancy between the imprecise (i.e. 1X to


8X) and the precise cases. When no measurement errors are present, the RLS-ED algo-
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1X 2X 4X 8X ∞
bisort 460.2 232.0 61.3 58.6 3.7
em3d 1004.4 498.7 184.7 126.2 5.4
gsmdecode 7.0 4.1 3.4 3.5 3.0
gsmencode 693.0 295.6 229.3 86.9 0.7
jpegdecode 79.9 107.8 31.6 9.9 1.4
jpegencode 45.8 19.3 14.0 6.1 1.2
life 149.9 72.3 40.7 19.9 4.3
mpeg2decode 18.2 14.2 5.7 2.4 0.4
mpeg2encode 30.8 21.1 11.9 5.0 3.7
pvkx 69.4 29.9 19.5 13.1 9.4
pvkxb 49.4 35.1 21.9 17.4 16.1
pvnx 24.0 29.3 13.2 6.9 5.8
treeadd 77.8 33.0 18.7 10.0 1.0


(a) Complex Model


1X 2X 4X 8X ∞
bisort 5.9 2.8 2.3 2.4 1.8
em3d 165.8 130.1 64.8 114.6 2.7
gsmdecode 2.5 1.1 0.8 0.7 0.3
gsmencode 136.3 90.3 17.9 19.3 0.3
jpegdecode 87.4 23.6 23.0 9.9 1.0
jpegencode 32.5 10.4 7.4 7.1 4.1
life 145.3 50.2 19.6 23.3 4.7
mpeg2decode 10.7 2.8 1.9 1.5 0.3
mpeg2encode 16.9 10.7 6.1 5.0 2.0
pvkx 16.6 14.3 13.2 9.7 8.7
pvkxb 32.7 31.1 19.6 20.6 20.2
pvnx 13.1 7.2 3.6 2.5 1.1
treeadd 28.4 14.4 8.7 4.3 2.1


(b) Compact Model


Table 4.3: Comparison of model error rates, updating every ρ = 100 intervals.
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1X 2X 4X 8X ∞
bisort 1348.9 353.7 273.6 169.2 5.1
em3d 709.9 248.0 101.5 91.7 4.3
gsmdecode 7.0 7.1 6.3 6.0 5.9
gsmencode 728.6 315.3 183.5 91.3 1.0
jpegdecode 49.7 40.6 34.8 6.6 0.7
jpegencode 25.5 24.0 10.1 4.0 1.4
life 127.8 48.6 42.6 17.8 3.8
mpeg2decode 22.4 9.6 4.7 2.9 0.4
mpeg2encode 34.0 37.1 7.0 5.6 5.6
pvkx 66.7 19.6 14.7 12.5 8.2
pvkxb 33.9 28.2 7.9 8.1 6.8
pvnx 12.1 9.2 6.0 6.0 5.4
treeadd 91.1 42.6 15.8 12.1 1.4


(a) Complex Model


1X 2X 4X 8X ∞
bisort 11.3 3.8 2.1 2.3 1.9
em3d 280.9 58.8 46.3 16.3 2.2
gsmdecode 2.9 1.4 0.9 0.7 0.5
gsmencode 298.4 118.6 49.1 20.5 0.4
jpegdecode 19.6 22.8 9.1 14.2 1.2
jpegencode 23.5 4.4 3.7 3.3 2.0
life 90.1 44.5 17.0 10.6 4.8
mpeg2decode 5.0 2.8 1.7 0.9 0.3
mpeg2encode 10.0 5.7 4.0 4.2 4.3
pvkx 40.1 12.2 14.1 9.8 7.2
pvkxb 51.4 22.0 10.2 7.8 6.6
pvnx 16.0 5.3 2.7 1.8 1.2
treeadd 45.6 11.5 7.7 3.3 2.1


(b) Compact Model


Table 4.4: Comparison of model error rates, updating every ρ = 200 intervals.
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1X 2X 4X 8X ∞
bisort 31.9 24.1 7.9 6.9 5.4
em3d 387.7 148.1 96.8 51.3 3.6
gsmdecode 12.6 12.2 11.8 11.7 11.6
gsmencode 1411.3 447.9 419.7 177.7 0.7
jpegdecode 45.8 13.6 21.2 5.8 0.7
jpegencode 24.7 10.9 5.1 3.9 1.6
life 106.0 16.6 8.1 15.1 3.7
mpeg2decode 3.1 0.8 0.7 0.6 0.4
mpeg2encode 26.8 17.4 6.2 5.1 4.0
pvkx 33.5 12.9 10.9 9.9 8.2
pvkxb 31.3 8.9 8.6 7.2 5.5
pvnx 6.7 6.4 5.7 5.8 6.0
treeadd 81.5 43.8 23.4 11.5 1.8


(a) Complex Model


1X 2X 4X 8X ∞
bisort 7.8 4.6 5.6 3.3 2.9
em3d 91.9 79.2 8.5 7.8 2.5
gsmdecode 2.1 1.2 1.2 0.9 0.8
gsmencode 43.4 58.3 6.6 34.5 0.5
jpegdecode 18.7 47.6 25.6 12.0 0.9
jpegencode 20.2 5.7 4.8 6.0 2.9
life 88.7 7.2 29.2 9.3 4.4
mpeg2decode 1.9 1.0 0.5 0.4 0.3
mpeg2encode 11.8 8.4 6.0 5.6 5.4
pvkx 36.0 24.0 12.2 8.5 7.3
pvkxb 14.9 18.2 7.7 6.8 5.2
pvnx 3.7 5.7 2.5 1.5 1.3
treeadd 88.9 25.2 8.0 4.2 2.2


(b) Compact Model


Table 4.5: Comparison of model error rates, updating every ρ = 400 intervals.
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rithm converges quickly, providing estimations that are within 10% of the real values.


When measurement errors are present, the estimation error rates increase significantly.


This increase is more apparent for some applications such as gsmencode and em3d.


These applications have short, sudden changes in their energy consumption behavior.


For instance, gsmencode is a very short benchmark with a very smooth execution pat-


tern except the very first few intervals. During these intervals, the energy consumption


increase sharply. When these spikes coincide with energy measurements, the RLS-


ED detects an immediate increase in energy consumption and overestimates the model


parameters.


The effect of ρ on the total system is less obvious, because a higher ρ imposes two


different effects. First, as ρ increases, the relative magnitude of measurement errors


asymptomatically decrease. This is a result of the constant error factor that the bat-


tery monitor imposes. For instance when precision is 1X , the expected error rate is


(0.25)/E. As a higher ρ means a larger observation period, E becomes larger and error


rate becomes smaller. Second, a higher ρ means less frequent model updates, giving


the model less chance to react when program behavior changes. Our results show that


ρ = 400 is better, however, the best ρ varies from one benchmark to another.
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4.4.6 Performance Of Compact Model


The tables above also show the same results for the compact model. The compact


model error rate shows a significant improvement over the complex model especially


when there are feedback errors. For example, when ρ = 100 and precision is 1X the


average error rate is 208% for complex model and 53.3% for compact model. We find


that the compact model error rate is less than 3% when there are no feedback errors.


The poor performance of complex model is a result of multicollinearity, which was


described in Section 3.3.1. In the presence of linear dependence between the variables,


the recursive estimates of the RLS-ED algorithm converges slowly and produces inac-


curate parameter estimations [85]. The presence of errors in battery monitor readings


and a large ρ further complicates the model and reduces the accuracy. The compact


model, since it has fewer (and many fewer related) parameters, does not suffer from


this phenomenon.


The results indicate that the accuracy of the algorithm is highly dependent on the


feedback error rate. At the levels of precision available from BMUs in current devices


(i.e. 1X) , feedback errors have a significant adverse effect on algorithm accuracy.


However, once the precision levels improve to 8X , or more, the increase in estimation


accuracy improves the quality of energy estimates. When BMU precision level is 8X,


the error rate drops to less than 8.0% for ρ = 200 and ρ = 400.
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Figure 4.6: RLS-ED execution cost. The bars show the average CPU time used for
each RLS-ED iteration.


We also find that the selection of ρ is an important factor in model accuracy. Some


benchmarks, like em3d and gsmencode, are highly sensitive to the value of ρ. This


is a result of short, sudden changes in program behavior (mostly during initialization)


that coincide with the RLS-ED updates to the model. Even though we do not evaluate


it in the scope of this paper, an application specific selection of ρ may provide better


convergence in these cases.


4.4.7 Execution Cost


Figure 4.6 shows the cost of executing our model on our target platform. We im-


plemented this model in C as a user-space application. The height of each bar shows


the average execution time for a single iteration. The dark colored portion of the bars


shows the BMU access time, including the cost of reading data from hardware to ker-
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nel space and then transferring to user space. The BMU access time is in average 22.7


milliseconds, and same for all models. The light colored portion of the bars shows


the RLS-ED execution time. For the compact computation model, we measured each


iteration to consume 2.9 milliseconds of CPU time. The RLS-ED cost is proportional


to the square of model parameter count, and increases up to 14.2 milliseconds for the


complex computation model. However, these results show that the dominant cost is the


battery monitor access time and not the RLS-ED computation.


4.5 Why RLS-ED?


To update linear model parameters at run-time, we choose recursive least squares


algorithm because of its robustness, stability, adaptivity and modest computational de-


mand. Our evaluation shows that this method continues to perform well even in the


presence of model errors and parameter dependencies.


As Figure 4.1 shows, the recursive update forms a discrete feedback system which


may also be seen as a low-pass filter [85]. When there is no exponential decay, each new


measurement has gradually less effect on model update, as the model considers all the


past measurements. The model converges fast when the model is stationary. In contrary,


our system is not necessarily stationary. As the time passes, the energy consumption


behavior of the system may change because of changes in workload characteristics
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Figure 4.7: Recursive least squares memory shaping


(which we also want to capture). The recursive least squares algorithm provides two


methods to handle time varying situations: a rectangular data weighting algorithm,


and an exponential data weighting [23]. Figure 4.7 illustrates these two methods. In


the first one, the most recent k samples are given equal weight, and all the previous


data are forgotten; in the second one, the weights of the older samples are decreased


exponentially. Here, we use the second approach since it is not clear (to us) how to


decide the size of window at run-time. Furthermore, the rectangular sliding window is


less appealing since it requires remembering all past values that are in the window.


Instead of recursive least squares, we could also use incremental gradient descent [66]


to update linear model parameters. In gradient descent, we update the linear model pa-


rameters in small steps until we achieve a point where the solution does not improve
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any more. Let x is a vector of parameters, y is the target output (corresponding to


hardware event counts and power measurements, respectively) and β are the parameter


weights. The predicted linear model output is given by βx. In incremental (stochastic)


gradient descent, we update model parameter weights for each new sample, i+1 using:


βi+1 = βi + η(yi+1 − βixi+1)xi+1


Here, η is the step size. Higher values of η makes the model forget the past more


rapidly. The linear gradient descent is computationally cheaper than recursive least


squares regression, however, it is not as robust. The local minimas, plateaus, and high


steep changes may cause it to oscillate. In our power estimation design, since the model


power measurements y has an error term involved, robustness is particularly important


for us. Thus, we do not pursue this option anymore, and leave it as a future direction.


4.6 Related Work


This chapter presents a runtime, feedback-based full system energy estimation model


for battery powered devices. The run-time system maps hardware and software coun-


ters to power consumption values using first order, linear regression equations. The


most closely related work is on HPM-based, static, linear models for CPU and memory


energy estimation [7, 38, 78, 39, 35, 12]. These have already been described in previous


chapter.
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One of the primary challenges in this study is to find an optimum set of parameters


that explain power consumption, however, simulating each possible parameter combi-


nation is hard since there are a large number of factors that shape CPU power behavior.


In [44], Lee et al. suggests an efficient and statically sound approach that reduces


design space-size considerably. In their simulations, they demonstrate that their regres-


sion models can estimate CPU energy consumption with a 4.3% error rate. However,


their model does not use any feedback and is evaluated only for a hypothetical CPU.


Like all the other studies above it does not explore any full-system energy consumption


challenges. Lee et al.’s approach is complementary to our work as it provides a way


for our to design better regression models that uses feedback from battery management


unit.


The static models above are undoubtedly useful in characterizing program energy


consumption, however they are limited by the static workload that they are developed


on. This study proposes a novel approach to dynamically model and estimate energy


consumption on low-power embedded devices.


4.7 Summary


This chapter presents an adaptive, feedback-based energy estimation model for low-


power embedded devices such as HP hand-held computers and Stargate sensor network
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devices. The presented model estimates full system energy consumption of programs


using hardware and software counters. The system starts with an initial model and


gradually improves it using dynamic feedback from the battery monitoring unit within


the device. We evaluate our model using a large set of applications, and discuss its


stability in the presence of measurement errors. Our results show that the proposed


model can predict energy consumption with 1.0% error rate for computational bound


programs and 6.6% error rate for tasks that are both communication and computation


bound.
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Chapter 5


Predicting System Resources For
Reducing Energy Consumption


Previous chapters discussed modeling and predicting energy consumption. They


presented challenges, and proposed novel solutions. These solutions demonstrated


that fine-grain energy cost determination of tasks is possible with a carefully designed


model coupled with a battery monitoring unit. Future power aware operating systems


and applications like [55, 65, 87, 86] can be coupled with these models to detect and


optimize the tasks that are most energy expensive. These operating systems use differ-


ent strategies to reduce energy consumption of tasks. The two most important strategies


are computation offloading and dynamic voltage scaling, which we described in detail


in Chapter 2.


Key to the efficacy of dynamic voltage scaling and computation offloading is the low


cost of their use and accurate prediction of future application, workload, and resource


behavior. Techniques that optimize energy use must estimate the demand and the supply
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of resources to determine which optimization to apply and when. If the estimates are


incorrect or the application of the optimization introduces significant overhead, the


techniques may be unable to extend battery life or actually shorten it.


This chapter discusses predicting demand and supply of these resources and pro-


poses a non-parametric, time-series approach to estimate their future values using their


past behavior. The next section presents extant resource demand and supply predic-


tion systems. Section 5.2 presents the high level ideas behind our proposed approach.


