
PEDaLS: Persisting Versioned Data Structures
Nazmus Saquib, Chandra Krintz, Rich Wolski

Department of Computer Science
University of California, Santa Barbara
{nazmus, ckrintz, rich}@cs.ucsb.edu

Abstract—In this paper, we investigate how to automatically
persist versioned data structures in distributed settings (e.g.
cloud + edge) using append-only storage. By doing so, we
facilitate resiliency by enabling program state to survive program
activations and termination, and program-level data structures
and their version information to be accessed programmatically
by multiple clients (for replay, provenance tracking, debugging,
and coordination avoidance, and more). These features are useful
in distributed, failure-prone contexts such as those for hetero-
geneous and pervasive Internet of Things (IoT) deployments.
We prototype our approach within an open-source, distributed
operating system for IoT. Our results show that it is possible to
achieve algorithmic complexities similar to those of in-memory
versioning but in a distributed setting.

Index Terms—partially persistent data structures, IoT, porta-
bility, append-only storage, distributed programming systems

I. INTRODUCTION

The Internet of Things (IoT), Big Data, and artificial in-
telligence are coalescing to transform the world around us,
making it possible to collect, mine, analyze, and actuate
using information from physical objects across geographical
locations. To do so, IoT applications amalgamate clouds, edge
devices, and sensors as ensemble deployments implementing
automation, decision support, and control for objects, devices,
and systems in the environment. As a result, IoT deployments
are geo-distributed and compose a vast diversity of devices,
architectures, resource constraints, and communication sys-
tems with highly variable performance, failure, and availability
characteristics.

Many popular and important cloud-based services for
durable data management and data-driven computation (e.g.
AWS S3 [1], HDFS [2], CORFU [3], Kafka [4], AWS
Lambda [5], etc.) appear at first to provide the scale and
fault-resiliency required for IoT. However, in practice, these
services turn out to be ill-suited for IoT deployments because
they assume “resource-rich” (e.g. machines with large mem-
ories and high clock speeds), cloud-based, and comparatively
homogeneous infrastructure connected via high quality and
large-capacity networks.

In this paper, we consider how to evolve and extend data
services for IoT applications that target tiered edge-and-cloud
IoT deployments. Our goal is to tame the heterogeneity of
such deployments via new programming abstractions in the
form of sophisticated program data structures that simplify and
expedite software development for event-triggered and failure-
prone settings. Our approach, called PEDaLS, combines stor-
age persistence and data structure versioning. First, we trans-

parently store program data structures in non-volatile storage
so that they survive unexpected program termination, system
failure, and power outage. Second, we use an append-only
log as the underlying storage abstraction to facilitate failure
recovery as well as data structure versioning and immutability.
Doing so enables integration with several existing distributed
logging systems [1], [6]–[10].

In this work, we focus on persisting versions of linked
program data structures (e.g. linked lists and trees). To do
so efficiently, we base our design on algorithmically efficient
in-memory, mutable algorithm implementations from Driscoll,
Sarnak, Sleator, and Tarjan [11], which embed versions (i.e.
nodes and edges) within the original data structure. Note that
while the above work proposes a versioning scheme for single-
machine, in-memory data structures, our work formulates a
versioning scheme for storage in persistent data structures
which can span multiple machines in a distributed setting. We
use append-only logs for storage as it provides immutability,
which in turn provides robustness [12] and helps in debugging
systems [13], both of which are highly desirable features in a
distributed environment. The use of append-only logs as the
backing store introduces new challenges, as any modification
of a node in a data structure must be recorded using an
append rather than in-place modification. PEDaLS addresses
these challenges while maintaining the same time and space
complexity of the original work and facilitating distributed
storage persistence.

In addition to this new distributed formulation of persistent
versioning, we describe a working “real world” implemen-
tation of PEDaLS for cloud and IoT settings. We prototype
our approach using an open-source, distributed runtime sys-
tem [6] that supports distributed logs as a first-class storage
abstraction. We use this prototype to evaluate empirically the
various overheads associated with versioning and persistence
for operation workloads on linked lists and binary search
trees, and investigate the effect of failures on the logging
process. Our results show that PEDaLS maintains the algo-
rithmic complexities of in-memory versioning, and enhances
the robustness of distributed data structures with low overhead.

II. RELATED WORK

We first provide background, related work, and context
for the contributions we describe in the sections that follow.
Specifically, we overview mutable, in-memory versioned data
structures (referred to as partially persistent data structures
(PDSs) in the literature), non-volatile program object storage,



and append-only storage advances that enhance the robustness
of distributed systems.

A. Partially Persistent Data Structures (PDSs)

PDSs track version histories for in-memory, program data
structures such that versions can be accessed programmat-
ically [11]. Data structures for which all versions can be
accessed, but only the latest/newest can be modified, are
called partially persistent. Those for which all versions can
be accessed and modified are called fully persistent. Data
structures without versioning support are called ephemeral.
We focus on partially persistent data structures in this work
because version histories are immutable and data structures
are append-only – properties that are desirable in highly
concurrent and failure-prone, distributed settings. We refer to
partially persistent data structures simply as PDSs throughout
this paper.

PDS update operations result in a new version of the struc-
ture. PDSs achieve algorithmic efficiency (in both space and
time) by (i) embedding the versions within the original data
structure and sharing unmodified sections of the data structure
among versions, (ii) by implementing this embedding using
mutable, pointer-based memory structures behind the scenes,
and (iii) by optimizing accesses and updates to versions [11],
[14]–[18]. PDSs enable a wide range of programming support
including debugging [19], history programming [20], [21],
undo and replay [22], [23], lock avoidance [24], referential
transparency and functional programming [25]–[28]. Although
most works on PDSs are related to the field of theoretical com-
puter science, PDSs have applications in distributed systems
as well. For example, sensors in an IoT environment can often
malfunction and generate erroneous values. If we have a PDS
deployed in the system, we can query the past versions of it to
determine at what point we started receiving erroneous values
and perform further analysis (e.g. what trend in data it resulted,
how it affected the other components of the system that depend
on this data, etc.). Systems that experience a high volume of
temporal queries, such as the location of items of interest (e.g.
delivery tracking, livestock tracking, etc.) throughout the day
can also benefit from PDSs.

PEDaLS brings PDS support to programs in a new way,
using efficient algorithms that are backed by append-only
disk storage exported via logs. For IoT, these efficiencies
are necessary to enable battery-powered, resource-restricted
platforms (e.g. IoT devices) to use as little power as possible.
Often, power consumption is proportional to computation
duration and storage access frequency. Append-only semantics
are also attractive in this context to mitigate component
failures, particularly in the form of communication network
partitions.

B. Object Storage

The term persistence is also used in computer science to
describe the long-term, non-volatile storage of data (e.g. in
files or databases on disk), i.e. enabling data to exceed the
lifetime of any particular program activation. Related work has

investigated (i) tools and language support that automate the
process of persisting program (in-memory) data structures and
objects to disk (and more recently to non-volatile memory),
and (ii) ways of unifying the treatment of transient and
persistent objects in programs to simplify programming [29]–
[40]. These advances are referred to as persistent storage,
persistent object storage, persistent object systems, orthogo-
nal persistence, and persistent programming in the literature.
PEDaLS pursues both automation and unification of persistent
object storage, but is unique in that it persists versioned data
structures (i.e. PDSs) to local or remote append-only disk
storage. Doing so enables both program data structures and
their versions to survive program termination and be accessed
by distributed clients.

