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Abstract— The goal of our work is to simplify and expedite
the construction and evaluation of machine learning models using
autoscaled cloud computing resources. To enable this, we develop
an open source system called Seneca, which leverages the server-
less programming model and its implementation in Amazon
Web Services (AWS) Lambda. Seneca takes a machine learning
application, dataset, and a list of possible hyperparameter options
as input and automatically constructs an AWS Lambda function.
The function ingresses and splits the input dataset into training
and testing subsets and constructs, tests, and evaluates (i.e. scores)
a machine learning model for a given set of hyperparameter val-
ues. Seneca concurrently invokes functions for all combinations of
the hyperparameters specified. It then returns the configuration
(or model) that results in the best score to the user. In this
paper, we overview the design and implementation of Seneca, and
empirically evaluate its performance for a popular classification
application.
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I. INTRODUCTION

The scale and elasticity of cloud computing systems have
fueled remarkable innovation and unprecedented commercial
investment. Cloud users “rent” virtualized resources (while
sharing the underlying physical resources) on a pay-per-use
basis in exchange for availability guarantees specified via
service level agreements (SLAs). Uniquely, cloud systems can
be configured to add and remove (i.e. auto-scale) resources
and services automatically, based on the dynamic resource
requirements and service needs of executing applications.

To date however, clouds are used more for enterprise ser-
vices (object stores, databases, application servers, etc.) than
for elastic applications. The reason is that it is challenging
to configure complex distributed systems for application use,
and to leverage the auto-scaling that clouds offer. To address
this challenge, cloud providers have started to offer program-
ming and execution environments that obviate the need for
server configuration, under the serverless moniker [1], [2],
[3]. Serverless platforms automatically configure, manage, and
scale applications to significantly simplify cloud use.

Using the serverless model, application developers upload
arbitrary computations in high level languages as stateless
functions to cloud-hosted, serverless platforms, where func-
tions are triggered automatically by the cloud in response to
updates from other cloud services (e.g. storage, queues, notifi-

cation services, and API gateways, among others). Serverless
functions must execute under a time bound (e.g. 15 minutes)
and an allocated memory size (e.g. 3GB) or else the platform
will terminate the function. They communicate, persist, and
access data only through their inputs or via shared storage
services. As a result, serverless applications are inherently
elastic and can implement highly concurrent and parallel tasks.
In public clouds, users pay a small fee for the resources their
functions use during execution, resulting in very low cost cloud
use. Although now available from all public cloud providers
and as open source for private cloud systems, Amazon Web
Services (AWS) Lambda [4] was the first and is the most
widely used serverless public cloud platform.

In this work, we investigate the efficacy of using AWS
Lambda for tuning machine learning applications in parallel.
To date, Lambda is not widely used for training and eval-
uating machine learning models because of a concern that
doing so will result in high overhead (i.e. be costly) because
of the stateless nature of serverless functions [2]. At the
same time, identifying the “best” configuration for advanced
machine learning models is challenging given the large number
of configuration options (i.e. hyperparameters) typical for
models today. Hyperparameters govern the learning process
of machine learning applications. Given that parameter sweeps
are embarrassingly parallel, we believe that such tuning is a
good fit for the serverless model. To investigate this potential,
its overhead, and to simplify the use of Lambda for training,
testing, and evaluation of machine learning models, we design
and develop a new system and toolset called Seneca.

Seneca implements, packages, and deploys machine learn-
ing applications as stateless functions to AWS Lambda. It then
orchestrates exhaustive evaluation of specified hyperparameter
settings to identify the best performing model (for a given
dataset) by comparing prediction accuracy across models.
Users present Seneca with their application, a range of values
for each hyperparameter (or the default can be used), and a
representative dataset. Seneca produces, tests, and evaluates
models for all combinations of hyperparameters and returns
to the user the set of parameters (and/or the model itself) that
produces the best cross-validation score. Users can employ
this model for other datasets (with Seneca if desired) without
retraining the model to amortize the cost of Seneca further.