Section 5.3 details the design. Section 5.4 validates the proposed model. Finally, Sec-


tion 5.5 summarizes the chapter and concludes.


5.1 Extant Resource Prediction Systems


Prediction of resource availability and performance is a widely studied field of re-


search. This section overviews representatives of common resource prediction methods


that are employed by studies that target energy consumption. It focuses on techniques


that are online, require no modification to the application, and that are executed on the


device itself, for which the overhead of the approach is as important as the accuracy it


achieves. This section describes each prediction strategy in the context of the particular


resources (CPU, network bandwidth, etc.) for which they are used.
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CPU Availability


Systems employ CPU availability prediction to estimate the CPU time a process or


sub-process task consumes [19, 28]. These predictions are used by the execution envi-


ronment to guide task scheduling and processor scaling decisions [77, 26, 60, 41, 19,


28]. A common technique for estimating CPU load is one that gathers load statistics via


various operating system utilities and interfaces, such as vmstat and top in UNIX.


CPU estimation techniques range from very simple to complex and thus vary in agility,


overhead, and accuracy. Agility is the degree to which a prediction utility can react to


and adjust for variance in measured, history data.


PAST scheduling [77] assumes that the CPU load in the next interval will be the


same as the most recent CPU load measurement. This forecaster is very agile since it


immediately responds to changes in CPU load. However, such a response can have a


negative effect on accuracy when recent CPU spikes are outliers (noise) and short lived,


i.e., not good estimates of future behavior.


To overcome such limitations, other CPU prediction techniques filter out noise with


more sophisticated techniques. The Odyssey prediction system represents such sys-


tems. Odyssey estimates CPU availability by first assuming that CPU cycles are evenly


distributed among all processes. It then uses an exponential decay technique (i.e., a
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smoothing filter) to filter out noise. The Odyssey CPU prediction model is:


Scpu =
P


N + 1
(5.1)


where P is the processor clock speed, N is the number of runnable processes and Scpu


is the available CPU cycles. Odyssey uses a smoothing filter to estimate the number of


processes in the next interval:


Nt+1 = αNt + (1− α)n(p) (5.2)


In this equation n is a function of observed number of processes in the current interval


and defined as:


n(i) =























nr −1 If p is runnable


nr Otherwise























where nr is the number of runnable processes at time t.


The AV Gn policy [77] is another popular CPU prediction technique that directly


decays the measured CPU load over the last k intervals. Since this policy is simply an


extension to PAST policy, it inherits the same weaknesses (i.e. static, parameterized).


AV Gn policy is less agile than PAST but it is more resilient to noise in the network.


The BEST [3] policy estimates the CPU demand using a similar mechanism. It predicts


the periods of multimedia tasks as a weighted average of their previous task periods. It


truncates periods that are longer than a threshold value. BEST policy adds predicted


period to current time to find the task deadline, and schedules the task that has earliest
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deadline. There are also several other CPU load prediction techniques that are based on


observation heuristics [26]. Such techniques, however, are less general since they have


many parameterized heuristic rules designed to optimize performance on the particular


workload that they are intended for.


A more recent study [72] indicates that a single, parameterized method may not


be the best choice across different workloads. In their study, Sinha et al. compared


four CPU load prediction techniques, including exponential smoothing, moving aver-


aging, least mean squaring and a purely probabilistic technique called expected work-


load state, using three real workloads. Their results showed that least mean squaring


was better than the others, in average. However, the best predictor varied from one


workload to another [71].


Network Latency and Bandwidth


Many embedded systems employ prediction techniques for network latency and


bandwidth. Two common uses of such techniques are task scheduling for distributed


devices and computation offloading. Computation offloading is a technique in which


the system executes processes or tasks on more capable or wall-powered computer


systems to conserve the battery power or extend the capability of mobile, resource-


constrained devices [20, 55, 40, 2].
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To estimate network latency, extant prediction systems use passive observations of


RPC packets to compute the round-trip time and throughput of network [55]. Since,


network performance is highly variable, noise can severely degrade the accuracy of


network bandwidth estimations. To improve accuracy, other prediction systems use an


exponential smoothing filter much like that used above for CPU [55]:


new = γ(measured) + (1− γ)old (5.3)


The value of the exponential decay factor (γ) determines the agility of the method. A


smaller value increases the responsiveness, but decreases the technique’s ability to filter


out noise. Thus the accuracy of the method is highly dependent on the choice of the


parameter. Since network latency and bandwidth exhibit different performance char-


acteristics, users must identify multiple parameterizations (γ) for the filter function of


each. Moreover, for a single metric (latency or bandwidth), the filter requires different


parameterizations for different network technologies to achieve the best accuracy.


To overcome the limitations of a large number of parameterizations and instability,


researchers have developed a network performance estimator that implements two ex-


ponential smoothing functions in a single forecasting system [40], a so-called flip-flop


predictor. The parameters used by this predictor are commonly at opposite ends of the


spectrum to capture the benefits of both agility and smoothing. Both predictors execute


concurrently, however, the estimator uses the one with the larger parameter (that enables
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more smoothing) as long as the approximate standard deviation of the predicted value


is in a predetermined range with respect to the smoothed mean. The estimator switches


to the agile version otherwise. This design has an important advantage over previous


models as it is more accurate and can adapt more effectively to dynamic changes in the


system.


Power Consumption


In resource restricted systems, because of the lack of a mechanism that can mea-


sure power consumption (which we address in the previous two chapters), the energy


consumption of a task is rarely used as a direct cost metric. One exception is Remote


Processing Framework. The Remote Processing Framework (RPF) [64] predicts the


energy consumption of future tasks as a function of their previous energy consumption


cost. It uses this to determine whether a task should be executed locally on the device


or remotely on a wall-powered server, i.e., whether computational offloading should be


performed. RPF does not detail how to collect these measurements, however, it sug-


gests that the Advanced Power Management (APM) interface of the operating system


can be used. To estimate task power consumption RPF uses this smoothing filter:


fn+1 = (1− α) ∗
∑n


i=n−k vi


k
+ α ∗ fn (5.4)
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where fi is the forecasted value, vi is the measured value and i is the measurement


index. α and k determine how conservative the forecaster is: A small k combined with


a large α will result in higher responsiveness to recent changes.


Note that the RPF smoothing filter (Equation 5.4) is the same as the equation for


CPU prediction prediction (Equation 5.2) when k = 1. In addition, the smoothing filter


is the same as the bandwidth and latency prediction function in Odyssey (Equation 5.3)


when k = 1 and α = 1− γ.


Application CPU Demand


The CPU demand of an application is highly dependent on the nature of the ap-


plication itself. However, when no application-specific information is available or its


collection is infeasible, prediction systems can estimate CPU demand using application


history logs. The prediction system described in [54] employs such a methodology.


This methodology is popular and likely to be successful for embedded devices, since it


does not require any effort by the user or application programmer, access to program


source code, or no modification to the program.


In such systems, an online, learning predictor maintains program-specific coeffi-


cients that are used to model the CPU demand of the application for a particular input


dataset. Computing the initial values of coefficients requires off-line training unfor-


tunately. However, once the initial values are set, the system updates the coefficients
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using recursive least squares regression with exponential decay (LSQ). Given the char-


acteristics of exponential decay, LSQ gives more weight to the recent observations.


LSQ can efficiently predict the value y when it is dependent on a set of parameters


x such that y = Ax + w, and w is the measurement error or noise. The general formula


for recursive LSQ to estimate CPU load of tasks is:


Ak = Ak−1 − Pk{xkx
T
k Ak−1 − xkyk}


Pk = {Pk−1 − Pk−1xk[α + xT
k Pk−1xk]


−1xT
k Pk−1}/α


where α is the decay factor and yk is the measurement at time k. In the equation above,


yk+1 is predicted by Ak+1xk. The Pk matrix is commonly referred to as the history or


filtering factor [85].


This technique performs well for augmented reality applications – a popular appli-


cation domain for mobile devices. Such programs render pictures as a camera scans a


set of scenes. Since commonly scenes overlap, their transitions are smooth. That is,


the resource consumption behavior for the generation of a scene is similar to that of


a neighboring scene. As a result, the performance data varies smoothly from scene to


scene, enabling a prediction system that uses exponential smoothing to produce accu-


rate predictions of CPU demand. As mentioned previously, a limitation of recursive


least mean squaring is that numerical computation errors can accumulate after each


recursion causing algorithm to become unstable and diverge [8].
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5.2 Proposed Non-parametric Resource Prediction Tool


All extant prediction methodologies require user-specified parameterizations to fore-


cast the cost of various resources. Users must identify the appropriate parameters


through empirical evaluation or using a complex, off-line learning process. Unfortu-


nately, the parameters are specific not only to the executing application but also to


individual tasks within an application. As a result, the parameterization may not work


well across applications or even across the tasks of a single application. There are


also methods that mitigate this problem by requiring more user- or application- feed-


back [18]. Moreover, existing systems use a number of different prediction strategies


(each requiring training and parameterization) for different resource types (e.g. CPU,


network performance, and power consumption).


We address the problem of resource prediction using a time series approach; that


is we assume the resource demand and supply measurements taken over time have an


internal relation –such as autocorrelation, exponential trend, etc., and we exploit this


relation for predicting future behavior. Obviously, this assumption may not always hold


true, or the relation between the time series data may not be that obvious to exploit. In


these cases, using custom heuristics may be a better approach. In addition, it is some-


times better to model resource demand using data-dependent functions [53], however,


this approach requires (sometimes substantial) developer effort.
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A time series approach has significant advantages. Consider network bandwidth.


The future availability of a network link depends on both the physical characteristics


of the medium, and the machines that share and use it. Furthermore, the protocols


that use the network have their own characteristics. It is hard to account for each such


parameter in a model. In this case modeling network bandwidth as a time-series reduces


complexity significantly.


Time series approaches have been used successfully, as the previous section shows.


The extant time-series predictors are parametric and static. Our time-series approach


is complemetely different. Specifically, it is one that is non-parametric, automatic,


adaptive, and agnostic of resource type and application behavior. That is, it is a single


system that makes accurate predictions of any resource type for any application – with-


out requiring application modification or participation by users for parameterization


and off-line training. Moreover, it is appropriate for resource-constrained, mobile, sys-


tems, i.e., it consumes few device resources to make accurate predictions. The system


is called NWSLite.


5.3 Design Rationale


NWSLite is an extension of the Network Weather Service (NWS) [80], a freely


available toolkit [56], originally developed for the computational grid [22, 6]. The
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computational grid is a computing paradigm for the development of software systems


that enables dynamic acquisition of resources from a heterogeneous and non-dedicated


resource pool. Grid systems are high-performance, large-scale, distributed systems that


require applications to adapt to the dynamically changing systems on which they are


executed as well as to highly-variable resource performance. To extract performance


from these systems, application schedulers must use predictions of future resource be-


havior to determine how the application can best use the available resources.


The NWS operates a distributed set of performance sensors, from which it periodi-


cally, and unobtrusively, collects performance measurements. The sensors apply a set of


statistical forecasting techniques to individual performance histories and generate fore-


cast reports for the resources being monitored. The NWS disseminates these reports via


a number of different APIs in near-real-time [81]. Currently, the NWS provides sen-


sors for end-to-end TCP/IP bandwidth and latency, available CPU and memory, battery


power, and disk storage, and is used in a large number of different Grid technologies.


NWS prediction uses a mixture-of-experts approach to prediction instead of relying


on a single model. It implements a large set of models, each having its own parameter-


ization. Given a performance history of observed measurement values, it generates a


forecast for each measurement. NWS ranks each predictor by computing the prediction


errors (the difference between measured and forecasted values). Each time a forecast


is requested, NWS recalculates the ranking across all predictors using the most recent
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Name Average Cost
1 Last Value 0
2 Running Mean 3
3 5% Exp Smooth 3
4 10% Exp Smooth 3
5 15% Exp Smooth 3
6 20% Exp Smooth 3
7 30% Exp Smooth 3
8 40% Exp Smooth 3
9 50% Exp Smooth 3
10 75% Exp Smooth 3
11 90% Exp Smooth 3
12 5% Exp Smooth, with 0.1% trend 10
13 10% Exp Smooth, with 0.1% trend 10
14 15% Exp Smooth, with 0.1% trend 10
15 20% Exp Smooth, with 0.1% trend 10
16 30% Exp Smooth, with 0.1% trend 10
17 Median Window 31 88
18 Median Window 5 16
19 Sliding Median Window 31 124
20 Sliding Median Window 5 26
21 30% Trimmed Median Window 31 106
22 30% Trimmed Median Window 51 169
23 Adaptive Median Window 5-21 171
24 Adaptive Median Window 21-51 455


Table 5.1: NWS forecasters and the approximate costs of each. The cost in column
three is given in units of floating point operations performed.
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history and chooses the most-accurate model. The implementation of NWS that we


extended uses the 24 prediction models shown in Table 5.1.


This mixture-of experts method achieves its accuracy by employing wide range of


statistical models, each of which may be most appropriate at a given time, for a given


resource. This method also has other important advantages. First, even though the


individual NWS models may be parametric, the overall system is not. The only input


to the system is the measurement history, i.e., the NWS is agnostic of the resource to


which the measurement belongs. Second, NWS can easily adjust itself to changes in


the characteristics of the data series by switching to another model. Third, it can be


used on any type of data for which measurements can be made. There is no distinction


between CPU availability and network bandwidth, for example.


Because the NWS was originally designed to support high-performance applica-


tions in wired settings, its designers put a premium on speed and extensibility. As such,


it consumes significant resources to perform a single prediction since many models


are evaluated at once. The Average Cost column shows the number of floating point


instructions executed for each predictor (all are computed for each forecast made) on


average. To enable its use in resource-restricted environments, we have significantly


reduced this consumption without sacrificing appreciable accuracy. Here, we use dy-


namic floating point instructions as the cost metric because of their high cost.
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Given a history of measurements and their predicted values, a common way of


measuring the prediction error is using the square of the errors:


E =
n


∑


i=1


(fi − vi)
2 (5.5)


where fi is the output of the predictor, vi is the measurement and n is the length of


history.