C. Append-Only Storage Systems

Append-only storage is employed in distributed and cloud
computing systems to facilitate immutability, robustness, and
scalability, as storage costs have plummeted [12]. It is used
by cloud object stores [7], [8], event systems [41], distributed
databases and file systems [2], [31], [42]–[44], log-based
transaction systems [3], [45], [46], and popular messaging and
streaming services [9], [10], [47].

Immutability facilitates robustness and coordination avoid-
ance [12], [48] as well as high availability (through eventual
consistency) for cloud storage, gossip protocols, collaborative
editing, and revision control, among others [1], [49], [50].
In particular, versioning in distributed systems allows appli-
cations to make progress from the last available consistent
state [51]. While our evaluation implementation uses the
versioning features of a storage system specifically designed
for IoT [6], PEDaLS can use any append-only storage system
that exports ordered, version information (e.g. sequence num-
bers) as its backing store for program-level, versioned data
structures.

III. PDS NODE-COPY METHOD

Driscoll et. al. introduced a node-copy method to version
linked data structures (with constant in-degree) by embedding
versions efficiently within the structure itself [11]. PEDaLS
extends this method using append-only logs. We first overview
the original approach and then describe our advances.

Using the node-copy method, a versioned linked data struc-
ture consists of nodes and edges, and each node contains a
constant value and 1+ edges (i.e. pointer fields). The method
adds a fixed number of extra pointer fields beyond those
required by the original structure. For example, in the case of
a binary search tree (BST), a node contains fields for its value
and left and right pointer. Additional pointer fields represent
versions – i.e. updates to the left or right pointer of the node.

Once all of the extra fields have been used to accommodate
update operations, the method makes a copy of the node with
only the most recent pointer fields – creating a new set of
extra pointer fields for use in future updates. Moreover, the
predecessor of the node stores a pointer to this new copy. This
way, the method avoids walking through chains of copies of



AP: 1

7

i. insert(7)

1 1

AP: 1

7

1 1

2

2 2

2

2

AP: 1

7

1 1

2

2 2

2

2

3

5

3 3

3

AP: 1

7

1 1

2

2 2

2

2

3

5

3 3

3

4

7

4

ii. insert(2) iii. insert(5) iv. delete(2)

1

Fig. 1: Partially persistent binary search tree using the node-copy method with one extra pointer. Circles denote node with
information field within. Arrows with labels denote pointers with version stamps. Dashed arrows/circles denote that a node
has been copied. AP is the access pointer list. φ denotes the null node.

the same node to locate a particular version. Note that if the
predecessor runs out of extra pointer fields while pointing to a
new copy of a node, the predecessor is copied as well. In the
worst case, this copying operation and chaining continue to
the root node. The method also maintains a list of root nodes
indexed by version stamps called the access pointer (AP) list.
The AP facilitates constant time lookup of the root node for
any version.

The number of extra pointers used by the method is a
tunable parameter. If the number of extra pointers is small, the
time to scan them is short but the number of copies generated
may increase, resulting in a higher time and space overhead.
If the number of extra pointers is large, it takes more time
to scan all the pointers but fewer copies will be needed. We
explore this time-space tradeoff for PEDaLS in Section V.

To illustrate how the node-copy method works for linked
data structures, consider the binary search tree as shown in
Figure 1. We assume that the number of extra pointers is
one. We start with the empty tree and insert 7. Both the
left and right pointer of the node containing 7 points to
null. Assuming version stamps start at one and monotonically
increase thereafter, we stamp these pointers with version 1.
We also update the AP list (assuming indexing starts at 1) to
point to this newly created node.

Next, we insert 2 in the same way. Because 2 is less than 7,
we install a new left pointer in the BST using the extra pointer
in the node containing 7 and stamp it with the current version
(2). The type of the extra pointer (i.e. left or right – in this
case, left) is recorded (not shown in the figure for brevity).
As the root node does not change, index 2 of AP list points
to the same node as AP index 1.

Next, we insert 5 which follows similar insertion steps.
Finally, we delete 2. To do this, the node containing 7 must
point to the node containing 5 (using a left pointer) and the
null node (using a right pointer). However, the node containing
7 has run out of extra pointers and thus must be copied. The

original left pointer of this new copy is set to point to the node
containing 5 and is stamped with version 4. The original right
pointer need not be updated and thus still points to the null
node. The extra pointer of this new copy remains unused and
is available for future updates. Note that as the node originally
containing 7 has been copied, index 4 (i.e. the current version
stamp) of the AP list points to the copied node rather than to
the original node.

Access operations (i.e. find/search) for a particular version
stamp vs traverse pointers with the greatest version stamp less
than or equal to vs at each node. Instead of specifying only
a value (find(val)), a PDS find operation can also include a
version stamp (find(val, vs)). As an example, consider the
operation find(2, 3) – find 2 in version stamp 3, after the
execution of all the operations in Figure 1. That is, the current
BST is represented by the last column of Figure 1.

The access operation starts from index 3 in the AP list,
which points to the node containing 7. As 2 is less than 7, we
find the left pointer with the largest version stamp that is less
than or equal to 3. In this case, there are two left pointers –
one with a version stamp 1 and the other with a version stamp
2. As both are less than the target version stamp 3, we follow
the larger one. This leads us to the node containing 2, i.e., 2
is present in version stamp 3. Note that if we search for 2 in
version stamp 4 instead, we eventually end up with the null
node, indicating that 2 is not present in version stamp 4.

The amortized time complexity for insert and delete using
the node-copy method is constant per operation step, where
an operation step is defined as the traversal from one node to
another [11]. The worst-case time complexity for access using
this method is also constant per operation step. Moreover, the
worst-case space complexity for insert and delete using the
node-copy method is constant per operation step.

IV. PEDALS

PEDaLS is a set of language and runtime extensions that



• Transparently store immutable and versioned linked data
structures in distributed, non-volatile, log-based storage;

• Expose data structure versions to developers for use in
dependency tracking and program analysis [52]–[54],
history-aware programming [20], [55], and repair and
replay [13], [56]–[59] in distributed settings; and

• Enables portability across heterogeneous deployments by
requiring only a limited “generic” functionality for gen-
erating and accessing storage-persistent logging systems
(e.g. [1], [4], [7], [8], [60]) in a distributed setting.

As a result, PEDaLS data structures are able to support
versioning and immutability end-to-end as distributed appli-
cation and systems properties, which are desirable in highly
concurrent and failure-prone settings [12], [61].

To enable this, we develop a methodology for realizing
PDSs using generic, distributed log structures to facilitate
integration with existing systems. A PEDaLS log must

• support append-only updates with ordered entries,
• be network addressable so that they can be co-located or

remote relative to the process accessing them, and
• have some mechanism for controlling log length (e.g.,

size or log entry/element lifetime for automatic garbage
collection).