We deploy Seneca on AWS Lambda and evaluate its tuning



Fig. 1: The Seneca Architecture.

performance, cost, and memory use for a machine learning
application benchmark and dataset. Our results indicate that
Seneca is fast, inexpensive, and effective for model construc-
tion and comparison. We also observe for this application, that
Seneca enables a speedup of 220x for each additional dollar
spent performing hyperparameter search in AWS Elastic Com-
pute Cloud (EC2). We next overview our design and imple-
mentation of Seneca and present our empirical methodology
and results. Finally, we discuss related work and conclude.

II. SENECA

To facilitate model search and selection using the serverless
architecture, we have developed Seneca, a framework for
tuning the hyperparameters of machine learning applications
in AWS Lambda. The Seneca pipeline consists of packaging,
deployment, function optimization, and hyperparameter tun-
ing.

Figure 1 shows the architecture of Seneca. In the upper-
right front, we show the three inputs that Seneca expects
from its users: (A) a hyperparameter configuration file, (B)
a dataset URL, and (C) the lambda function of the machine
learning application. The configuration file specifies a set of
values for each hyperparameter that the application expects.
Seneca creates the Cartesian product of all options in this
configuration as the search space. The dataset URL refers to a
valid dataset stored in the AWS Simple Storage Service (S3).

Based on the specified machine learning application, Seneca
automatically builds and deploys an AWS Lambda application
by launching a Docker container that mirrors the AWS Lambda
execution environment, checks and installs the machine learn-
ing application and any libraries it requires, compresses the

application and uploads it to S3 (a work-around for the 10MB
AWS Lambda function size restriction). Seneca constructs an
AWS Lambda function from a template that, when executed,
will download the dataset and split it into a training and
testing set, and construct, test, and evaluate a model using
the application and a set of hyperparameter values passed in
by Seneca as arguments. Users can specify the train/test split
ratio that should be used by Seneca; the default is 80%/20% for
classification task. The function returns a testing score. Upon
completion of this process, the container deploys the function
to AWS Lambda using the AWS Command Line Interface
(CLI) and the developers credentials.

To facilitate parallel function invocation, Seneca integrates
Celery 1, an asynchronous task queue that uses distributed
message passing. Celery workers are processes that take tasks
from the queue, execute the tasks with the arguments specified,
and store the result that is returned in a database (we use
Redis2 in our prototype).

Based on the configuration file, Seneca creates and enqueues
a list of payloads (function arguments) for each combination
of hyperparameter values. The Seneca celery workers invoke
the application’s Lambda function by each payload for model
construction. Upon function termination, the worker records
a score for the hyperparameter configuration in the database.
When the queue is drained and all workers have completed,
Seneca extracts and reports the best score, configuration, and
model from the database. Users can then use the model for
inference given other datasets without retraining to amortize
the time/cost of Seneca.

1http://www.celeryproject.org/
2https://redis.io/



Hyperparameter Default Tuning options
activation relu [identity, tanh, relu]
solver adam [lbfgs, sgd, adam]
learning rate constant [constant, invscaling, adaptive]
learning rate init 0.001 [0.001, 0.0001]
power T 0.5 [0.1, 0.5]
tol 1-e4 [1e-4, 1-e5]
n iter no change 10 [10, 20]

TABLE I: Hyperparameters Seneca considers for NN.

We assume that the dataset supplied to Seneca by the user
is representative of datasets on which the resulting model will
be used. As part of future work, we are considering using
multiple datasets and a ranges of hyperparameter values to
preclude the need for users to specify them and to consider a
wider range of values.

III. EVALUATION

In this section, we empirically evaluate Seneca in terms of
machine learning (ML) model output quality, performance,
and cost. We first overview the ML application benchmark
that we consider and our experimental methodology. We then
present our results.

A. Benchmark Application and Training/Testing Dataset

We benchmark Seneca using a classification application,
called NN. NN uses a neural network to identify patterns
in an input dataset. It employs a feed-forward, multi-layer
perceptron model [5] to perform the classification. The hyper-
parameters and their defaults for NN are listed in Table I with
definitions in [6].