Since the NWS uses a mixture-of-experts approach, all forecasters are invoked log-


ically in parallel and a single winner is selected and used for the next estimation. We


use zero-one integer variables si,j to denote the winning forecaster:


si,j =















































1 If model j is used to predict


measurement i


0 Otherwise















































Specifically, if si,j is 1, the ith forecast is made using predictor j. If si,j is 0, the


predictor is not the winner for the ith forecast. Let k be the number of models in NWS,


using ( 5.5), the prediction error of NWS is:


E =
n


∑


i=1


k
∑


j=1


(fi − vi)
2si,j (5.6)


Similarly, it is possible to compute the cost of using the winning forecasters (in


terms of floating point instructions, c) as:
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C =
n


∑


i=1


k
∑


j=1


cjsi,j (5.7)


Theoretically, NWS can be optimized by running it with a different combination


of internal models on a set of representative data and then removing the least efficient


ones. However, the search space is prohibitive: There are a total of 224 combinations.


To reduce the search space, we use a heuristic that evaluates how much the total com-


putation cost and error would change if one substitutes a forecaster u with another


forecaster v throughout the series.


The formal definition of this process is:


s′i,j =































































































1 If model j is winner forecaster


for measurement i and j 6= u


1 if model j is not winner forecaster


for measurement i and j = v


0 Otherwise































































































where Eu,v and Cu,v are Equations (5.6) and (5.7), using s′i,j instead of si,j .


We employ real measurement data (i.e. performance traces) to empirically evaluate


the overhead and accuracy of each NWS predictor from various embedded system re-


sources: Wireless and wired network bandwidth and latency, CPU load, and task CPU


demand. We compute Eu,v and Cu,v for every pair of u and v using a set of six rep-


101







Chapter 5. Predicting System Resources For Reducing Energy Consumption


1


1


2


3


4


0


2 3 4


0 0 0


0


0 0 0 0


0


0


0 0 0


22


23


24


23 24
0 0 0


0.138 0.001 0.001


0.283


0.267


0.069


0.084


0


0


0


0


0.004


0.003


0.001


0.004


0


0


0


0


0


0 0


0.011


0.034


0.026


0.01


0.039


0.033


0.048


0.095


0.087


0.001


22


Figure 5.1: Error matrix for a real input. The matrix shows the change in error in
percentages when forecaster v (in rows) is substituted with forecaster u (in columns).
For example, substituting forecaster 2 (Running Mean) instead of 23 (Adaptive Median
Window-51) increases error rate only 0.1%.


resentative traces and record the results in a matrix with u as the rows and v as the


columns.


This representation provides a very compact form to evaluate the efficiency of each


model: Every column of the matrix shows how much the error rate changes if one


uses v instead of u. For example, E2,1 shows the new error if last value takes place


of running mean. Thus, if the E2,1 is smaller than original NWS’s error rate for all


the trace files, then we consider last value to be a better predictor than running mean.


Similarly, if in an extreme case, all the values of column 2 are smaller than original


NWS’s error rate, then the running mean outperforms the original NWS. Even though,


this is theoretically possible, we did not come across an example of such a case.
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Figure 5.2: Cost matrix for a real input. The matrix shows the change in cost in
percentages when forecaster v (in rows) is substituted with forecaster u (in columns).
For example, substituting forecaster 2 (Running Mean) instead of 23 (Adaptive Median
Window-51) provides a 6% decrease in cost.


Figure 5.1 and 5.2, show the error and cost matrices for an example dataset. The


numbers to the leftmost and topmost of the matrices show the enumeration of forecast-


ers (given in Table 5.1). The numbers in the matrices show the change in error and


cost in percentages after substituting a forecaster u (in rows) with a forecaster v (in


columns). For example, substituting Adaptive Median Window-51 (number 23-shaded


row) with Running Mean (number 2-shaded column) increases the error by 0.1% and


decreases the cost by 6%.


Given the evaluation matrices, we employ a set of empirical rules to eliminate fore-


casters. Basically, we remove any model


• that has more than 1% error rate across all traces,
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• for which there is another model with significantly lower cost that can replace it


with a small increase in error (< 5%), and


• for which there is a combination of other models that enable a similar error rate.


Rule 1 eliminates many models immediately. For example, replacing 30% trimmed


median window 31 with running mean results in an error increase by at most 0.2%. On


the other hand, for median window 31, replacing it with the running mean increases


error rate less than 0.2% in 5 of the 6 traces. In the remaining trace, median window 5


produces the same error rate as median window 31. As such, we include running mean


and median window 5 and omit 30% trimmed median window 31. Using this process


iteratively, we identify five predictors (shown in bold in Table 5.1). These techniques


trade off cost and prediction error most effectively.


This methodology for discovering the five NWSLite forecasters is similar to off-


line, profile-based optimization for which researchers use one set of program inputs to


collect profile information and to guide optimization, and a different set of inputs to


evaluate the performance of their approach [43, 74, 42]. We use six traces to identify


NWS forecasters that enable high accuracy at low cost. We evaluate NWSLite using


over 300 traces that are different from these six.
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Name Trace Size Description
Application 20 traces Interactive, 3-D rendering application CPU


17870 predictions demand. Measurements are CPU time from
user request to program response.


Network 132 traces Observations of 64Kb-1Mbyte TCP data
Bandwidth [56] 750476 predictions transfers. 3 configurations: UIUC LAN


(inter-cluster), UIUC campus-wide network
(intra-cluster), and cross-country Internet
(UIUC-UCSD)


CPU load [56] 59 traces Fraction of CPU occupancy time a standard
6000697 predictions user process can obtain. Observations are


in 10 seconds intervals.
Network 134 traces Round trip time of TCP. Transferring 4 bytes
Latency [56] 750305 predictions and measuring acknowledge time.


Granularity levels same as
network bandwidth.


Wireless 1 trace 4 access points on same subnet. Traces
Bandwidth [70] 3028 predictions include 195 users, 300000 flows and 4.6 GB


of network traffic. Bandwidth measured in
1 minute intervals.


Table 5.2: Datasets used for evaluation


5.4 Validation


To empirically evaluate the efficacy of NWSLite, we performed experiments using


a wide range of datasets, applications, and metrics. The following subsection describe


the experimental methodology (datasets and applications). Section 5.4.2 details the


metrics, and Section 5.4.3 presents the results.
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5.4.1 Experimental methodology


To empirically compare the resource forecasting system NWSLite to extant ap-


proaches to resource performance forecasters, we collected traces from a wide range


of resource types: CPU demand (execution time) of application tasks, wired and wire-


less network bandwidth, wired network latency, and CPU availability. We then used


the NWSLite and competitive approaches to make predictions using the trace data. In


total, we performed experiments on 346 traces which produced more than 7 million


predictions. All of the traces, with the exception of application execution times, were


made freely available via web-sites of research groups around the country [56, 1, 27].


We provide the details on the different datasets in Table 5.2 and we refer to each of the


different types of data sets (application execution times, CPU availability, bandwidth,


latency, etc.) as “groups”.


We generated execution time traces, i.e., CPU demand, using the 3-D rendering


applications used in similar studies [54, 53]. The applications and inputs are shown in


Table 5.3.


GLVU [25] allows navigating inside a 3-D scene by rendering the scene from any


viewpoint of user. From an augmented reality view, Radiator [79] complements GLVU


by computing the lighting effects for a given scene. Both applications can easily be


divided into operations [54], which is a suitable unit for remote execution and fidelity


adjustment. An operation (which this chapter also refers to as a task) is the smallest
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Applications
Input Scene Scene Size (bytes) GLVU Radiosity
castle 385391 Yes
cessna 200553 Yes Yes
chevy 678806 Yes
cloister 7816848 Yes
cup 97113 Yes
dragon 3382396 Yes
ground-table-land 640939 Yes Yes
ground-riverain-valley 634007 Yes
shuttle 15658 Yes Yes
venus 3483433 Yes


Table 5.3: NWSLite evaluation benchmarks. We collected 10 trace files per application
(3-D scene rendering programs) using different inputs and navigation paths. Empty
entries indicate that the application failed to process the particular scene; ”Yes” entries
are those inputs we employed for this study. We processed some inputs multiple times
(to total 10) using different navigation paths.


user-visible execution unit, such as viewpoint change in a rendering operation. For


each application we rendered a set of 10 scenes which produced a total of 17870 oper-


ations. Table 5.3 shows these inputs. Since some scenes are not compatible with both


applications, we used some inputs multiple times using different navigation paths. We


consider the prediction performance for applications to be the accuracy with which the


prediction system forecasts the CPU demand of each task.


The bandwidth, CPU availability, and latency data were collected as a part of the


NWS project [56]. NWS network sensors use active network probes to collect TCP/IP


latency and bandwidth data on a group of geographically distributed hosts connected


via local, wide area, and Internet networks. Each probe establishes a TCP connection,
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transmits a fixed amount of data, and tears down the connection. Network sensors


measure network bandwidth using a 64 KByte data transfer and network latency using


a 4 byte data transfer.


The NWS CPU sensors combine the information from Unix system utilities vmstat


and uptime with periodic active CPU occupancy tests to provide measurements of CPU


availability. The uptime utility reports the average number of processes in the run queue


over the last one, five and fifteen minutes. The sensor uses the average load over the one


minute period and computes the CPU availability by using the idle, user, and system


time output from vmstat utility. The CPU availability is measured as the fraction of


CPU occupancy time a standard user process can obtain.


The wireless bandwidth traces were collected during the SIGCOMM’01 conference


and made public in [70]. The conference building was covered with four 802.11b access


points. The traces span a 3 day period capturing 300000 flows generated by 195 users


consuming a total of 4.6 GB of bandwidth.


5.4.2 Evaluation Metrics


This section evaluates NWSLite and its competitors in terms of both accuracy and


computational cost. It uses three metrics to evaluate predictor accuracy and instruction


count (both total and floating point) to evaluate predictor cost.
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The first of the three evaluation metrics is error deviation:


MSE =


∑n


i=1(xi − yi)
2


n


Error deviation =
√


MSE (5.8)


where x is the set of n predictions and y is the set of n corresponding observations.


The mean square error (MSE) is the average square prediction error over the n pairs,


(x,y). The error deviation is the square root of the mean square error. Error deviation


describes the error in absolute terms and represents (in analogy) the standard deviation


of the errors with respect to the expectation constituted by the forecast. Error deviation


accounts for outliers and is more sensitive to incorrect predictions than is absolute error


in which the absolute value of the error is used.


However, the error deviation is most meaningful when comparing the performance


of predictors on the same time series. To provide a comparison across different series,


we use the ratio of error deviation over the average observed value, i.e., the relative


error rate:


Relative error rate =


√
MSE


observed mean
(5.9)


This metric provides insight into how severe the error is in terms of the magnitude of


the average measured value. For example, an error of 2Mb/s is large in a 10Mb/s link,


but may not be significant in a 100Mb/s link.
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The third metric is similar to relative error rate, however, instead of using the mean


as the expected value, it uses the absolute value of the forecast. This metric, called


predictability, indicates how predictable the series is relative to the forecasts it gen-


erates. It differs from the relative error in that it treats each forecast as a conditional


expectation that it uses to normalize the error, instead of using the overall measurement


mean. Its definition is:


∑n


i=1
|xi−yi|
|xi|


n
(5.10)


5.4.3 Predictor Accuracy


This section presents the results from empirical comparison between NWSLite and


competing prediction systems: The Network Weather Service (NWS), Odyssey (LSQ


and ODY-BW,LAT), and the Remote Processing Framework (RPF). We implemented


all of forecasters as efficiently as possible using the C language; we compiled each


using gcc and -O2 optimization. Unlike NWSLite and the NWS, the LSQ and RPF


methods are parametric models and hence, require parameterization. For each model,


we created a pool of parameter settings, that included the published values [54, 20,


55] as well as our own values, resulting in 18 different forecasters. For conciseness,


we selected the best performing parameterization for each over all of the datasets we


considered.


110







Chapter 5. Predicting System Resources For Reducing Energy Consumption


Description Units Avg NWSLite


APP1 - best 148845.000 5287.856
APP2 - median msecs 9179.390 1322.139
APP3 - worst 169753.000 135125.056
BW1 - within cluster 65.801 17.161
BW2 - cross-cluster Mbits/sec 76.522 13.308
BW3 - cross-country 4.536 0.878
CPU1 - best 1.992 0.016
CPU2 - median CPU 0.543 0.017
CPU3 - worst fraction 1.391 2.672
LAT1 - within cluster 13.936 16.873
LAT2 - cross-cluster msecs 2.345 8.309
LAT3 - cross-country 77.217 14.295
WBW Kbits/sec 206.674 193.782


(a) MSE of NWSLite across benchmarks


Description NWS LSQ RPF


APP1 - best 5358.179 8180.561 22013.694
APP2 - median 1329.372 2385.072 5702.085
APP3 - worst 138064.335 145384.166 186430.176
BW1 - within cluster 16.958 52.112 17.191
BW2 - cross-cluster 13.329 59.279 13.507
BW3 - cross-country 0.859 78.063 1.164
CPU1 - best 0.016 13.905 0.029
CPU2 - median 0.017 14.451 0.049
CPU3 - worst 2.684 3.113 2.661
LAT1 - within cluster 16.890 41.121 17.048
LAT2 - cross-cluster 8.319 46.829 8.337
LAT3 - cross-country 12.753 81.820 13.149
WBW 194.498 255.254 261.744


(b) MSE of competitors across benchmarks


Table 5.4: Error deviation for a set of representative traces. The third column of (a) is
the average of the measured values. The remaining columns show the error deviation
for predictors. The APP and CPU datasets are sorted with respect to error deviation /
average and best, median and worst cases are shown. For the BW and LAT datasets, the
average error deviation within cluster, across cluster and across country are reported.
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Table 5.4 compares the error deviation (Equation 5.8) of the predictors using three


representative traces, for brevity. In the application (APP) and CPU availability (CPU)


datasets, we sorted the traces with respect to the error deviation / average of NWSLite


and selected the best, worst, and median, which we report in the table. For the wired


network data (bandwidth (BW) and latency (LAT)), we instead report data for three


different types of links: intra-cluster, inter-cluster, and inter-campus (across country).