In addition, log elements can be of any type and must be
accessible via a comparable index (e.g. a sequence number).

The API functions that PEDaLS expects the storage system
to support (or compose to support) are:

• createLog(log_name): create a log with the name
log_name. Upon completion, this call returns a value
that indicates whether or not the log was successfully
created.

• put(log_name,elem): append the element elem to
the log named log_name, assigning it the next available
sequence number, and return the sequence number to the
caller (or an error value if the operation fails).

• get(log_name,seq_no): return the element at se-
quence number seq_no in the log (or an error value if
the operation fails or seq_no does not exist).

• getLatestSeqNo(log_name): return the latest se-
quence number of the log named log_name (or an error
value if the operation fails or the log is empty).

Example systems that support these persistent storage func-
tionalities directly include Kafka [4], Facebook LogDe-
vice [60], and CSPOT [6] among others. Most cloud object
stores also support versioning (e.g. Amazon S3 [7] and Google
Cloud Storage [8]) and can be integrated into PEDaLS with
some additional bookkeeping (e.g. combining version IDs with
their timestamp to maintain order). To map PDSs to these
distributed storage systems, PEDaLS must overcome multiple
challenges that we describe in the subsection that follows.

Figure 2 provides a high-level overview of our approach,
which models the PDS node-copy method described previ-
ously, using persistent logs. Each node and original field has
a version stamp (vs) that denotes the version at which the
node was created. Each node also has a constant number
of extra fields (1 is used/shown in the figure), which hold

Fig. 2: High-level architecture of PEDaLS that uses node-
copy to version linked data structures. The top left shows
user code using PEDaLS library operations. Each node in
this list (e.g. top right) has an integer value and next pointer
as original (developer-defined) fields. PEDaLS embeds ver-
sions/modifications within a single data structure using “extra”
fields in each node. Also, each node and field has a version
stamp representing their creation “time”. The PEDaLS AP
represents the access pointer and indexes the root node of each
version for fast access. PEDaLS persists the structure and its
versions using 1+ non-volatile, append-only, distributed logs.

version stamps that track the version at which original field
updates occur in each node. As in the original method, we
assume that information (value) fields are constant and that
pointer fields (e.g. the next pointer of a linked list) can change
across versions. End-users interact with the data structure
using library calls as shown in the top left corner of Figure 2.
Any modification to a data structure node is translated to low-
level API functions of the underlying log storage, possibly
affecting multiple geographically distributed logs. PEDaLS
hides this translation from the end-user.

A. Challenges Using Logs to Implement Node-Copy

To map node-copy to logs, we must preserve the original
time and space complexity of the original, in-memory, algo-
rithm. Although the AP list of the node-copy method (cf.
Section III) can be modeled as a separate log for efficiency,
doing so imposes undue complexities. First, it is not clear how
to represent both the information field and pointer fields of a
node using logs. Moreover, logs are append-only – pointer
manipulations must be expressed as appends (e.g. we cannot
have an entry representing a pointer to a null node and later
update that entry to point to a different node).

This leads to a challenge that is even more intricate – if we
represent an updated node link by appending to a single log



TABLE I: Logs used by PEDaLS .

Log Field Description

DataLog
vs version stamp during node creation
val information field of the node
link name of link log for the node

LinkLog

vs version stamp during pointer creation

dseq DataLog seq. no. where the information field of the
node being pointed to is stored

lseq
LinkLog seq. no. of the node being pointed to
where the first pointer among the contiguous
pointers of the required copy is stored

rem number of extra pointers remaining after the
insertion of the current pointer

type type of pointer, e.g., left/right for binary search tree

APLog
vs version stamp of the data structure

dseq DataLog seq. no. where the root node’s information
field is stored

lseq LinkLog seq. no. of the root node where the first
pointer of the required copy is stored

repeatedly, we potentially require a full log scan to find an
arbitrary link – defeating our goal of maintaining the original
time complexity of node-copy. To avoid this, we use multiple
logs to represent nodes and their connections. This, however,
leads to a new challenge – although an append to a single log is
atomic, appends to multiple logs are not. Moreover, logs can
be distributed across a network, so a network failure could
potentially leave an underlying data structure semantically
inconsistent.

To summarize, there are four primary challenges in imple-
menting versioning via node-copy using logs:

• C1: Logs are append-only and thus we cannot perform
any updates in place (as we do for in-memory structures
as described above – specifically, creating links on the
fly).

• C2: A scan of a log with an arbitrary number of entries
will violate the amortized and the worst case time com-
plexity of the operations guaranteed by the node-copy
method.

• C3: Updates to a single log are atomic, however, PEDaLS
must also guarantee that multi-log updates are also atomic
if used to manage versioning.

• C4: Because the persistent backing store can be local
to the function or on a host across a network, we must
consider the impact of failures in our algorithms and
analyses.

We next describe a design that allows us to efficiently imple-
ment node-copy using logs while addressing these challenges.

B. Implementing Node-Copy Method using Logs

Our log mapping design, which avoids log scans (address-
ing C2), derives from two primary observations. First, data
structure updates modify node pointers and these updates
can be interleaved. We thus use a separate log per node
to avoid scanning entries from unrelated updates. Second,
when we copy a node (when it runs out of extra pointers),
the information (e.g. value) does not change. We thus use
a shared log (across nodes) to hold node information. This
combination allows versioned data structure updates to occur

independently, while maintaining the efficiency of find/search
operations, avoiding copy overhead, and conserving space.

Specifically, PEDaLS represents a node in a linked data
structure by a pair of log sequence numbers: one for the
shared information log – the DataLog, and another for the
node-specific pointer log – a LinkLog. When a pointer is
added to a node, we append an entry to the LinkLog of the
node (addressing C1). The second sequence number is used
to distinguish node copies.

The efficiency of the in-memory node-copy method lies in
the fact that every predecessor node points to the required
copy of the successor node. To traverse a copy of a node
we need only scan a fixed number of pointers. That is, we
scan (p = o+ e) pointers, where o is the number of original
pointers and e is the number of extra pointers. Therefore, to
achieve similar time complexity, we must restrict (i.e. fix) the
number of entries in the LinkLog that we need to scan in
order to traverse a node. This is relatively straightforward to
do: because copies of a node are not interleaved (i.e. a node is
copied only when the previous copy becomes full), we can use
contiguous log entries of a LinkLog to represent a particular
copy.

Initially, it appears that we can use contiguous p LinkLog
entries to store a copy of a node and denote a copy using the
first sequence number among these entries. That is, for the
n-th copy of a node (considering the original node to be the
“first” copy), the p entries starting from the sequence number
((n− 1) ∗ p+ 1) store that copy. This is indeed the case – in
absence of network failures.

However, failures alter the situation. We consider two types
of failures. (i) Type 1: an append to a log fails. (ii) Type 2:
an append to a log succeeds, but the acknowledgment (which
returns the sequence number where the entry was appended) is
lost. In both cases PEDaLS retries. However, note that Type
2 failures violate the boundary conditions discussed above.
Copies of a node do not strictly end at multiples of p anymore.
This implies that we must embed the information regarding
where a copy ends within an entry of the LinkLog.