During testing, NN computes and returns a classification
accuracy percentage. Accuracy percentage is calculated as
1
n

∑n
i=1 1(Yi = Ŷi), where Yi is the prediction class, Ŷi is

the true class, n is the number of samples, and 1(x) is the
indicator function.

With respect to training and testing, we use a labeled
dataset for training, testing, and evaluation from the UCSB
SmartFarm project [7], [8]. SmartFarm is a multi-tier (sensor,
edge, cloud) system that aggregates, fuses, and analyzes data
from farm operations to provide growers with data-driven
decision support, actuation, and control.

The dataset contains measurements of individual citrus fruit
(e.g. oranges, mandarins, lemons, etc.) taken by a fruit sorting
and grading device (e.g. https://www.compacsort.com) using
a large number of sensors. The measurements (i.e. features)
include size, shape, weight, color, diameter, flatness, among
other characteristics, for each fruit. The dataset has been
down-sampled and filtered to remove correlated features (those
with an absolute value of the Pearson correlation coefficient
greater than 0.8). The dataset contains 33926 rows (individual
fruit) distributed evenly across 5 targets (fields). Each row
has 18 features. The label identifies the field from which the
individual fruit was harvested.

The application trains the model on a random subset (80%)
of the data. It then uses this model to predict the field from
which each fruit originates for the remaining 20%. To study the

Fig. 2: Box plot of NN accuracy (higher is better) across
the hyperparameter search space. The orange notch indicates
the accuracy that results from default hyperparameter values.
Seneca selects the points indicated by blue triangle.

Exec Time (Secs) Memory Use (MB) Best Accuracy
NN 1 116.10 (6.05) 328.84 (16.40) 83.32%
NN 2 121.29 (2.18) 327.57 (16.44) 83.92%

TABLE II: The mean and standard deviation (in parentheses)
for execution time and memory use (across 30 runs), and best
accuracy score for neural network classification (NN) using
two different random splits.

impact of random data split, we consider multiple 80%/20%
splits in our evaluation.

B. Empirical Methodology

To evaluate Seneca, we measure model output quality
(accuracy percentage), execution time, memory use, and mon-
etary cost. We compare results for the default, best (Seneca’s
recommendation), and worst performing hyperparameter con-
figurations for the application. Seneca computes all possible
combinations of the hyperparameter settings specified in the
configuration to extract each of these results. default repre-
sents results that a novice or first time user might experience
when using these applications as a “black box”. The worst
shows how bad the results can be when parameters are poorly
tuned. Finally, the best is the upper bound on what is possible
from tuning the hyperparameters for the values and datasets
specified (e.g. using expert knowledge or Seneca).

Seneca deploys the applications automatically over AWS
Lambda and extracts execution time and memory use from
AWS CloudWatch 3 logs. We then compute monetary cost
using the AWS Lambda pricing model 4. The lambda function
downloads the training/testing dataset of the application from
AWS S3 upon function invocation. We do not consider the
cost of dataset storage in our cost computations, because it is
very small, less than 2.5 cents per month for storage and data
access.

C. Application Efficacy

We empirically evaluate Seneca’s model output quality
across the hyperparameter search space for NN, using the
accuracy box plot in Figure 2. The central rectangle covers the
interquartile range (IQR), which is defined as the range of data
points from first quartile to third quartile (Q3−Q1). The right
whisker extends to the last datum less than (Q3 + 2 ∗ IQR)
and the left whisker extends to the first datum greater than

3https://aws.amazon.com/cloudwatch/
4https://aws.amazon.com/lambda/pricing/

https://www.compacsort.com


(Q1 − 2 ∗ IQR). The rightmost blue triangle identifies
the accuracy percentage reported by Seneca. The difference
between the orange notch and the blue triangle represents
the improvement brought about by the use of Seneca, over
applying the default parameter setting. As shown, the default
accuracy of the classification application is 79.53%, while the
worst accuracy is 19.15%. After the tuning process, Seneca
selects the best performing setting, which achieves the best
accuracy of 83.32% across 432 configurations considered.