For wireless (WBW), we only have a single trace and thus show data only for it.


The first three columns of the table shows the description, trace name, and value


units for each trace. The third column, Avg, shows the average observed value. The


final four columns show the error deviation for each of the four predictors: NWSLite,


NWS, LSQ, and RPF. LSQ and RPF are parameterized as described in Section 5.1, and


identify the best-performing, converging parameterizations of each technique.


The NWS and NWSLite have almost identical error deviations in every case. LSQ


performs well for applications (as was shown in prior work [54]), but it is the worst-


performing predictor for all other types of data. NWSLite performs better than LSQ and


RPF in almost every case, and is significantly better than both LSQ and RPF in most


cases. For example, in the application group, for both shuttle and cloister NWSLite


performs 3 times better than RPF. The wireless dataset is especially challenging. All


the forecasters show a high error rate.
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Figure 5.3: NWSLite relative error rate (Equation 5.9). This metric shows how severe
the error is with respect to the average measured value. The LAT has the highest relative
error rate among all forecasters, however, as most latency observations are very small
(around 1 msecs), the absolute error is small.


Figure 5.3 shows the relative error rate of the predictors across all of the traces in


each group. The information in the graph confirms the results of Table 5.4. NWSLite


performance is very similar to that of the NWS; in all groups it enables the best pre-


diction error. LSQ is ineffective for the bandwidth, CPU, and latency groups. RPF


performs quite well for the CPU and bandwidth groups; and exceeds NWSLite per-


formance for network latency by 1.5%. RPF is the worst predictor however, for the


application and wireless groups. For the application group, the average error rate of


RPF is 86% higher than that of NWSLite.


We also compared the performance of predictors with Odyssey’s specialized smooth-


ing filters for bandwidth and latency, which we refer to as ODY-BW and ODY-LAT
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Figure 5.4: Predictor predictability (Equation 5.10). Due to high variation among
forecasters, the values are normalized to NWSLite for each group. The lower the value,
the more accurate the forecaster.


(omitted for clarity). ODY-BW performed 25% worse than NWSLite and ODY-LAT


performed 19% worse than NWSLite.


Figure 5.4 shows the predictability (Equation 5.10) of the series given each pre-


dictor. This metric assumes that predictor is a valid conditional expectation that can be


used to normalize the error at each point of the trace. The lower the value the more


accurate the forecaster. Since the variance of the results is high, we normalized the


results to NWSLite for each group.


The predictability results support the previous findings in Figure 5.3. NWSLite is


as accurate as NWS in all cases, and it performs significantly better than the parame-


terized forecasters in most cases. The single exception is the latency dataset, in which


RPF is the winner. However, the difference between RPF and NWSLite is very small.


In contrast, the accuracy of RPF is significantly worse than NWSLite for the applica-
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tion, CPU, and wireless bandwidth data, emphasizing the difficulty of finding a good


parameterization for the general case. These results also show that, with the exception


of the application dataset, LSQ always performs worse than the predictors based on


smoothing-filters. In the application dataset, LSQ is approximately 40% more accurate


than RPF, however, it is still significantly worse than NWSLite. The predictability of


NWSLite is considerably higher than even the highly tuned predictors ODY-LAT and


ODY-BW (not shown in figure). For the latency dataset, ODY-LAT is 13% less pre-


dictable than NWSLite; whereas in bandwidth dataset, NWSLite does 21% better than


ODY-BW.


An interesting case is the behavior of RPF in Figures 5.3 and 5.4; even though the


relative error rate of RPF is small, its predictability is not. This is due to the character-


istics of CPU dataset - the CPU availability values are in the range (0, 1), or (0, n) if


there are n processors. As such, most of the time the values are a fraction of 1. This


results in a small value for the sum of square errors even though the errors are high


relative to the expected value.


5.4.4 Computational Cost Of Prediction


In addition to studying prediction error, we also considered the cost of performing


prediction on a resource-restricted device. Prior studies that use prediction on mobile


devices do not consider the resource consumption of the predictors themselves, how-
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Figure 5.5: Forecaster cost as number of instructions executed, (floating-point
(FPOINT) and TOTAL) per Prediction


Prediction Floating Total Execution time
System Point Instructions (microsecs)
NWSLite 55 592 381.34
NWS 2626 9388 10231.31
LSQ 42 138 295.27
RPF 8 50 154.9


Table 5.5: Execution cost comparison per prediction


ever, this cost may be significant especially on processors without any floating point


co-processors.


Here, we first compare the predictors in terms of instructions required for one pre-


diction. We extracted this information by using the SimpleScalar [10] simulator. Fig-


ure 5.5 shows the average cost of each predictor. NWSLite uses 55 floating point in-


structions per forecast. Even though this is more than the cost of RPF and LSQ, which


use 8 and 42, respectively, the accuracy of NWSLite exceeds both of these predictors


significantly.
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As most resource-restricted devices lack a floating point co-pro-cessor, floating


point instructions are very expensive. We break down the instruction counts into floating-


point and non-floating-point instructions in the first two columns of Table 5.5.


We also executed the predictors on a real resource-restricted device: An iPAQ


H3800 hand-held computer from Compaq [30]. The iPAQ has a 206 MHz Intel Stron-


gArm CPU and runs Familiar Linux version 0.5.3. The execution times (in microsec-


onds) are shown in the final column of the table. These times include the cost of IO to


read the trace file from flash memory and to print the results.


The execution time of NWSLite is approximately 4% that of NWS but enables pre-


diction accuracy that is nearly equivalent. Given that it requires only 381 microseconds


to execute a prediction, including the IO, NWSLite is a more attractive solution for on-


line forecasting using resource-restricted devices, than the parametric and less accurate


models of Odyssey and the RPF.


5.4.5 Validation Summary


Table 5.6 summarizes the results of this chapter. To make the results comparable to


prior studies [54], it reports summary performance in terms of percentile error. Here,


the X percentile error, EX , is the maximum absolute error for X% of the experiments.


For example, for the bandwidth dataset, E95 of NWSLite is 25.6 meaning that 95% of


the time the prediction error of NWSLite is within 25.6 kilobits/second. The reason
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E95
APP BW CPU LAT WBW


NWSLite 7336.000 25.699 0.043 24.566 351.090
NWS 7459.000 25.580 0.038 24.502 358.798
LSQ 13305.338 28.459 0.115 26.867 422.977
RPF 38696.700 25.561 0.209 24.915 533.047
ODY-LAT 8806.945 39.717 0.094 29.848 335.172
ODY-BW 7894.141 42.541 0.079 31.494 354.560


(a) 95 percentile error


E90
APP BW CPU LAT WBW


NWSLite 3319.000 10.271 0.019 15.772 198.130
NWS 3343.000 9.601 0.018 15.801 202.771
LSQ 5866.552 14.105 0.058 16.415 230.591
RPF 17147.400 10.596 0.080 16.187 326.340
ODY-LAT 3759.839 9.923 0.025 16.318 197.429
ODY-BW 3458.320 7.384 0.021 16.883 192.992


(b) 90 percentile error


Table 5.6: Results in summary: Percentile Error. We define the X percentile error, EX ,
as the maximum absolute error for X% of the experiments. The table compares the E90


and E95 of all forecasters for all 5 datasets and prediction systems studied.
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we use absolute rather than relative error is to avoid skewed data in CPU and latency


datasets. we report the results for NWS, NWSLite, LSQ, RPF as well as for the two


other smoothing filters that was included, ODY-LAT (the Odyssey network latency pre-


dictor) and ODY-BW (the Odyssey network bandwidth predictor).


The results show that NWS and NWSLite are general enough that they perform


well in all datasets. Even though parameterized forecasters can match NWSLite in


some datasets, they fail in others. As an example, the performance of ODY-BW is


close to NWSLite in APP dataset, but it is significantly higher in BW, CPU and LAT


datasets. The same pattern also exists for ODY-LAT and RPF. RPF matches NWSLite


in BW and LAT, but it is significantly worse in APP and CPU datasets.


Another pattern in the results is that both NWS and NWSLite perform better than


all others when a higher percentage of predictions considered. This suggests that, NWS


and NWSLite can better adjust themselves to sudden changes in performance patterns


by switching to another model; the other models must simply rely on their static pa-


rameters.


The wireless bandwidth dataset is significantly different than other datasets. The


error rates are very high, i.e., E90 is around 200Kbits/sec on a 11Mbits/sec link, hence


none of the forecasters performed at a satisfactory level. This emphasizes the need for


additional study of novel forecasters for wireless network bandwidth data.
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The success of NWSLite results from its capability to dynamically switch between


a carefully chosen set of competing models based on previously observed accuracy. If


the dynamics of the observed dataset changes over time, NWSLite can adapt to the


new conditions; the prediction systems of Odyssey and RPF cannot as such are data


(input) dependent. For example, exponential smoothing with a gain of 0.05 can be the


most accurate predictor at some point, however, a transient or permanent change can


occur so that the running mean can become the most accurate. In this case, NWSLite


will respond by switching to running mean if the change is persistent enough to cause


the aggregate error ranking to change. Odyssey and RPF are statically configured by


a set of pre-determined parameters. Thus, even though there are individual cases that


other predictors can match the accuracy of NWSLite, they are unable to do well across


dynamically changing series and to different types resource performance data.


The flip-flop filter extension to Odyssey [40], described in Section 5.1, incorporates


some adaptivity by using two different parameter settings in its exponential smoothing


predictor. However, exponential smoothing cannot always produce the best prediction


accuracy (given any gain parameters). NWSLite incorporates exponential smoothing


using two different gain factors but is more general and adaptive than this filter since


it considers a wide range of other prediction techniques that can enable significant


improvements in accuracy at low computational cost.


120







Chapter 5. Predicting System Resources For Reducing Energy Consumption


5.5 Summary


This chapter presents a light-weight, computationally efficient, prediction utility for


mobile devices called NWSLite. NWSLite is an extension of the Network Weather Ser-


vice (NWS), a dynamic measurement and forecasting toolkit designed and developed


for adaptive application scheduling in Computational Grid environments (performance-


oriented distributed systems). We identify 5 of the 24 NWS forecasters for NWSLite


implementation, that trade-off computational cost for predictor accuracy most effec-


tively.


We evaluate NWSLite using over 300 different traces of application execution times,


CPU availability, wired network bandwidth and latency, and wireless bandwidth. In


addition, we compare NWSLite to the NWS and to two other extant remote execu-


tion prediction systems. We find that NWSLite consistently outperforms the latter and


achieves prediction accuracy similar to that of the NWS. However, NWSLite achieves


this level of accuracy at a significantly lower execution cost than the NWS.


We show the utilization of NWSLite on a computation offloading platform, by eval-


uating it for resource supply and demand prediction using two computation offload-


ing scenarios. In the first scenario, NWSLite beats two popular predictors, RPF and


LSQ, by 67% and 14% fewer wrong decisions, consecutively. In the second scenario,
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NWSLite beats those predictors even with a higher margin: 95% and 73% fewer wrong


decisions. NWSLite achieves this rate without any significant increase in cost.
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Improving Computation Offloading


NWSLite can adapt itself to the changes in data conditions easily by using the dy-


namic predictor selection mechanism that it employs. Our findings, which we gather


using statistically sound metrics, show that NWSLite outperforms its competitors sig-


nificantly on a wide range of datasets. However, a key question that is remaining is


how much this improvement in accuracy translates into actual energy savings. Here,


we answer this question by evaluating NWSLite in a computation offloading setting.


The next section discusses the components required for a remote execution system


and detail the significant parameters. Section 6.2 describes our computation offloading


setting. Section 6.3 discusses the results. Finally, Section 6.4 summarizes the chapter


and concludes.
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6.1 Resource Prediction in Remote Execution


Offloading computation to remote, wall-powered, resource-rich servers can provide


significant power savings. Computation offloading has to compute the cost of local


execution and remote execution before offloading the computation to a remote server.


To utilize the power consumption as efficiently as possible, the system should offload


computation only when remote execution is expected to use less energy than local ex-


ecution. In order to achieve this, the cost model must consider both the task execution


characteristics as well as the highly-variable performance of the underlying resources


that dictate computation and communication performance. Predicting the future state of


these resources and application demand requires a high quality prediction mechanism.


Chapter 2.1 describes remote execution in more detail.


Since the scope of this chapter is to compare NWSLite to other predictors, we em-


ploy a general cost model that assumes no I/O overlapping. We compute the available


CPU cycles using the Odyssey model, which we give in Equation 5.1. We compute the


local and remote execution cost as:


Ll =
Dcpu


Slcpu


(6.1)


Lr =
Dtx


Stx


+
Dcpu


Srcpu


+
Drx


Srx


+ DrttSrtt (6.2)


where Ll and Lr stand for local and remote execution latency, Dcpu is the number of


CPU cycles that the application requires to complete the task and Slcpu is the available
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CPU cycles on local machine, averaged in a period of one second. The remote cost is


the sum of four constituent operations:


1. The time required for network transfer given the size of the demand for network


send, and any needed program code (Dtx) and given the available bandwidth


(Stx) between the device and server;


2. The execution time at the server given the average number of CPU cycles avail-


able at the server (Srcpu);


3. The time for transfer of results, e.g., data, status, rendered graphics, etc., back


to the device given the available bandwidth between the server and device ( Drx


Srx


);


and;


4. The time required for handshake to establish connection, given the number of


packet exchanges between local and mobile device (Drtt) and network latency


(Srtt).