To account for failures, we record the number of extra
pointers left after the insertion of that entry in a dedicated
field in the LinkLog. This way, once this field reads 0 while
scanning entries of a copy in the LinkLog, we know we have
reached the end of the current copy.

In general, we embed sufficient information in an entry of
a log so that append to that log becomes idempotent (this
addresses C4). Note that in presence of failures the number of
entries we need to scan is bounded by the number of failures
f (p = o+ e+ f ).

Next, the node-copy method uses an AP list for con-
stant time access to the root node of a particular ver-
sion of the data structure. Similarly, PEDaLS maintains
an APLog to store version root nodes for the data struc-
ture. PEDaLS writes the APLog last (the order of write is
DataLog>LinkLog(s)>APLog). Therefore, an append to the
APLog denotes the successful completion of a version.



That is, APLog acts as a checkpoint denoting the com-
plete versions currently present in the data structure. This
design choice addresses C3: if there are rogue entries in
LinkLogs/DataLog with version stamps vs that are greater
than the latest version stamp recorded in the APLog (this
can be identified after a system crash or network failure), we
know that the last operation did not complete and can either
trim these entries or retry the operation (we log requested
operations before we start execution for the latter).

Table I summarizes the different types of logs used by
PEDaLS along with a description of the fields stored in each
of their entries. Note that type field in LinkLog is used for the
sake of generalization; data structures that have only one type
of entry (e.g. singly linked list) ignore this field.

Most log storage systems have some form of built-in
retention policy which prevents logs from growing without
bounds. For example, Kafka [4] provides retention policies
based both on time (messages older than a configured time
are deleted) and on space (once a log reaches a configured
space limit messages are deleted from the end). CSPOT [6]
provides rollover where once a log reaches a specified number
of entries, newer entries start overwriting the older ones.
Therefore, to ensure all the required versions are preserved in
their entirety, an end-user has to specify the number of versions
K he/she wants to retain. PEDaLS then allocates enough log
space for each type of log based on the value of K. Currently,
PEDaLS refuses update operations once it reaches K versions.
This sort of policy where service is refused based on the
unavailability of space is not uncommon (e.g. Redis [62]).
Note that PEDaLS continues to service read operations even
after it reaches K versions.

C. Node-Copy using Logs: Step by Step Example

Figure 3 shows the contents of the different logs used
by PEDaLS across multiple operations on a PEDaLS binary
search tree (BST). As in Figure 1, we start with the empty
BST and assume the number of extra pointers is 1. For the
simplicity of exposition, we name the LinkLog of a node as
link val, where val is the node value (information).

To insert(7), we append the entry (1,7,link 7) to the
DataLog which returns the sequence number 1. This sequence
number will be used later to record the root in the APLog. We
append two entries in link 7, one for the BST left pointer and
one for the right pointer. Note that for both of these entries, the
rem field is 1, denoting the number of extra pointers after the
insertion. As both of these pointers point to the null node, we
use an invalid sequence number (0) for dseq and lseq. The first
append to LinkLog returns the sequence number 1. Therefore,
we conclude the insertion of 7 by recording the tuple (1,1,1)
in the APLog.

Operation insert(2) follows a similar approach with two
added steps. First, we find the current version of the data
structure. To do this, we read the tail of the APLog. This
reveals that the latest version is 1 (this is the first field of the
last entry in the APLog in the top left corner of Figure 3),
so the current working version is 2. Second, we add a pointer

from the node containing 7 to the node containing 2. As the
data for the node containing 2 was inserted at sequence number
2 of the DataLog and the first pointer of the node was inserted
at sequence number 1 of its LinkLog, dseq and lseq values of
this pointer are 2 and 1 respectively.

After recording this pointer, we decrement the number of
extra pointers (recorded as 0 in the rem field). The value to be
decremented comes from the tail of link 7, which is 1 at this
point. Note that the APLog entry for version 2 is identical to
that of version 1, as the root node does not change. Execution
of insert(5) follows similar steps.

Execution of delete(2) involves some additional steps, as
no more extra pointers are left in the node containing 7 but
we need to add 5 to the left of 7. Therefore, we make a copy
of the node containing 7. Since the right pointer does not
change, we copy over only the latest right pointer. This is
done in sequence number 4 of link 7 (bottom right corner
of Figure 3). Next, we install the new left pointer with dseq
and lseq values set to 3 (5 was inserted in sequence number
3 of DataLog) and 1 (node containing 2 pointed to 5 using
lseq value of 1), respectively. As the root node is copied in this
case, we record the node in the APLog by appending (4, 1, 4).

Note that for update operations, the crux of the algorithm is
in node connectivity. We present the AddNode routine for
BST in Algorithm 1 (the routine for linked list is similar
and simpler as there is only one original link and hence no
link must be copied during node copy). The routine adds
a child node (cNode) to the desired parent node (pNode).
As successive predecessors may run out of extra pointers to
accommodate this addition (cf. Section III), the full path from
the root of the tree to the desired parent node is supplied to the
routine. We assume the node representation in the algorithm
is a structure containing dseq, lseq, and the link fields (cf.
Table I). The last entry in a log L is represented by tail(L),
the entry at sequence number i in log L is represented by L[i],
and a field f in an entry e of a log is e.f . Note that the versions
of a data structure are strictly ordered and a new version is
obtained by modifying the previous version. Therefore, we
need to know the previous version in its entirety before we can
generate the next version of a data structure. Thus, PEDaLS
does not allow concurrent updates.

Access operations follow a similar pattern to that of node-
copy. As an example, we consider the operation find(2, 3) –
find 2 in version stamp 3, after executing the above operations
(i.e. BST has the representation shown in the bottom right
corner of Figure 3). We start by first locating the root node
for version 3 from the APLog. In this case, the root node for
version 3 is recorded in the entry at sequence number 3 in the
APLog. From this entry, we know that the root node’s data is
stored in sequence number 1 (dseq = 1) of the DataLog.

The entry at sequence number 1 of DataLog provides us
with the name of the LinkLog. As lseq = 1 in the APLog
entry, we start scanning link 7 from sequence number 1.
Scanning the top three entries is enough to fully traverse the
current copy of the node (as the third entry has rem = 0,
denoting the end of the current copy). This reveals two left



seq vs val link

1 1 7 link_7

DataLog

vs dseq lseq

1 1 1

APLog

seq vs dseq lseq rem type

1 1 0 0 1 L

2 1 0 0 1 R

LinkLog: link_7

i. insert(7)

seq vs val link

1 1 7 link_7

DataLog

vs dseq lseq

1 1 1

APLog

seq vs dseq lseq rem type

1 1 0 0 1 L

2 1 0 0 1 R

LinkLog: link_7

ii. insert(2)

2 2 2 link_2

2 1 1

seq vs dseq lseq rem type

1 2 0 0 1 L

2 2 0 0 1 R

LinkLog: link_2

3 2 2 1 0 L

seq vs val link

1 1 7 link_7

DataLog

vs dseq lseq

1 1 1

APLog

seq vs dseq lseq rem type

1 1 0 0 1 L

2 1 0 0 1 R

LinkLog: link_7

iii. insert(5)

2 2 2 link_2

2 1 1

seq vs dseq lseq rem type

1 2 0 0 1 L

2 2 0 0 1 R

LinkLog: link_2

3 2 2 1 0 L

seq vs dseq lseq rem type

1 3 0 0 1 L

2 3 0 0 1 R

LinkLog: link_5

3 3 3 1 0 R

3 3 5 link_5

3 1 1

seq vs val link

1 1 7 link_7

DataLog

vs dseq lseq

1 1 1

APLog

seq vs dseq lseq rem type

1 1 0 0 1 L

2 1 0 0 1 R

LinkLog: link_7

iv. delete(2)

2 2 2 link_2

2 1 1

seq vs dseq lseq rem type

1 2 0 0 1 L

2 2 0 0 1 R

LinkLog: link_2

3 2 2 1 0 L

seq vs dseq lseq rem type

1 3 0 0 1 L

2 3 0 0 1 R

LinkLog: link_5

3 3 3 1 0 R

3 3 5 link_5

3 1 1

4 1 0 0 1 R

5 4 3 1 1 L

4 1 4

seq

1

seq

1

2

seq

1

2

3

seq

1

2

3

4

Fig. 3: A versioned binary search tree (BST) using node-copy with one extra pointer implemented on logs (this mirrors the
in-memory tree in Figure 1). 0 is assumed to be an invalid sequence number and hence is used to denote null nodes. DataLog
sequence numbers are color-coded to represent the links. LinkLog sequence numbers are color-coded only if the entry denotes
the start of a root node.

pointers, one with version stamp 1 and the other with version
stamp 2. As 1 < 2, we follow the latter one, i.e., the link at
sequence number 3 of link 7. This leads to the node whose
information is stored in the entry at sequence number 2 of the
DataLog. Reading this entry reveals the value stored here is
indeed 2, completing the access operation.

V. EVALUATION

In this section, we empirically evaluate the performance of
PEDaLS. We implement PEDaLS over CSPOT [6], an open-
source, distributed runtime system that runs on edge, cloud,
and sensor systems, and uses memory-mapped files for its
log abstraction. We evaluate linked lists and binary search
trees (BST) as representative linked data structures since both
are used by developers as building blocks for more complex
structures (e.g. stacks, queues, ordered collections, etc.).

A. Experimental Methodology

To evaluate PEDaLS, we have devised a set of update
(insert/delete) workloads for linked lists and BSTs. We execute
insert for linked lists at the end of the list. We present
average workload time, which includes scan/find time (for both
linked list and BST). We construct 100 different workloads
(combinations of insert and delete operations), each with 1000
operations.

Our workload generator uses a uniform probability dis-
tribution to select operations. For insertion, the generator
randomly chooses an integer between 1 to 100 with uniform
distribution. If the integer is already present, it selects the
next integer not already present in the data structure. For
deletion, the generator randomly chooses an integer already
present in the data structure with uniform distribution. This
way the generator guarantees all operations will execute to



Algorithm 1 Node Copy: AddNode (BST)
Require: childNode cNode; stack of nodes leading from root

of BST to parent of cNode, S; number of links per node
linksPerNode; working version stamp vs

Ensure: cNode is added to its parent
1: while S 6= φ do
2: pNode← S.pop()
3: lastLink ← tail(pNode.link)
4: newLink ← {}
5: newLink.vs← vs
6: newLink.dseq ← cNode.dseq
7: newLink.lseq ← cNode.lseq
8: childType← getType(pNode.dseq, cNode.dseq) .

getType returns type of link i.e. left or right
9: if lastLink.rem > 0 then . node not full

10: newLink.rem← lastLink.rem− 1
11: pNode.link.append(newLink)
12: break
13: else
14: leftLink ← {}
15: rightLink ← {}
16: i = pNode.leq
17: iteratorLink ← pNode.link[i]
18: while iteratorLink 6= φ & iteratorLink.rem ≥ 0

do
19: if iteratorLink.type = L then . iterator is a left

pointer
20: leftLink ← iteratorLink
21: else
22: rightLink ← iteratorLink
23: end if
24: i← i+ 1
25: iteratorLink ← pNode.link[i]
26: end while
27: if childType = L then . copy right child
28: linkLogSeq ← pNode.link.append(rightLink)
29: else
30: linkLogSeq ← pNode.link.append(leftLink)
31: end if
32: newLink.rem← linksPerNode− 2
33: pNode.link.append(newLink)
34: end if
35: cNode.dseq ← pNode.dseq
36: cNode.lseq ← linkLogSeq
37: cNode.link ← pNode.link
38: end while

completion. 1 Unless otherwise specified, our results present
the average across 100 workloads.

In addition to microbenchmarks, we evaluate the perfor-
mance of PEDaLS for an end-to-end distributed application.
The application (presented in Section V-E) implements a
simple clone of Amazon Simple Storage Service (S3) for
storing and serving images using PEDaLS.

To the best of our knowledge, no other system provides
general-purpose versioning and storage persistence of program
data structures. Moreover, we want to explore the cost of
providing versioning and storage support to systems relying
on in-memory ephemeral data structures. Thus, we com-

1Our workloads are available (for reproducibility purposes) as part
of our open-source release of PEDaLS at https://github.com/MAYHEM-
Lab/PEDaLS.

pare PEDaLS data structures against in-memory ephemeral
and in-memory persistent data structures (denoted as simply
ephemeral and persistent in the results). We use memory-
mapped files as a backing store for the in-memory data
structures.

To evaluate the trade-off in space and time using extra
pointers, we consider 1, 5, and 10 extra pointers for PDSs
(both in-memory and PEDaLS). We refer to the PEDaLS im-
plementation using n number of extra pointers as PEDaLS-n.
Similarly, we refer to the in-memory persistent implementation
using n number of extra pointers as persistent-n.

We perform our experiments using virtual machine instances
in a private cloud running Eucalyptus [63]. Each instance
has two 2GHz CPUs and 2GB of memory. Unless otherwise
specified, we co-locate the logs and workload for this study.

B. Space Analysis

We first evaluate PEDaLS space usage. Figures 4a and 4b
show the average space in bytes used by linked list and BST
respectively to execute 1 to 1000 operations. The results show
that PEDaLS space requirements are linear with respect to the
number of operations for versioned data structures (persistent-
n and PEDaLS-n). The space requirements for ephemeral data
structures are linear in the number of nodes present at any
instant of time (due to scaling it appears to be constant in
Figure 4).

We expect that when the number of extra pointers is small,
the node-copy method will copy more nodes (and consume
more space). This is evident in the results. The average slope
of the lines for PEDaLS-1 BST, PEDaLS-5 BST, and PEDaLS-
10 BST are respectively 352, 300, and 296 (Figure 4b). This
implies that, on average, each update operation in PEDaLS-
1 BST requires 352 bytes, whereas each update operation in
PEDaLS-10 BST requires 296 bytes.