Since (4) commonly consists of very short packet communication between the device


and the server, the handshake operation is impacted by the latency in the network link


between the client and server (DrttSrtt). Ll and Lr can be enhanced to compute power,


to integrate computation fidelity or battery lifetime into cost functions.
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int likely offload()


{ // returns 1 if remote execution chosen, 0 otherwise


LL = predict local latency();


if (LL < 50 milliseconds) {


return 0;


}


LR = predict remote latency();


if (LL > LR) {


return 1;


} else {


return 0;


}


}


Figure 6.1: Pseudocode for Scenario1 Decision Manager


6.2 Methodology


To better understand how much the improved accuracy enabled by NWSLite mat-


ters to a real remote execution system, we constructed two scenarios and simulated


those scenarios using the principles that we described previously. In our simulation, we


limited the computation offloading scenarios to one mobile device and one remote ex-
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ecution server. We assumed that the local device is an HP iPAQ H3800 and the remote


device is an IBM T23 laptop. The former machine has a 206MHz StrongArm CPU,


while the latter one uses a 1132MHz Pentium III. We assume that both machines are


not executing any other task.


The scenarios simulate computation offloading systems that have different goals. In


Scenario1, the goal is to provide optimal user-interactivity. Many mobile applications,


such as augmented reality applications, and games are user-interactive by their design,


making response time a critical design parameter. For such applications, computation


offloading is a viable option not only to improve response time but also to improve func-


tionality [54, 41]. In Scenario2, the goal is to reduce power consumption as much as


possible and to extend battery life. Scenario2 does not consider execution performance


(latency) in offloading decisions.


The simulator reads the measured values of each of the computation offloading


parameters, – CPU demand, local and remote CPU supply, and network latency and


bandwidth –, from a file and predicts their future values by running separate instances


of predictors for each type of data. Once the system computes the future values, it calls


the decision manager, which determines whether local (a return value of 0) or remote


computation (a return value of 1) will be used. The simulator also computes what


the “right” or “best” decision is, once it reads the actual values, and computes various


statistics for our use in the evaluation.
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Figure 6.1 shows the pseudocode for the Scenario1 decision engine. The engine,


which exists on the mobile device, offloads the task to the remote machine if the fore-


casted local execution time is more than 50 milliseconds (ms) and the forecasted remote


execution time is smaller than that of the forecasted local execution time. The tasks that


are estimated to have an execution time less than 50 ms are never offloaded, since the


human perception system can not recognize delays that are less than 50 ms [11]. Thus,


Scenario1 favors local execution, when appropriate, to reduce the stress on shared re-


sources, such as the network and remote server. We discuss the implications of this


choice on predictor efficacy in the next section.


In Scenario2, the decision process estimates power consumption for both local and


remote execution and chooses the location that leads to lower power consumption. Un-


like Scenario1, this scenario does not favor either local or remote execution (i.e. it


does not take execution latency into consideration). Furthermore, its power computa-


tion function assumes that the local CPU and the wireless interface are in the idle state


during remote execution. We detail the computation of power consumption later in this


section.


We simulated Scenario1 using GLVU and Scenario2 using Radiosity. As we ex-


plained in Section 5.4.1, both of these applications can be split into tasks that can be


offloaded to a remote server or executed locally. To measure the task CPU demand


(i.e. Dcpu), we captured the task execution times, in microseconds resolution, as a user
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was navigating 3-D scenes on a dedicated IBM T23 Linux laptop. We then computed


the demand, in CPU cycles, as Dcpu = t × f where f is the CPU clock speed of the


machine and t is the task execution time. Even though Dcpu is not completely accu-


rate and portable across architectures due to differences in cache sizes and other CPU


parameters (i.e. lack of floating point coprocessor in StrongArm), we ignore such dis-


crepancies as our focus is the accuracy of predictors, not the efficiency of computation


offloading.


In our simulations, we assume that only the input data is transmitted across the


network. This is similar to prior approaches in [41, 64, 18]. Both GLVU and Radiosity


tasks operate on an object file that contains the current scene. Since the size of this file


is known beforehand, there is no need to predict network demand separately.


Prior to the data transfer, the client and the server has to initiate a session. In our


model, the initial handshake, which includes a single message exchange, and the data


transfer are done reliably, using the TCP protocol. Other implementations tend to be


more complex [18] and use protocols like remote procedure call, however we do not


discuss these for conciseness.


Each offloading decision requires prediction of four resources; network latency,


network bandwidth, and local and remote CPU availability. Network latency is used


to compute the cost of protocol handshake. Network bandwidth is needed to estimate


cost of data transfer. CPU availability is used to compute the cost of local and remote
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Parameter Power (mWatts) Description
pidle 550 CPU idle- Wireless interface off
pbusy 1150 CPU highly busy - Wireless interface off
ptx 2200 Data send over wireless
prx 2100 Data receive over wireless


Table 6.1: Power consumption of iPAQ under different scenarios [88]


computation. We use separate predictor instances on data histories to estimate next


values of each of these resources.


We use Equations 6.1 and 6.2 to compute local and remote execution latencies in


Scenario1. In Scenario2, to compute power consumption, we extend these equations


such that:


Cl =
Dcpu


Slcpu


pbusy


Cr =
Dtx


Stx


ptx +
Dcpu


Srcpu


pidle +
Drx


Srx


prx + DrttSrttptx


In the first equation above, Cl stands for local execution energy consumption. We com-


pute it by multiplying local execution latency with pbusy, which is the average power


consumption of a highly loaded handheld computer. Similar to Lr; Cr, the energy


consumption during remote execution, is a sum of four factors:


1. The energy required for network transfer, which is network transfer time multi-


plied by ptx, the average power consumption during wireless transmit;
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2. The energy consumption while waiting for execution at the server, which is re-


mote processing time multiplied by pidle, the average power consumption in sleep


state;


3. The energy required for network receive, which is network receive time multi-


plied by prx, the average power consumption during wireless receive; and;


4. The energy required for handshake to establish connection, which given the num-


ber of packet exchanges between local and mobile device is equal to network


latency multiplied by (ptx).


Table 6.1 gives the actual values of p, as measured by Li et al. [88] on real handheld


devices.


We simulated each scenario using 3 input scenes. We chose the scenes arbitrarily,


from Table 5.3, however, we were careful to choose one small, one medium and one


large scene. For GLVU, we used Castle, Shuttle and Ground-Table-Land. For Radios-


ity, we used Cessna, Venus and Ground-Table-Land. We evaluated each scene using 32


different TCP bandwidth, network latency and CPU availability measurements that we


describe in Section 5.4.1. We report the average results.


In each scenario, we compared the efficacy of NWSLite with RPF and LSQ using


the best performing parameterization as we described in Section 5.4.3. We did not


include NWS in our evaluations due to its high cost.
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Object Features Number of % of Offloading Decisions
Size Complexity Decisions RPF LSQ NWSLite
(KB)


Sc
en


ar
io


1 Castle 385 Medium 78528 32.37 32.23 32.39


Shuttle 15 Low 14080 64.32 66.82 65.00


Ground-Table 640 High 26496 48.12 49.32 48.65


Sc
en


ar
io


2 Cessna 200 Medium 12736 28.33 31.83 29.72


Venus 3483 Very High 2720 9.63 12.21 16.58


Ground-Table 640 High 5152 27.93 34.71 28.13


Table 6.2: Overview of 3-D objects.


6.3 Simulation Results


In this subsection, we evaluate how prediction effects the performance of the de-


cision engine. There are two ways that the decision engine can fail for a given task:


(1) the decision engine chooses local execution even though remote execution is more


beneficial (2) the decision engine chooses remote execution even though local execu-


tion is more beneficial. We refer to the former as wrong locals, and the latter as wrong


remotes. We use wrong decisions to refer to the sum of both wrong locals and wrong


remotes.


Table 6.2 gives a brief overview of all the 3-D objects that we used. The first part of


the table describes object features, including size, in Kbytes, and complexity, in scales


that change from “low” to “very high”. A higher complexity object has more vertexes


and edges per unit area, and more details such as 3-D information, and color. Such
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increase in complexity requires more network demand, but not necessarily more CPU


demand, because rendering algorithms can intelligently prune out many details, such as


the vertexes that are not visible, during processing. For example, even though Ground-


Table is almost two times larger than Castle, its average rendering cost is approximately


the same as that of the Castle.


The rest of the table gives the total number of task offload decisions and the per-


centage of offload decisions given by each predictor. A high number of task offload


decisions shows that the user navigated the object for a longer duration, generating a


larger number of tasks. This is typically the case for the GLVU tasks in Scenario1,


since the tasks are shorter than the computationally demanding Radiosity tasks. The


ratio of tasks that the predictors chose to offload varies from 10% ( Venus in Scenario2)


to 64% (Shuttle in Scenario1), depending on task characteristics. However, these num-


bers show only the degree to which predictors utilized local and remote execution, and


does not indicate whether these decisions are correct.


In Figure 6.2, we compare each predictor in terms of wrong decisions. Each bar


shows the percentage of wrong decisions. The striped and solid sections represent the


wrong remotes and wrong locals consecutively. For example, for Castle approximately


2.6% of all decisions were wrong, and the ratio of wrong locals and wrong remotes


were approximately equal. The last three bars show the average. We compute average


by equally weighing all benchmarks; for example, if a scene has 450 wrong offloading
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Figure 6.2: Percentage of wrong decisions. The striped and solid parts show wrong
remote and local execution decisions, consecutively. NWSLite beats other predictors
in each benchmark.
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decisions among its 900 tasks, and another scene has 10 wrong offloading among 100


tasks, we compute the average of wrong offloading decisions as 30%, not 23%.


In a remote execution system, the computation offloading decisions show a boolean


characteristic. Once the decision is wrong, it does not matter how close the predicted


and the real value is. The possibility of a wrong decision increases when the gap be-


tween the cost of local and remote execution is small. That is because the small gap


cannot compensate any prediction errors. An example is Venus in Scenario2. Venus is


an extremely sophisticated scene. Due to its size, remote execution is very costly, how-


ever, local execution is not (i.e. even though Venus is approximately 5 times larger than


Ground-Table-Land, the CPU demand is only 2.2 times larger in average). The large


margin between the cost of local and remote execution compensates most prediction


errors; therefore all the predictors can achieve very few wrong decision rates (< 1%).


Overall, the wrong decision rate was less than 10% for all benchmarks. NWSLite


was always better than the other predictors. In Scenario1, the the wrong decision rate


for NWSLite, LSQ and RPF were 4.1%, 5.1% and 7.5%, consecutively. In Scenario2,


NWSLite performed even better. The rate was 2.3% for NWSLite, and 4.7%, 5.2%


for LSQ and RPF. This corresponds to 67% fewer wrong decisions than RPF and 14%


fewer wrong decisions than LSQ for the first scenario. In the second scenario, the


difference between NWSLite and other predictors is even larger; NWSLite gave 95%


and 73% fewer wrong decisions than RPF and LSQ, consecutively.
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The wrong decisions were almost equally distributed among local and remote exe-


cution except the Ground-Table-Land benchmark in Scenario2. In Ground-Table-Land,


only for the LSQ predictor, wrong locals were dominant. A plot of cost function un-


veils an interesting phenomenon: even though remote execution cost is stable, there are


frequent, steep changes (i.e. dips) in local execution cost. When such a dip occurs,


LSQ tends to over-correct its parameters resulting a steeper reduction (i.e. an underes-


timation) in local cost estimation, resulting in many wrong local execution decisions.


In Figure 6.3, we compare the cost of wrong decisions. We compute the cost as


∑


ci/n; where ci is the cost of a wrong decision i, and n is the number of all tasks.


We compute ci as the amount of extra response time -or extra energy consumption,


depending on the scenario- between the correct decision and the wrong decision. In


other words, this metric gives the expected wrong decision cost per task. The results


are in ms for Scenario1, and in millijoules (mJ) for Scenario2.


Figure 6.3 shows that, in Scenario1, there is a very uneven cost distribution among


wrong locals and wrong remotes. In Castle and Ground-Table-Land, most cost is due to


wrong remotes, in Shuttle all cost is due to wrong locals. This is due to the asymmetric


nature of Scenario1; the computation offloading decision is given only when the task is


expected to last more than 50 ms, therefore only large tasks are offloaded and a wrong


decision adds a huge error. This effect is clear in Castle and Ground-Table-Land, but


not in Shuttle. Due to the relatively lower CPU demand of Shuttle, (i.e. a very small
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Figure 6.3: Cost of wrong decisions. The striped and solid parts show wrong remote
and local execution decisions, consecutively. Scenario1 is very asymmetric; for Castle
and Ground-Table-Land almost all cost is due to wrong remote execution decisions and
for Shuttle all cost is due to wrong local executions. This is expected due to asymmetric
offloading rules. NWSLite beats other predictors in both scenarios.
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Wrong Local Execution Wrong Remote Execution
Decisions Decisions


RPF LSQ NWSLite RPF LSQ NWSLite
Sc


en
ar


io
1 Castle 18.76 12.90 18.15 235.28 332.29 290.32


Shuttle 50.84 45.03 39.58 0 0 0


Ground-Table 13.15 9.47 6.18 110.76 164.45 198.96


Sc
en


ar
io


2 Cessna 217.47 43.66 280.86 66.77 89.85 131.85


Venus 139.04 124.35 52.56 1464.00 1695.26 1315.97


Ground-Table 55.72 24.23 30.66 119.87 1278.40 227.11


Table 6.3: Expected penalty for a wrong decision. The cost of a wrong decision is
proportional to the complexity and size of a scene. For example, for Venus, the cost is
extremely high, however for Shuttle it is very low. The expected cost is almost same
for NWSLite and other predictors.


scene of 15 KBytes), the predictors always estimated that local execution was adequate


and never chose remote execution.


Table 6.3 shows the expected penalty for a wrong decision; in other words, it shows


how costly a wrong decision is. We compute it by dividing the total cost of wrong


decisions to the number of wrong decisions nw; that is
∑


ci/nw. The results are in


milliseconds for Scenario1 and in millijoules for Scenario2.


The expected penalty is not significantly different across predictors. In Scenario1,


RPF had slightly lower penalty per miss, however, its effect was offset by the high num-


ber of wrong decisions. (i.e. Figure 6.2). In general, predictors have fairly close results,


however, Ground-Table-Land in Scenario2, is marginal. As was explained before, this


is due to the LSQ, which consistently underestimates the cost of local execution.
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Table 6.3 also emphasizes the asymmetry in cost structure: In Scenario1, a wrong


remote execution decision was much more expensive than a wrong local execution de-


cision (i.e. 200 ms vs. 20 ms latency). Therefore, in settings where power consumption


is not a concern, it may be beneficial to continue local execution in parallel. The same


cost structure also exists in Scenario2. Here, the wrong remote execution decision


penalty was 410 mJ, in contrary to the wrong local execution decision penalty which


was only 107 mJ.