Note that although the difference in average slope between
PEDaLS-10 BST and PEDaLS-1 BST is more than 50, this
difference reduces to 4 when considering PEDaLS-5 BST and
PEDaLS-10 BST. That is, we only reduce space consumption
via extra pointers up to a point. For linked list PEDaLS-10
saves roughly one byte of space per operation as compared to
PEDaLS-5. When compared to persistent-n BSTs, PEDaLS-n
BSTs require 1.50x, 1.75x, and 1.80x more space for n =
1, 5, and 10 respectively. That is, the space overhead to map
the in-memory node-copy method to logs is quite low.

Similar observations for linked list from Figure 4a reveal
space overhead is as low as 2.00x. Ephemeral data structures
can free the corresponding memory once a node is deleted.
Moreover, they do not have to perform bookkeeping related to
maintaining versioning information. Therefore, we expect their
space requirement to be lower. Unsurprisingly, the space over-
head to maintain PEDaLS-10 BST as opposed to ephemeral
BST is 178x. The same overhead is 202x for linked list.

C. Time Analysis

We next consider the additional time needed for versioning
and disk persistence. Figure 5 shows the average time taken by



0 200 400 600 800 1000
number of update (insert/delete) operations

0

50000

100000

150000

200000

250000

300000

350000

400000

sp
ac

e 
in

 b
yt

es

PEDaLS-1
PEDaLS-5
PEDaLS-10
persistent-1
persistent-5
persistent-10
ephemeral

(a) Linked list.

0 200 400 600 800 1000
number of update (insert/delete) operations

0

50000

100000

150000

200000

250000

300000

350000

400000

sp
ac

e 
in

 b
yt

es

PEDaLS-1
PEDaLS-5
PEDaLS-10
persistent-1
persistent-5
persistent-10
ephemeral

(b) BST.

Fig. 4: Average space usage.

0 200 400 600 800 1000
number of update (insert/delete) operations

0

20000

40000

60000

80000

100000

120000

tim
e 

in
 m

illi
se

co
nd

s (
m

s)

PEDaLS-1
PEDaLS-5
PEDaLS-10
persistent-1
persistent-5
persistent-10
ephemeral

(a) Linked list.

0 200 400 600 800 1000
number of update (insert/delete) operations

0

20000

40000

60000

80000

100000

120000

tim
e 

in
 m

illi
se

co
nd

s (
m

s)

PEDaLS-1
PEDaLS-5
PEDaLS-10
persistent-1
persistent-5
persistent-10
ephemeral

(b) BST.

Fig. 5: Average execution time.

the different data structures to execute a number of operations
ranging from 1 to 1000. The time requirements (shown on
the y-axis) are linear with respect to the number of operations
(shown on the x-axis).

For ephemeral linked list, the average time taken to execute
an update operation is 3.30 milliseconds. This value is 4.11
milliseconds, 4.47 milliseconds, and 4.51 milliseconds for
PEDaLS-1 linked list, PEDaLS-5 linked list, and PEDaLS-10
linked list respectively. That is, even the slowest PEDaLS-
n linked list implementation introduces only 1.35x overhead.
The persistent-n implementations are the slowest, requiring
28.85 milliseconds, 18.28 milliseconds, and 18.18 millisec-
onds for n = 1, 5, and 10 respectively.

These results are surprising. We expect the performance or-
der would be ephemeral>persistent-n>PEDaLS-n. However,
in the case of linked list the experiments show PEDaLS-n has
a better performance than persistent-n. Moreover, the small
overhead in PEDaLS-n when compared to ephemeral, shows
that it is possible to use a log-based approach to implement
storage-persistent PDS linked list without a significant per-
formance penalty, relative to the standard, mutable, and un-
versioned pointer-based implementations.

These experiments indicate that the performance of the
memory allocator plays a key role in the performance of

versioned persistence. The underlying memory allocator that
CSPOT (runtime system over which PEDaLS is currently
implemented) uses is trivial: it simply appends to a fixed-
size, pre-allocated, circular log buffer that is mapped to
a Linux file. Further, there is no deallocation – the log
“wraps” to automatically garbage collect log entries [6]. For
the ephemeral and persistent implementations, the memory
allocator uses a first-fit dynamic allocation algorithm with
eager coalescing of adjacent free blocks on deallocation. Thus,
the implementations that use a dynamic allocator cause it to
“chase” an internal free list of blocks from time to time during
allocation and coalescing.

Additionally, both allocators flush a modified memory re-
gion to the backing store (i.e. a Linux file) to prevent corrup-
tion in case of a system crash. The dynamic allocator versions
(ephemeral and persistent) use the Linux msync() system
call to write back modified mapped memory. For CentOS 7,
this call causes either one or two (due to alignment) 8 kilobyte
pages to be flushed to the backing file. Moreover, it must flush
the modified memory to the backing store (i.e. a Linux file)
each time the data changes in an allocated buffer or in the
internal memory allocated data structures.



A cursory examination of the CSPOT source code 2 shows
that it unmaps each storage log after each append operation,
causing dirty pages to be flushed back. Thus it is likely
that ephemeral performance is dominated by backing-store
synchronization traffic. As a result, the additional computa-
tional overhead associated with versioning using the node-
copy method is negligible.

Figure 5b shows the average time taken by the different
implementations of BST to perform the workloads. The time
requirements are again linear with respect to the number
of operations. Ephemeral BST requires 3.82 milliseconds to
execute an operation. PEDaLS-n BSTs require slightly lower
– 2.88 milliseconds, 3.04 milliseconds, and 3.24 milliseconds
for n = 1, 5, and 10 respectively.

The additional complexities inherent in a PDS implemen-
tation of BST put additional performance pressure on the dy-
namic memory allocator. This is reflected in the per-operation
times for persistent-n, which are 106.71 milliseconds, 88.48
milliseconds, and 81.26 milliseconds for n = 1, 5, and 10
respectively. That is, persistent-n can have an overhead of as
much as 28x when compared to ephemeral.

D. Search Performance

Note that update operations (insert/delete) require traversals
of existing nodes (e.g. to find leaf node to which a new node
is inserted). We next break out the time to perform access
(find/search) operations alone, i.e. data structure traversal. We
consider different access operations for the two data structures:
(i) finding the last node in linked list (Figure 6a) and (ii)
finding the maximum value in BST (Figure 6b). Figure 6
shows traversal time as a function of the number of nodes.

Note that although many workloads resulted in having > 10
nodes in linked list, We do not show the complete results for
the sake of visual comparability (e.g. no workload resulted in a
depth of > 10 BST nodes). Because we search from the latest
version, we simply follow the last link (i.e. at most 2 links for
BST) of each node. We find that varying the number of extra
pointers for this experiment has no significant performance
difference.

Figure 6 shows that the access time is linear in the number
of nodes for PEDaLS. On average, PEDaLS requires 0.23 mil-
liseconds and PEDaLS BST requires 0.29 milliseconds. Both
the persistent and ephemeral data structures are three orders of
magnitude faster than PEDaLS for access, with no significant
difference between each other. This again emphasizes the
importance of the performance of the memory allocator. For
updates, PEDaLS is faster than persistent for both linked list
and BST and is on par with ephemeral.

E. End-to-End Application: Image Server

Finally, we evaluate the use of PEDaLS for an end-to-
end distributed application commonly found in IoT settings,
e.g. [64]. The program implements an image server, which
sensors and/or users can use to upload and download images
for analysis.

2https://github.com/MAYHEM-Lab/cspot

We compare two different implementations of this image
server. For the first implementation, we use an Amazon S3
bucket located in the us-west-2 region as the server. The client
process is located in a private cloud in UCSB and interacts
with the bucket using the boto3 library (the instance has the
same specifications as the ones used so far – 2GHz CPU,
2GB RAM). For the second implementation, we use a t3.small
(2GHz CPU, 2GB RAM) EC2 instance, also located in the us-
west-2 region. We employ a PEDaLS -1 BST in this instance
that acts as an image indexer. The average RTT between
the client instance and the EC2 instance that we observe is
approximately 30 milliseconds. Note that our goal is not to
outperform the S3 image server, rather explore the utility of
PEDaLS in an IoT setting.

For this experiment, we first upload 500 images (256 KB
each) to the server, followed by the retrieval of the images from
the server. Surprisingly, PEDaLS based server outperforms
s3 based server in both upload time and download time.
Figure 7 shows the average upload and download times per
image for the two servers. The average upload time is 153
milliseconds for the S3 based server, whereas this value is
144 milliseconds for PEDaLS. That is, the latter is 1.1x faster.
The average download time is 146 milliseconds for S3 based
server, whereas this value is 83 milliseconds for PEDaLS
based server. In this case, PEDaLS is 1.8x faster.

VI. CONCLUSION

Both partially persistent data structures (PDSs) and append-
only storage systems provide immutability and history-based
programming – albeit at different “levels” (program versus
systems). These features are useful at both levels in distributed,
large-scale, and failure-prone contexts such as those for hetero-
geneous and pervasive Internet of Things (IoT) deployments.
In this paper, we investigate how to combine the two so
that high-level, linked program data structure operations with
versioning support, automatically and transparently map to
append-only persistent storage – enabling, for the first time,
survivability and programmatic access by distributed clients to
both the data structures and their version histories.

To enable this, we present a new approach for efficiently
supporting versioned, linked data structures in programs by
leveraging algorithmic advances from partially persistent data
structures. We use these methods to design a mapping and
library implementation of version-aware data structure opera-
tions that are backed by append-only storage. We implement
this approach using an append-only storage abstraction from a
portable, open-source event system for IoT. We use this system
to evaluate the algorithmic complexities and performance over-
head for operation workloads for linked list and binary search
tree (BST) structures as well as end-to-end using a multi-tier
image processing application. Our results show that we are
able to achieve the algorithmic complexities of the original
PDSs and low overhead for storage-persistent versioning.

REFERENCES

[1] “Amazon S3,” 2021, https://aws.amazon.com/s3/ [Online; accessed 11-
Apr-2021].



2 3 4 5 6 7 8 9 10
number of nodes traversed

0.0

0.5

1.0

1.5

2.0

2.5

tim
e 

in
 m

illi
se

co
nd

s

PEDaLS
persistent
ephemeral

(a) Linked list.

2 4 6 8 10
number of nodes traversed

0.0

0.5

1.0

1.5

2.0

2.5

tim
e 

in
 m

illi
se

co
nd

s

PEDaLS
persistent
ephemeral

(b) BST.

Fig. 6: Access (node traversal) time vs number of nodes traversed.

upload download
operation

0

50

100

150

200

tim
e 

in
 m

illi
se

co
nd

s

s3
PEDaLS

Fig. 7: Average upload and download time per image for the
Amazon S3 and PEDaLS image servers.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in IEEE Symposium on Mass Storage Systems
and Technologies, 2010.

[3] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei, and
J. Davis, “Corfu: A shared log design for flash clusters,” in USENIX
Symposium on Networked Systems Design and Implementation, 2012.

[4] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011,
pp. 1–7.

[5] “AWS Lambda,” https://aws.amazon.com/lambda/, 2021, [Online; ac-
cessed 11-Apr-2021].

[6] R. Wolski, C. Krintz, F. Bakir, G. George, and W.-T. Lin, “CSPOT:
Portable, Multi-scale Functions-as-a-Service for IoT,” in ACM Sympo-
sium on Edge Computing, 2019.

[7] Amazon, “S3 Object Versioning,” 2019,
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html
[Online; accessed 28-Sep-2019].

[8] “Google Cloud: Versioned Object Storage,” 2018,
https://cloud.google.com/storage/docs/object-versioning [Online;
accessed 12-Sep-2018].

[9] “Apache Kafka,” 2019, http://kafka.apache.org [Online; accessed Sep.
2019].

[10] “Amazon kinesis streams service,” 2020,
https://docs.aws.amazon.com/kinesis/index.html Accessed 15-Apr-
2020.

[11] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan, “Making data structures
persistent,” J. Comput. Syst. Sci., vol. 38, no. 1, 1989.

[12] P. Helland, “Immutability changes everything,” in Con-
ference on Innovative Data Systems Research, 2015,

http://cidrdb.org/cidr2015/Papers/CIDR15 Paper16.pdf Accessed
15-Sep-2019.

[13] P. Alvaro, S. Galwani, and P. Bailis, “Research for practice: Tracing and
debugging distributed systems; programming by examples,” in CACM,
Jan. 2017.

[14] P. F. Dietz and R. Raman, “Persistence, amortization and randomization,”
in ACM-SIAM Symposium on Discrete Algorithms, 1991.

[15] G. S. Brodal, “Partially persistent data structures of bounded degree with
constant update time,” Nord. J. Comput., vol. 3, no. 3, 1996.

[16] A. Fiat and H. Kaplan, “Making data structures confluently persistent,”
in Symposium on Discrete Algorithms, 2001.

[17] H. Kaplan, “Persistent Data Structures,” 2004.
[18] F. Pluquet, S. Langerman, A. Marot, and R. Wuyts, “Implementing par-

tial persistence in object-oriented languages,” in Meeting on Algorithm
Engineering & Expermiments, 2008.

[19] L. Ceze, C. von Praun, C. Cascaval, P. Montesinos, and J. Torrellas,
“Programming and Debugging Shared Memory Programs with the Data
Coloring,” in Workshop on Compilers for Parallel Computing, 2009.

[20] E. D. Demaine, J. Iacono, and S. Langerman, “Retroactive data struc-
tures,” ACM Trans. Algorithms, vol. 3, no. 2, May 2007.

[21] ——, “Retroactive data structures,” in ACM-SIAM Symposium on Dis-
crete Algorithms, 2004.

[22] H. Mannila and E. Ukkonen, “The set union problem with backtracking,”
International Colloquium on Automata, Languages and Programming,
vol. 226, 1986.

[23] J. Westbrook and R. E. Tarjan, “Amortized analysis of algorithms for
set union with backtracking,” SIAM J. Comput., vol. 18, 1989.

[24] Y. Zhan and D. E. Porter, “Versioned programming: A simple technique
for implementing efficient, lock-free, and composable data structures,”
in ACM International on Systems and Storage Conference, 2016.