6.4 Summary


In this chapter, we show how NWSLite demand and supply prediction allows com-


putation offloading to effectively optimize energy as a resource. NWSLite provides


accurate predictions that indicate how much a task needs resources, and how much is


available, and the “Decision Manager” decides whether to remotely or locally execute


the task. NWSLite monitors the network bandwidth and latency and CPU demand


and availability using an adaptive, dynamic, mixture-of-experts mechanism. After each


prediction, it reconsiders the current predictor –if a predictor has less error rate than


the current one, it replaces the current predictor with the one that has less prediction


error. Consequently, the predictions that NWSLite produces are of higher quality than


its static competitors which always use the same predictor.
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The higher quality of NWSLite predictions have a clear impact on computation


offloading decisions. In each scenario that we evaluate, use of NWSLite has reduced


both the number of “wrong” (i.e. not beneficial) computation offloading decisions and


the energy consumption.


140







Chapter 7


Improving Dynamic Voltage Scaling


The previous chapter demonstrated the potential of computation offloading. It


showed that better predictions of resource demand and supply can improve energy ef-


ficiency (and performance) significantly, when there exists a computational server that


we can offload the computation to. However, such a computational server is not always


available. Furthermore, even when there is a remote computational server, it may be


possible to reduce energy consumption further by scaling down performance level of


local resources. Dynamic voltage scaling (DVS) is a method that lets us do so when


increased task completion time caused by lower performance level is not a concern.


To minimize the effect of voltage scaling on system responsiveness, DVS policies


must estimate future workload and choose the most appropriate CPU level. Accu-


rately predicting future workload is challenging yet vital for maintaining acceptable


performance. Mis-prediction can result in setting the CPU level too high, curtailing


power savings, or in setting the CPU level too low, producing an unresponsive system.
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Techniques that employ dynamic voltage scaling must employ efficient and accurate


prediction techniques to determine how much to scale the CPU level and when. If


the estimates are incorrect or the application of the optimization introduces significant


overhead, the techniques may be unable to extend battery life or actually shorten it.


Prior research has concentrated on prediction techniques that estimate future CPU


load as a function of previous load history [77, 3, 26, 72, 28]. More recent techniques


proposed classifying tasks into different groups, each with a customized policy [17,


49]. These techniques focus on interactive tasks, such as games, word editors, notes,


browsers, etc. that form a significant portion of mobile device applications. These


tasks are very sensitive to lower performance, as a user perceivable slowness may be


distracting and annoying for their user.


In this section, we explore how to better predict user interactivity for reducing en-


ergy consumption of mobile devices. Using the predictor that we developed in previous


chapters, we design and implement an automatic voltage scaling system which we call


AutoDVS. In Section 7.1, we discuss the user think time as a novel mechanism that


can guide dynamic clock scaling of CPUs. In Section 7.2, we present our design and


implementation to detect and predict future user think times. Here, we also show how


to integrate our system to prior techniques that schedule CPU speed for non-interactive


tasks. Section 7.3 describes how we capture user interactivity. Section 7.4 describes


142







Chapter 7. Improving Dynamic Voltage Scaling


evaluation metrics. Finally, Section 7.5 discusses results, and Section 7.6 gives a sum-


mary of the chapter and concludes.


7.1 Predicting User Interactivity For DVS


As we have explained in Section 2.2.2, most modern dynamic voltage scaling ap-


proaches classify interactive tasks as a separate task group and develop custom scaling


policies for them. This allows keeping interactive task execution latencies at levels that


are acceptable to the user. Many researchers agree that user interactive events should be


completed within 50 to 100 milliseconds for providing a comfortable human-computer


interaction [69].


Prior research has suggested monitoring and scheduling each interactive task auto-


matically and individually by tracking them at the kernel level [17, 16, 49]. Interactive


tasks are triggered by a user action, such as a mouse movement, or a keystroke. The


aforementioned works schedule the CPU in a way that these tasks complete before the


50 milliseconds delay, whenever possible. As we have discussed before (Section 2.2.2),


while this approach provides significant energy savings for interactive applications, it


has the drawback of having the operating system guess when a task completes.


Guessing when a user interactive task completes is rather fuzzy. A user is probably


not expecting the same interactive behavior from each user event (keystroke, mouse,
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etc.,) even when they are of the same type. The intention of an interactive event may be


a factor of numerous things, including:


• editing in a word editor (a keyboard event)


• starting a command using command line interface (a keyboard event)


• starting a search in a web browser (a keyboard/mouse/touchscreen event)


• action in a game (a mouse/touchscreen event)


• drawing in a back office program (a mouse/touchscreen event)


• dragging a window in window manager (a mouse/touchscreen event)


• redrawing/creating a window in window manager (a window manager triggered


event)


To reschedule the CPU optimally for each event, we would have to identify the


intention behind all the user events. Rather than struggle for an extremely complex


model, we choose to predict interactivity as a function of inter arrival time between the


user events that are generated in a particular time. In our model, we define user events


in a broader term and include window redraw, create, move, focus and similar events


among the ones that we monitor. Even though these events are not triggered by user


directly, they are important for interactivity. The full list of events that we monitor are
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Connected A client connected to the window manager
Mouse A mouse button / touchscreen pressed or released
Keystroke A key pressed or released
Focus A window received/lost focus
Region modified A region has changed
Creation The server has created an ID, typically for a window
Property notify A property has changed
Property reply The server is responding to a property value
Selection clear A selection is cleared
Selection request The server has queried for a selection
Selection notify A new selection has been created
Max. window rect. The server has changed maximum window size
COP A communication message appeared (between GUI clients)
Window operation A window operation (resizing, etc.)
IM Event An input method has been used to enter non-latin text
NEvent Number of events changed
Embed An event used internally to implement embedded windows


Table 7.1: Interactive events that we monitor


given in Table 7.1. The list includes all the events that our windowing manager [57]


allows us to capture.


Figure 7.1 shows the graphical user interface (aka GUI) event traces of a Solitaire


game. We capture these while a real user was playing the game on a handheld de-


vice. The x axis shows the event identifier, which is a monotonically increasing integer


starting from 0. The y-axis shows the time (in milliseconds) between two consecutive


events. Solitaire receives long bursts of user input events bounded by large think times.


The event burst is generated by the touch screen, during the frequent drag-and-drop


operations involved in this game. The long bursts of user input events indicate poten-
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Figure 7.1: GUI event inter-arrival times for Solitaire. The y-axis shows the time (in
milliseconds) between two consecutive events.


tially high CPU activity, because the events are received in quite short succession. The


large think times (the spikes) indicate low CPU demand. There is a strong pattern in


the graph –the typical gap between two events is 40 to 50 milliseconds, until when a


large gap starts. Solitaire however, is not the only game that shows such a pattern.


Figure 7.2 and 7.3 show the event traces for a Tetrix game and a Opieplayer, which


is a typical MP3 player. Tetrix receives the most user events through the keypad; this


results in very short bursts of events. However, due to the nature of game, the event


bursts are separated by smaller think times. If we assume that any period lasting longer


than 0.5 seconds is an indication of user thinking, the median think time for Solitaire


and Tetrix is 2.2 and 1.0 seconds, respectively. Opieplayer is much less interactive than
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Figure 7.2: GUI event inter-arrival times for Tetrix. The y-axis shows the time (in
milliseconds) between two consecutive events.
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Figure 7.3: GUI event inter-arrival times for Opieplayer. The y-axis shows the time
(in milliseconds) between two consecutive events.
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both of those games with almost no burst of user interface events. Again, there is a


pattern in the graph, however, this time, the think times are smaller, and event bursts


are shorter.


In Autodvs, we monitor these GUI events to identify interactive sessions, the peri-


ods of high user event generation periods, in arbitrary programs. Our system employs


no notion of tasks, but instead automatically infers task-like behavior, i.e., periods of


time, in which the user is interacting with the device. We refer to non-interactive ses-


sions as think times. In addition, we do not distinguish event types (as is done in [49])


i.e, we consider only interactive sessions regardless of which events occur within them.


The goal of AutoDVS is to predict the length of user interactivity and and utilization


level, which is crucial to prevent obtrusive effects of frequent clock scaling requests.


7.2 Design and Implementation


Our goal with AutoDVS is a light-weight, practical DVS system for low-end, mo-


bile computers and their applications – without participation from the user, information


from the source programs, or a priori knowledge of task length or behavior. AutoDVS


transparently changes the clock frequency according to the workload activity that it


senses dynamically. The key to the efficacy of AutoDVS is its categorization of applica-


tion workload into two session types: interactive sessions and batch sessions. AutoDVS
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Figure 7.4: AutoDVS policy stack and arbiter rules. AutoDVS responds to policy
requests according to priority (1 is highest).


then intelligently applies different, independent, and multiple scheduling policies to


each session type.


For interactive sessions, AutoDVS employs a user-space policy that considers GUI


events for each application. The policy predicts the duration and CPU load of each


interactive session. By considering each application individually, our predictions have


a better chance of capturing regular, repeating patterns within each.


For batch sessions, AutoDVS implements two different kernel-level, interval-based


policies (as Linux kernel modules). The batch policies identify changes in CPU load


and estimate when a CPU clock change is warranted. These CPU load predictors take a


global view of the system to identify additional DVS opportunities not made apparent


by the fine-grain interactive scheduler.


149







Chapter 7. Improving Dynamic Voltage Scaling


All CPU performance change requests issued by any policy are handled by an ar-


biter using the pre-defined rules that we show in Figure 7.4. The policies either request


a speed change or inform the arbiter about expected CPU load and load duration. The


arbiter executes requests using a priority scheme; the requests from interactive appli-


cations have the highest priority, and the requests from policies that monitor largest


time-span have the lowest priority. In the case of concurrent requests, the arbiter al-


ways chooses the highest priority. However, there is one exception to this rule: If the


policy that monitors excessive load detects a sudden increase in CPU demand, this


request is honored first.


This division of labor across the system is key to the efficacy of AutoDVS. To-


gether the policies are able to consider a wide range of application behaviors without


much implementation complexity. By processing the requests centrally, we are able


to make accurate and effective, system-wide, CPU scaling decisions that reduce power


consumption without negatively impacting performance.


Moreover, this design accounts for the actual CPU change latency of the underlying


device. Extant approaches to DVS scheduling assume a very low latency and allow a


large number of frequency changes. For our device however, as we suggested previ-


ously, this latency can be much larger due to the overhead of maintaining other devices


in the system that are synchronized with the CPU clock. We measured the switch over-


head for the HP IPAQ H3800 running Linux 2.4 to be 40 milliseconds on average.
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Figure 7.5 shows the timeline of a clock speed change request on this platform.


We measured this period using timestamp counters. Initially, the kernel maintains a


dynamic list of device drivers that must be alerted when the clock speed changes. A


frequency switch request requires three traversals of this list; first to inquire if new


speed is in acceptable range, and then to let device drivers initialize their hardware


appropriately before and after clock change, i.e. PRECLK and POSTCLK phases.


During the PRECLK and POSTCLK phases, the device drivers impose initialization


delays due to hardware requirements. Even though these delays do not block the CPU,


they increase the latency between clock speed request and actual change. The more


devices that employ the CPU clock for timings, the longer this latency. AutoDVS


does not consider sessions shorter than 50 milliseconds to account for this latency.


Moreover, we can change this threshold dynamically to adapt to changing peripheral


configurations.


7.2.1 Monitoring GUI Events


For each application, AutoDVS monitors user input and display updates. The for-


mer events are the direct result of user input through the keypad and touch-screen. The


latter events include GUI messages such as window update and focus operations. Mon-


itoring the display updates is important to correctly identify interactivity, e.g., when


user waiting for an application to redraw the screen.
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Figure 7.5: iPAQ H3800 clock scaling request timing. After receiving the request, the
kernel initializes data structures and waits for initialization of hardware devices (PRE-
CLK and POSTCLK phases). The actual clock scheduling takes under a millisecond
(heavily shaded area). The clock scheduling latency on iPAQ Linux Kernel v2.4 is
approximately 40 milliseconds.


In our software platform, all GUI applications are linked against a shared GUI li-


brary. We extended the event handler function of this library to contain AutoDVS


policies. The event handler is a null (unimplemented) wrapper that receives all


GUI events before any other function. Our modified event filter identifies in-


teractive sessions and interfaces to the prediction library to forecast interactive session


lengths and load (we detail this process in the next subsection). We implemented a


Linux new system call to provide a communication path to AutoDVS policies in the


kernel.


DVS For Interactive Sessions


An interactive session starts with the arrival of an event and ends if no event is


received for a period of tp. Identifying the interactive sessions correctly is important,


since presumably, the user is most sensitive to any performance loss during these peri-
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ods. The value of tp impacts the system in two ways. If tp is too small, the algorithm


might end an interactive session prematurely while the application is still processing


a GUI event. If tp is too large, AutoDVS will maintain a high CPU speed and miss


opportunities for reducing energy consumption. We set tp to be 1 second empirically:


our evaluation of more than 110, 000 events on iPAQ workloads indicates that the inter-


arrival time between two GUI events is less than 1 second more than 99.0% of time and


that when inter-arrival time is larger than 1 second, the mean time to receive next event


is 8 seconds.


When an interactive session starts, AutoDVS computes two parameters: the length


of the previous session and the interactive CPU load. The computation of length (tp) is


straightforward. If ei is the arrival time of an event such that the period between ei and


preceding event is larger than tp. Then the length of period i is equal to (ei+1− ei). We


set the CPU load to be the CPU time divided by length of the period. To predict the


new session length and CPU load, we employ our NWSLite predictor.


7.2.2 CPU Load Sensor


AutoDVS must also account for periods of time during workload execution that are


not interactive. Most programs, even those that are primarily interactive, execute think


(non-interactive or computationally intensive) periods. The CPU load sensor is respon-


sible for these sessions. This sensor takes a global view of the system and workload,
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i.e., it does not consider task-level and application-specific details. CPU load sensor


employs two interval-schedulers: CPU Load Monitor and the Idle Process Monitor.