[25] “Haskell,” 2019, ”https://www.haskell.org” Accessed 17-Sep-2019.
[26] “Immutable.js,” 2019, ”https://immutable-js.github.io/immutable-js/”

Accessed 20-Sep-2019.
[27] John McClean, “Java Persistent Collections,” 2019,

”https://medium.com/@johnmcclean/the-rise-and-rise-of-java-
functional-data-structures-63782436f93b” Accessed 20-Sep-2019.

[28] C. Okasaki, “Purely Functional Data Structures,” Carnegie
Mellon University, Tech. Rep. CMU-CS-96-177, 2019,
https://www.cs.cmu.edu/ rwh/theses/okasaki.pdf Accessed 20-Sep-
2019.

[29] A. Chien, P. Balaji, P. Beckman, N. Dun, A. Fang, H. Fujita, K. Iskra,
Z. Rubenstein, Z. Zheng, R. Schreiber, J. Hammond, J. Dinan, I. Laguna,
D. Richards, A. Dubey, B. van Straalen, M. Hoemmen, M. Heroux,
K. Teranishi, and A. Siegel, “Versioned distributed arrays for resilience
in scientific applications,” Procedia Comput. Sci., vol. 51, no. C, Sep.
2015.

[30] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-addressable
memory,” in USENIX Conference on File and Stroage Technologies,
2011.



[31] A. Twigg, A. Byde, G. Milos, T. Moreton, J. Wilkes, and T. Wilkie,
“Stratified b-trees and versioned dictionaries,” in USENIX Conference
on Hot Topics in Storage and File Systems, ser. HotStorage’11, 2011.

[32] 1995.
[33] Oracle, “Java Persistence API,” 2019,

”https://docs.oracle.com/cd/E19798-01/821-
1841/6nmq2cpag/index.html” Accessed 18-Sep-2019.

[34] Oracle, “JDBC,” 2021, https://docs.oracle.com/en/database/oracle/oracle-
database/19/jjdbc/toc.htm Accessed 2-Apr-2021.

[35] R. Agarwal, “The c++ interface in objectivity,” SIGPLAN Not., vol. 29,
no. 12, Dec. 1994.

[36] T. Kelly, “Persistent Memory Programming on Conventional Hardware,”
ACMQUEUE, vol. 17, no. 4, 2019.

[37] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and
T. F. Wenisch, “Persistency for synchronization-free regions,” in ACM
Conference on Programming Language Design and Implementation, ser.
PLDI 2018, 2018.

[38] M. Atkinson, P. Bailey, K. Chisholm, W. Cockshott, and R. Morrison,
“An Approach to Persistent Programming,” Computer Journal, vol. 26,
no. 4, 1983.

[39] M. Atkinson, L. Daynes, M. Jordan, T. Printezis, and S. Spence, “An
orthogonally persistent Java,” in SIGMOD, 1996.

[40] S. Balzer, “Contracted Persistent Object Programming,” in PhD Work-
shop, ECOOP, 2005.

[41] B. Stopford, Designing Event Driven Systems: Concepts and Patterns
for Streaming Services with Apache Kafka. O’Reilly Media, 2018,
https://drive.google.com/file/d/1NGst29pUjZwtn8pXTKvlSSuau2-
to5dD/view Accessed 15-Sep-2019.

[42] R. Kotla, L. Alvisi, and M. Dahlin, “Safestore: A durable and practical
storage system,” in USENIX Annual Technical Conference, 2007, pp.
129–142.

[43] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J. Carey,
M. Dreseler, and C. Li, “Storage management in asterixdb,” VLDB,
vol. 7, no. 10, Jun. 2014.

[44] C. Gong, S. He, Y. Gong, and Y. Lei, “On integration of appends and
merges in log-structured merge trees,” in International Conference on
Parallel Processing, 2019.

[45] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Chariots: A
scalable shared log for data management in multi-datacenter cloud
environments.” in EDBT, 2015, pp. 13–24.

[46] H. Vo, S. Wang, D. Agrawal, G. Chen, and B. Ooi, “Logbase: a scalable
log-structured database system in the cloud,” Proceedings of the VLDB
Endowment, vol. 5, no. 10, pp. 1004–1015, 2012.

[47] “Apache Samza,” 2019, http://samza.apache.org [Online; accessed Sep.
2019].

[48] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations,
extensions, and beyond,” ACM Queue, vol. 11, no. 3, Mar. 2013.

[49] S. Burckhardt, “Principles of eventual consistency,” Foundations and
Trends in Programming Languages, vol. 1, no. 1-2, 2014.

[50] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
M. Wei, J. Davis, S. Rao, T. Zou, and A. Zuck, “Tango: Distributed
Data Structures over a Shared Log,” in Symposium on Operating System
Principles, Nov. 2013.

[51] P. Helland, “Data on the outside versus data on the inside,”
in Conference on Innovative Data Systems Research, 2015,
http://cidrdb.org/cidr2005/papers/P12.pdf Accessed 15-Sep-2019.

[52] W. Lin, C. Krintz, R. Wolski, M. Zhang, X. Cai, T. Li, W. Xu, and
R. Zhou, “Tracking Causal Order in AWS Lambda Applications,” in
IEEE International Conference on Cloud Engineering, Jun. 2018.

[53] W.-T. Lin, C. Krintz, and R. Wolski, “Tracing Function Dependencies
Across Clouds,” in IEEE Cloud, 2018.

[54] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” ACM Trans. Comput. Syst., vol. 35,
no. 4, Dec. 2018.

[55] D. Meissner, B. Erb, F. Kargl, and M. Tichy, “Retro-lambda: An event-
sourced platform for serverless applications with retroactive computing
support,” in Intl. Conf. on Distributed and Event-based Systems, 2018.

[56] W.-T. Lin, F. Bakir, C. Krintz, R. Wolski, and M. Mock, “Data repair
for Distributed, Event-based IoT Applications,” in ACM International
Conference on Distributed and Event-Based Systems, 2019.

[57] I. Beschastnikh, P. Wang, Y. Brun, and M. Ernst, “Debugging distributed
systems,” in CACM, Jun. 2016.

[58] I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy, and T. E.
Anderson, “Mining temporal invariants from partially ordered logs,”
SIGOPS Oper. Syst. Rev., vol. 45, no. 3, Jan. 2012.

[59] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica, “Friday:
Global comprehension for distributed replay,” in NSDI, 2007.

[60] Facebook, “LogDevice,” 2020, https://engineering.fb.com/core-
data/logdevice-a-distributed-data-store-for-logs/ Accessed 29-Feb-2020.

[61] D. Bailis, “Coordination avoidance in distributed databases,”
2015, ph.D. Dissertation, University of California, Berkeley,
http://www.bailis.org/papers/bailis-thesis.pdf Accessed 15-Sep-2019.

[62] “Redis,” ”http://redis.io”.
[63] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-

eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE, 2009, pp. 124–131.

[64] A. R. Elias, N. Golubovic, C. Krintz, and R. Wolski, “Where’s The Bear?
– Automating Wildlife Image Processing Using IoT and Edge Cloud
Systems,” Computer Science Department at the University of California,
Santa Barbara, Tech. Rep. UCSB-CS-2016-07, October 2016.