The CPU load monitor considers very large intervals (10 seconds) and averages the


measured CPU load across intervals. By averaging, the monitor eliminates noise in the


data and distributes slack time more efficiently. Slack time consists of the idle cycles


during an interval when CPU utilization is less than 1. The monitor predicts that the


CPU load for the next interval will be the same as it is for the current interval (this is the


PAST policy used in [77, 28]). We do not use NWSLite for predicting future load since


it requires floating point operations which cannot be handled in the Linux kernel. By


coupling interactive task scheduling with the CPU load monitor, AutoDVS can handle


both fine and coarse grain workload activities. However, we require one additional


monitor to identify fine-grain behavior in non-interactive (e.g. batch and background)


sessions, called the idle process monitor.


The idle process is a process that the OS scheduler executes whenever no other


process in the system is runnable. The idle process monitor evaluates (then resets)


idle process statistics every 500 milliseconds. The monitor considers the number of


times the idle process was scheduled by the OS and its execution duration during the


previous interval. We modified the Linux scheduler (sched.c) to collect and export this


information as a kernel symbol. All of our modifications are light-weight, simple, and


efficient and do not perceivably impact the behavior of the system.
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Both monitors make CPU scaling requests to the arbitrator. The CPU load monitor


uses an extension to Pering’s hysteresis pair [60] to decide when to request a speed


change. These values, (50,70) in prior work, act as a boundary for average CPU load.


A level less than 50% indicates CPU can be scaled down and a level higher than 70%


indicates CPU can be scaled up. We found empirically that the pair (60,80) works best


in our actual implementation for iPAQ software. The idle process monitor requests a


step increase from the arbitrator when it detects a period (500 milliseconds) in which


the idle process is never scheduled. If the monitor detects that the idle process executes


for over half the interval time, it requests a step decrease.


Both monitors request only single step CPU clock changes.We investigated methods


such as estimating CPU cycles based on workload demand and directly switching to the


most appropriate clock level (i.e. similar to [17]), however, these approaches resulted


in instability, i.e. the system switched back and forth rapidly between neighboring


frequency levels. The reason for this thrashing is a combination of measuring the CPU


during periods of fluctuation (which impacts the measurement process) and hardware


design [28].


We have empirically evaluated the efficacy of our approach by running a large num-


ber of very different workloads on an iPAQ with AutoDVS and comparative techniques.


In the subsections that follow, we describe our experimental setup and the benchmark
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workloads. We then define the metrics that we use in our empirical evaluation and


present our results.


7.2.3 Platform Specific Design Constraints


Our device infrastructure includes five Compaq H3800 hand-held computers run-


ning Familiar Linux version 0.7.2 [15]. The H3800 is a very typical hand-held com-


puter, with a 206MHz StrongArm CPU, and 64 Mbytes of main memory. It is capable


of dynamic frequency scaling, however, it does not yet support voltage scaling.


To estimate power savings due to voltage scaling, we use a technique defined in


prior work [17] for a similar study. We assume that the StrongArm and XScale [33]


processor exhibit similar power characteristics and use published data for the XScale


XSA (the system most similar to the StrongArm in terms of maximum voltage and


supported frequency range), in the estimation. We approximate the voltage levels of


the XScale CPU using the available frequency levels and a second degree polynomial


parameterized by the XSA data:


v = −4× 10−7f 2 + 0.0015f + 0.5324 (7.1)


To compute the corresponding StrongArm voltage levels, we use Equation 7.2 as a


mapping function. That is, we linearly scale the StrongArm frequency range to the
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Estimated
Level Freq. (MHz) Voltage (mV)
1 59.0 748
2 73.7 832
3 88.5 914
4 103.2 992
5 118.0 1067
6 132.7 1139
7 147.5 1209
8 162.2 1274
9 176.9 1337
10 191.7 1397
11 206.4 1453


Table 7.2: SA1100 Parameters. We estimate the voltage levels using equations 7.1 and
7.2, and assuming that the SA1100 has the same characteristics as the XScale processor.


XScale frequency range:


f ′ =
773− 150.0


206.4− 59.0
× (f − 59.0) + 150.0 (7.2)


We present the estimated voltage levels in Table 7.2.


The StrongArm architecture requires that all of the primary peripherals be syn-


chronous to the CPU clock [31]. This implies that all CPU scaling will impact the


performance of memory, the I/O controller, DMA, the LCD controller, etc. The depen-


dency between the CPU clock and external devices can cause significant differences


between theoretical expectations (and simulated results) and practical results. For ex-


ample, Grunwald et al. found that the CPU utilization changes non-linearly with respect


to clock frequency, possibly due to variations in memory access cycles [28]. Another
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obstacle was the LCD driver. In our evaluations, the display started vibrating making it


unreadable for any speed lower than 103MHz. Thus we had to eliminate three lowest


frequencies.


The window manager that we run on the devices is Opie [57] version 1.0.2. Opie is


an open-source graphical user interface designed for Sharp Zaurus and Compaq hand-


held computers. It is a full-fledged GUI comparable to commercial versions in both


appearance and features. The available Opie applications include Calendar, Contacts,


Drawpad, a multimedia player, a wide range of games, etc.


7.3 Collecting User Interactivity Traces


We evaluate AutoDVS below using two different scenarios. (1) Interactive: Run-


ning GUI applications; and (2) Concurrent: Interactive and soft-real time applications


running together.


To evaluate and compare the performance of interactive applications, we collect a


set of usage traces and extracted event and timestamp information. We then monitor


the performance of AutoDVS while replaying the events in real time. Thus, our results


also include the overhead of clock switching and all AutoDVS functionality.


To collect the usage traces, we have installed Opie on several Compaq H3800 hand-


held computers and have distributed them to graduate students in our department. We
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alert the students that we are capturing all events and ask them to use the hand-helds as


their own as normally as possible and to reboot them periodically (to end the session).


We modify the iPAQ software to enable trace collection in three ways: We (1)


disable network connectivity; (2) modify random number generators to use a fixed


seed; and (3) program each to clear all user state information after every reboot. These


changes were necessary to eliminate as much non-determinism as possible so that we


could re-generate the user events in the correct order during experimentation.


To capture the events, we instrument the Linux kernel at the I/O driver level. Our


system captures all events generated by the touch-screen, the keypad, and the joy-pad


using a microsecond timestamp. We save the identification information for captured


events in RAM and copies them to permanent storage immediately prior to shut-down,


to prevent any excessive overhead. The time and space overhead for event trace collec-


tion is small. Each event requires a total of 20 bytes: 8 bytes for the timestamp and 12


bytes for event type and attributes. Since we capture events at the I/O device driver, we


can read the current time directly from Linux kernel data structures and no system calls


are required.


To replay the captured events, we have developed a Linux kernel module. The


module initiates events from a list in memory using a microsecond resolution timer.


The events describe user behavior from boot-up to shutdown. Some of the event


traces that we captured are not useful; they are either too short, broken, i.e., depen-
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Event Count
Trace (ETime@206MHz) Description
DrawPad-1 23100 (915.4s) Drawing random pictures


General use including calendar,
General-1 3688 (448.1s) contacts and games
Solitaire-1 8700 (756.4s) Multiple Solitaire games
Tetrix-1 6936 (583.8s) Tetrix
Tetrix-2 1342 (210.1s) Tetrix - very short and slow
Checkers-1 1238 (205.1s) Checkers - medium difficulty
Checkers-2 1214 (265.7s) Checkers - maximum difficulty
Checkers-3 2490 (1076.4s) Checkers - maximum difficulty


Table 7.3: AutoDVS evaluation benchmarks and event traces. We gather the traces
using instrumented versions of the system while different users exercised the iPAQs.
The name of each trace reflects the application that was dominant during the usage
period.


dent on user created files, or too similar. Overall, we employ the traces described in


Table 7.3. The second column is the number of events in the trace and the total time


(seconds) for the real time play-back at maximum performance (206MHz). We refer to


each event trace using the name of the application that was active most often. The first


four traces describe more general-use applications and include multiple program types.


The last four traces are exclusively games.


To evaluate soft real-time applications we use Madplay, an open-source, high qual-


ity, MP3 decoder [50]. We interface Madplay to the GNOME Enlightened Sound Dae-


mon (ESD), to enable on-line playback. The input file encoding rate is 56Kbits/sec.
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7.4 Evaluation Metrics


We have evaluated the impact of AutoDVS using three different metrics: energy


factor, stall rate, and stall magnitude. Energy factor measures energy consumption


with respect to execution at full CPU performance. The stall rate and magnitude metrics


describe the degradation in interactive performance due to CPU scaling.


We compute energy consumption using the energy factor (EF ) as defined


in [17]. EF is the ratio of energy used by the scaled workload to energy used when


workload is processed at full speed. That is,


EF =


∑n


i=1 v2
i fiti


v2
MAXfMAXT


(7.3)


where vi and fi are the voltage and frequency of each period of time (ti) between two


frequency scaling operations and T is the execution time of benchmark at full CPU


performance level. We use the frequency and voltage levels that are given in Table 7.2.


EF is unit-less and measures the energy consumption of the CPU only.


To compute performance loss, we record the execution time of each interactive


event. Specifically, we assume that execution of an event starts when it arrives at


the window manager. We define event completion time using the approach described


in [49]: The execution of an event ends when the idle task is entered and no I/O is ongo-


ing. Even though this method can be imprecise (i.e. it might occasionally mis-classify


events as completed), other (extant) approaches (described in Section 2.2.2) are highly
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complex and can adversely affect the performance of monitored system. We discuss


the impact of using this method when we present our results.


We assume that an event misses its deadline if its execution time is larger than user


perception threshold, i.e. 50 milliseconds [17]. Given that d is the deadline, and mk is


the execution time of an event which missed its deadline, the stall rate (SR) is:


SR =


∑n


k=1(mk − d)


T
(7.4)


SR is a unit-less metric that measures the user perceived performance loss during the


execution of a benchmark. However this metric does not indicate how much the user


must wait for a stalled system. To measure this, we use stall magnitude (SM ):


SM =


∑n


k=1(mk − d)


n
(7.5)


SM measures the average stall time due to interactive events that miss their deadline.


The unit of SM is seconds.


Finally, to measure the quality of music playback when we consider concurrent


workloads, we count the number of buffer underruns that occur in the ESD sound driver.


Buffer underruns indicate that the MP3 decoder has missed its deadline for replenishing


consumed data. When this happens, the sound driver fills the gap by repeating the most


recent data. Each buffer underrun is perceivable by user, however the degree to which


it degrades the overall quality of the experience, is a matter of personal taste. We


162







Chapter 7. Improving Dynamic Voltage Scaling


therefore, treat each buffer underrun as equally undesirable and disregard the duration


of each individual underrun period.


7.5 Results


We compare AutoDVS to two other policies: MAX, in which the CPU is set to the


highest level (for maximum performance), and IDEAL, in which we employ an ideal


(oracle-based) CPU speed. IDEAL is not a realistic policy; it always chooses a clock


speed such that its performance degradation is at the level of AutoDVS or less. To


accomplish this, IDEAL uses future information: If IDEAL is worse than AUTODVS


in terms of both performance metrics (i.e: SR and SM ), or if the quality of sound


playback is inadequate (i.e. more than 10 buffer underruns), then IDEAL switches to a


higher clock frequency. We limited IDEAL choices to 132MHz, 176MHz and 206MHz


to limit the search space.


We have experimented with two different scenarios. (1) Interactive: Running GUI


applications; and (2) Concurrent: Interactive and soft-real time applications running


together. We describe the results from each of these scenarios in the following subsec-


tions.
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7.5.1 Interactive Workloads


We first evaluate AutoDVS in terms of performance degradation during the execu-


tion of interactive applications. The IDEAL policy has an advantage in this dataset;


our empirical evaluations show that most interactive tasks require only a fraction of the


maximum CPU power. A flat policy of 132MHz will provide adequate performance.


The question we want to answer is this: Can AutoDVS achieve similar energy savings


and still maintain a high level of responsiveness?


Figure 7.6 compares AutoDVS and IDEAL in terms of energy factor, stall mag-


nitude, and stall rate, from left to right. For all sub-figures, a lower bar indicates


a better performance. For the first sub-figure, a lower bar indicates reduced energy


consumption, for the last two sub-figures, a lower bar indicate a better response time.


We label the bars with the first three letters of the event trace, these are Drawing,


General, Solitaire, Tetrix-1, Tetrix-2, Checkers-1, Checkers-2 and Checkers-3, from


left to right. For example, for the Drawing benchmark, the AutoDVS policy saved al-


most 60% of energy with a 10% stall rate and approximately 240 milliseconds stall


magnitude (i.e. mean stall time due to interactive events that miss their deadline).


AutoDVS enables significant performance benefits for the first six benchmarks.


While keeping the stall rate under 10% of total execution time, AutoDVS reduces en-


ergy consumption 30–66% (49% on average). In general, energy consumption is pro-


portional to the performance requirements of benchmarks. For example, for Gen-1 and
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Figure 7.6: Performance of AutoDVS and IDEAL for interactive workloads. A lower
bar indicates better performance. AutoDVS reduces energy consumption by 10% over
IDEAL (Figure (a)), Overall energy savings due to AutoDVS is 49% on average. Au-
toDVS average stall time (Figure (b)) is lower than IDEAL even though the stall rates
are the same (Figure (c)). The circled values in (b) are the actual data values – that are
cut off in the graph for clarity.
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Figure 7.7: CPU utilization in Checkers.In Checkers, CPU utilization is highly periodic
and changes in a boolean fashion. Each user input triggers two GUI update events
(light gray boxes), and a computationally intensive task (dark gray box). This periodic
behavior reduces voltage scaling opportunities.


Che-1, which both include game sessions at novice levels, the savings are the greatest.


For the first six benchmarks, IDEAL uses 176MHz for Tet-1 only and 132MHz for the


rest. In general, IDEAL uses almost 10% more energy to maintain the stall rate of Au-


toDVS. However, AutoDVS is able to predict CPU demand accurately to reduce stall


time. On average, AutoDVS achieves a 35% improvement over IDEAL.


Che-2 and Che-3 exhibit different behavior patterns than the other benchmarks.


Both of these traces are game sessions at the highest difficulty level. As Figure 7.7


shows, their workload is very regular and highly computationally intensive. Each user


input triggers a computationally intensive task which is followed by a long idle period


(think time). The NWSLite is unable to predict this behavior accurately. It is possible


to estimate such behavior using techniques such as spectral analysis [9], however, we


avoid such algorithms in NWSLite due to their high computational (floating point)
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cost. Despite some prediction error, AutoDVS enables energy consumption for Che-2


and Che-3 that is 36% lower than MAX and 15% lower than IDEAL.


7.5.2 Concurrent Workloads


We next investigate how AutoDVS performs when multiple applications are running


concurrently on an iPAQ. In particular, we replay the event trace while running the


Madplay MP3 decoder (music player) in the background. For each event trace, we


start collecting the measurement statistics when the two tasks begin executing events


concurrently; we continue measuring until Madplay terminates. There are three short-


traces that end earlier than Madplay, Tet-2, Che-1 and Che-2. For these traces, Madplay


is the single task for 45%, 42% and 33% of total evaluation time, respectively. The


Madplay playback length is 424 seconds.


The opportunities for CPU scaling are reduced when we execute multiple programs


concurrently. The question that we are interested in is whether it is possible to extract


any energy savings without hurting performance.


Figure 7.5.2 compares the performance of AutoDVS to IDEAL using the same


methodology as the previous subsection. AutoDVS is able to save 31% of the energy


consumption over MAX on average. The energy savings of IDEAL is 20%. IDEAL


chooses 176MHz for all but Che-2 and Che-3. For these two traces, IDEAL uses the
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Figure 7.8: Performance of AutoDVS for interactive and soft-real time workloads,
running concurrently. A lower bar indicates better performance. The overall energy
savings is 31% for AutoDVS and 20% for IDEAL (Figure (a)). Figures (b) and (c)
report stall magnitude and rate, respectively. The circled values in (b) are the actual
data values – that are cut off in the graph for clarity.
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maximum level (206MHz). The savings are small for traces with high computational


requirements, e.g., Che-3 and Sol.


At the 132MHz (lowest) level, the buffer underruns for Madplay are very high (122–


2781) for all benchmarks. At 176MHz, there are fewer than 3 underruns. However,


IDEAL must switch to 206MHz (the highest level) for Che-2 and Che-3 to achieve the


same performance as AutoDVS. For example, Che-2 at 176MHz imposes a 8% larger


stall rate and an average stall time that is 179 milliseconds worse than AutoDVS. The


performance loss margin is greater for Che-3. The buffer underrun count is always less


than 3 for AutoDVS. For MAX, buffer underruns are always 0.


In the concurrent workload results, the only anomalous case in which IDEAL out-


performs AutoDVS in terms of energy consumption is for Solitaire. AutoDVS uses


13% more energy than its competitor to achieve approximately same performance level.


Solitaire is unique in that most of the GUI events are mouse drag/drop events; the other


benchmarks use keypad, joypad, or touchscreen keyboard for most of the data input.


Each drag and drop generates a sudden burst of GUI events (i.e. window update mes-


sages and mouse movements). Consequently, this sudden burst is accompanied with a


jump in CPU demand. NWSLite immediately chooses the most aggressive forecaster,


often over-estimating the CPU load for the next interactive session. Even though the


CPU load sensor policies correct the over-estimation afterwards, some portion of en-
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ergy is wasted during this period. Moreover, an increase in clock speed does not reduce


the stall magnitude significantly since it is already very low.


We can address this problem in two ways:(1) by classifying drag and drop events


separately from other GUI events and reducing the weight of events generated in bursts,


or by (2) shutting down predictors that consistently over-estimate. However, we do not


evaluate any of these alternatives in the scope of this thesis.


7.5.3 Integrating PACE


As a final experiment, we investigate the efficacy of extending AutoDVS to con-


serve additional energy on platforms that have very low voltage switch latency. To


investigate this, we have incorporated extant, efficient, implementation of the PACE


algorithm [48, 49], called Practical Pace (PPACE) [84], into AutoDVS.


PACE is a technique that computes optimal energy savings when continuous CPU


scaling is possible. PACE computes CPU speed as a function of completed work and


gradually increases the CPU frequency as the task nears its deadline. PPACE extends


PACE to handle discrete CPU scaling levels and uses a polynomial time approximation


of PACE that is computationally efficient but does not always find the optimal solution.


We investigate the impact of integrating PPACE into AutoDVS. We employ simula-


tion for these experiments (unlike in our previous experiments) since an actual, online


implementation of PPACE is currently not feasible due to three primary reasons. First,
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Parameter Value Description
D 50 Msecs Task deadline
WC 6.192 Mcycles Worst-case execution cycles
r 6 Number of transition points
f (103.2 - 206.4) MHz StrongArm Clock frequency
s [WC-1] / r Transition period -evenly spaced
ε 0.05 Trim error parameter


Table 7.4: PPACE simulation parameters


extent hand-held devices impose a very high switch latency. Second, the computational


requirements of PPACE are high and consume significant resources in modern devices.


Third, the computation of cumulative distribution function requires off-line informa-


tion.


Despite these limitations, we are interested in understanding the potential of cou-


pling PPACE and AutoDVS for interactive programs. For these experiments, we con-


sider the energy consumption due to GUI events alone. Our results indicate the potential


energy savings during the execution of pre-deadline cycles. By definition, the PACE


algorithms do not reschedule post-deadline cycles.


To integrate PPACE into AutoDVS, we extended AutoDVS with an additional API


through which it consumes off-line information, task deadlines, and the worst-case ex-


ecution times (WCETs) of tasks from the program. Table 7.4 shows the parameters


we use to evaluate PPACE in AutoDVS. To determine the WCET in cycles, we use


the CPU demand of 99 percentile of GUI tasks which is equal to 6.192 Mcycles. We
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Figure 7.9: Simulated energy savings ratio with respect to AutoDVS. These results are
different from all those prior in that we obtain them through simulation and consider
only GUI events. Higher bars are better. On average, incorporating PPACE results in a
potential 41% decrease in energy consumption of GUI events when the event deadlines
and WCETs are known a priori.


limited the number of clock speed transitions to 6, placing them evenly in the range


[1,WCET]. Even though we use a smaller number of transitions than were used in the


previous PPACE, our implementation provides a higher resolution than the original im-


plementation since we use a much smaller WCET. Xu et al. uses WC = 500 Mcycles


with 100 transition points – this corresponds to a transition point approximately every


5 Mcycles. In contrast, we place a transition point at approximately every 1 Mcycles.


Figure 7.9 shows the energy savings ratio for GUI events when we reschedule CPU


speed using PPACE – relative to AutoDVS (not MAX as in prior graphs). Higher bars


are better. The data indicates that using PPACE with AutoDVS can potentially enable


significant energy savings. Our results indicate that for most of our event traces, the


energy consumption of GUI events can be decreased by over 50%. Che-2 and Che-3


172







Chapter 7. Improving Dynamic Voltage Scaling


are exceptions to general trend. For these two cases, the savings are less than 10%. We


find that on average, PPACE reduces the energy consumption of GUI events by 41%.


7.6 Summary


In an effort to produce an automatic DVS system for a popular hand-held device,


we developed a set of Linux extensions that couple and extend a number of extant ap-


proaches. Our system is called AutoDVS and is very flexible and extensible. Each of


the DVS algorithms that we used for different workload behaviors can be replaced with


others. We intend for it to be used by researchers interested in investigating, empir-


ically evaluating, and comparing DVS algorithms on iPAQ hand-helds using popular


and general-purpose hand-held software.


Our results indicate that AutoDVS can reduce power consumption significantly for a


wide range of application types executed alone or concurrently. On average, AutoDVS


reduces power consumption by 49% for interactive tasks, and by 31% for concurrent


workloads. AutoDVS enables these results automatically and transparently for a wide


range of real applications. The key to enabling these power reductions is the use of


interval schedulers that capture computationally intensive and idle periods in the work-


load and accurate time series prediction to estimate the duration of application-specific


interactive sessions. The combination of these techniques enables AutoDVS to infer ac-
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curately task-level behavior from applications, workloads, and concurrent workloads,


and to adapt the clock speed appropriately.


Finally, with AutoDVS, we show that event arrival frequency (interarrival times


between events) is a useful metric for measuring user interactivity. We do this without


requiring any modification to user applications, simply by monitoring the events that


the window manager receives and broadcasts.
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Conclusions


In this dissertation, we explored better resource measurement and prediction sup-


port for enabling more effective power management in embedded, resource-restricted


computers. We discussed the significance of prediction in dynamic voltage scaling and


computation offloading efficacy. In this work, we developed dynamic, adaptive tech-


niques that can provide such accuracy with low resource consumption.


As the power management techniques become more mature, the need for more ef-


fective prediction methods will increase significantly. At present most computation


offloading and dynamic voltage scaling techniques use static, parameterized prediction


techniques that are tedious to develop and parameterize. While the static techniques


are highly accurate for the workload (dataset) that they are parameterized for, they may


not capture the changes in workload characteristics. Here, we discussed the design of


an adaptive, dynamic prediction utility for embedded systems, and we validated its effi-


cacy using a large dataset that is collected from real systems. In addition, we discussed
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the challenges of measuring energy consumption at run-time, and we proposed a run-


time power measurement technique which we validated using the Stargate computer


that we have.


We provide the following contributions in this dissertation.


• A run-time, fine grain task power measurement technique. The technique that we


developed can predict power measurement with great accuracy (3.8% to 4.6%


error rate). It updates the model at run-time using battery monitor feedback.


• A non-parametric prediction tool that make accurate forecasts of future applica-


tion and resource behavior, wireless bandwidth, CPU, network bandwidth and


latency. Our tool surpasses, or at least matches that of commonly used exponen-


tial smoothing and least squares predictors, without any tedious parameterization.


Our tool uses only 55 floating point operations for each prediction.


• Demonstration of significance of prediction accuracy in computation offloading.


Using simulation on real data, we demonstrated that better prediction leads to a


significant improvement in energy savings. Our evaluations show that NWSLite


can reduce wasted energy (that is due to wrong decisions) 27% to 56% in com-


parison to its static parameterized competitors.


• Application of better prediction to dynamic voltage scaling. User think time


can be used as an important opportunity to scale CPU performance and voltage
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level. We measure user think time directly inside window manager, without any


change to application source code, and then we use these measurements to predict


future think times using our predictors. By combining our mechanism to already


existing DVS methods, we show significant energy savings (31% to 49%) are


possible.


In concluding remarks, we discuss potential improvements to proposed techniques


and future research directions that these techniques enable.


8.1 Directions For Future Research


The capability of accurately measuring task power consumption can have a pro-


found effect on the design and implementation of power aware operating systems. Once


the operating system knows its energy budget and how much energy is required by dif-


ferent applications, tasks and threads, it can allocate energy much more efficiently in


order to satisfy user requirements (such as battery life, application performance). Fu-


ture operating systems, such as the recently proposed ECOsystem [87], micro-manage


energy consumption for optimum battery life. In ECOsystem, the authors propose al-


locating energy to tasks using a priority mechanism that is set by the user. As the tasks


use computational resources, CPU, I/O and network interface, they pay their share of


energy consumption to the operating system, in units of Joules. For the realization of
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Time


OS invokes DBS 
(via ACPI) to 


request a lower 
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Desired Power Budget
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On-chip ammeter 
senses over-power 
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CPU Power Consumption


Foxton reduces 
voltage level to 
correct power 
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voltage to utilize 
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Figure 8.1: Power management using Foxton technology. The y-axis is the CPU
power consumption. The A/D converters that exist on CPU measure power continu-
ously and scale CPU voltage/frequency accordingly to keep power consumption in a
certain budget. The operating system uses DBS (demand-basing switching) interface
to convey the power consumption limit.


these systems, run-time power measurement capability is key (which this thesis dis-


cusses). Therefore, one of the future directions that this dissertation enables is the


design and implementation of power aware operating systems that can measure (and


optimize) software energy consumption. Combining our system with ECOsystem may


be a good starting point for achieving this goal.


Since our work is a first step to run-time power measurement of the full system,


there are a number of areas that must be improved. First of all, we need to improve


hardware capability to provide more accurate power measurements. As we demon-
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strated, current battery monitors are not as accurate yet. Luckily however, there are new


projects which, as a side effect, can lead to technologies that facilitate such accurate


battery sensors. One such project is Intel Foxton [61]. In this project, the researchers


couple the existing CPUs with very high speed and very accurate A/D converters that


measure power consumption of CPU at real time, and with great accuracy. The micro-


controller that controls these A/D converters automatically adjust the CPU voltage level


and frequency using these instantaneous power consumption measurements such that it


keeps the power consumption under a certain budget. The operating system determines


what this budget is. Figure 8.1 explains this concept in more detail.


There are two ways that Intel Foxton (and similar future projects) can improve run-


time power measurement support. First, if Foxton microcontroller can be enhanced in


a way akin to hardware performance monitors, operating system can use this interface


to measure CPU power consumption in real time, for any application, task, or even


a procedure. Second, such projects can enable production of highly accurate battery


monitoring sensors that can measure full system energy consumption with great ac-


curacy. By coupling these measurements with the models that we propose, it will be


possible for the OS to assess the energy cost of tasks and operating system threads.


In measuring full system energy consumption, a significant difficulty is I/O devices.


In this thesis, we proposed using software counters for this purpose and demonstrated


their effectiveness using the communication interface. However, there is still a lot to
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do. Many of the I/O states (and their power behavior) are transparent to software coun-


ters, since there is a firmware/microcode layer (mostly proprietary) that controls these


devices. In addition, since I/O is mostly asynchronous to application execution, its mea-


surement and mapping to applications accurately is still an open question. We believe


that further investigation of I/O power consumption is highly justified for the design


and implementation of future operating systems.
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