The model output quality results show that prediction
accuracy (for a given dataset) is dramatically affected by
hyperparameter settings. Unsurprisingly, the default setting
(provided by the NN application developers) is near the “good”
end of the spectrum. However, Seneca finds a parameterization
that significantly improves output quality over the default
setting.

To investigate the potential impact of Seneca’s 80/20 percent
data split for the classification application, we next evaluate
the quality of the output when we consider different 80/20
random splits. For this purpose, we run Seneca 30 times to
obtain execution time, memory use, and best accuracy score.
We report the mean and standard deviation (in parentheses)
for execution time and memory use across runs, and the best
accuracy score in Table II. Our earlier results use input 1;
this table adds results for a second, 80/20 random split of
the input (we also considered other random splits, which we
omit for brevity, and the results are similar). The performance
and Seneca score is similar across splits. This result indicates
that for specific applications, users can repeatedly employ the
recommended models for inference on other datasets or splits,
to amortize the cost of using Seneca.

D. Cost Analysis

We next compare the cost of Seneca to the cost of using
AWS Elastic Compute Cloud (EC2). We measure the exe-
cution time of Seneca using the least expensive EC2 instance
type in which the applications will run (t2.medium, which
has 2 multi-tenant cores and 4GB of memory). Note that
EC2 instances are charged for by the hour; Lambda charges
are only imposed when functions execute, but Lambda may
execute the functions concurrently. For NN, Seneca (using
3008 MB allocated memory) completes the tuning process in
123.49 seconds with total cost of $0.059. In contrast, EC2
completes the tuning task in 955.47 seconds with total cost of
$0.042. Because Seneca autoscaling facilitates much greater
concurrency, it enables a speed up over EC2 of 7.74x for an
additional cost of $0.018 over EC2.

To understand the relationship between Seneca speedup and
monetary cost (when Seneca is more costly than EC2), we
define a yield metric as Y = Tec

Tsc
/(Csc − Cec) | if Csc >

Cec where Tec and Tsc are the execution time, Cec and Csc

are the total cost of EC2 instance and Seneca, measured
in dollars, respectively. In applications for which Seneca is
cheaper, we report yield as $0.00 since there is no positive
benefit/cost ratio. This metric captures the amount of speed
up that Seneca can achieve for each additional dollar spent.

To make the comparison “fair” we also explore yield for
theoretically perfect parallelism in EC2 using 2 cores (e.g.
in a t2.medium).

For NN, Seneca achieves a yield of 220/$, assuming perfect
parallelism in EC2. That is, Seneca is able to provide a
speedup of 220, for each additional dollar spent for the
application. We plan to study this benefit/cost ratio of Seneca
and Lambda applications for various allocated memory and
applications as part of future work.

Overall, given the AWS Lambda pricing model and its
Lambda performance variability, Seneca is able to find the
sweet spot between cost and execution time. Thus Seneca can
be used to trade off time-to-solution for cost as desired by
users, to automatically evaluate the impact of hyperparameter
settings for machine learning models.

IV. RELATED WORK

As related work, we consider recent advances in evaluating
serverless computing for different application domains, auto-
matic deployment for serverless, and machine learning (ML)
model optimization. For the former, much work has investi-
gated the efficacy and overhead of the serverless programming
model and implementations [1], [2], [9], [10]. The authors
identify challenges with using AWS Lambda to train machine
learning (ML) models. Our work, however, shows that it is
possible to leverage the concurrency and parallelism in AWS
Lambda to perform fast grid search for the subset of ML
applications that we consider.

PyWren [1] uses serverless for different distributed comput-
ing models. The technique abstracts away cluster management
overhead and is ideal for embarrassingly parallel jobs. Ex-
Camera [11] presents a framework for running general-purpose
parallel tasks (encoding 4K video) on a commercial serverless
platform using multithreading. Cirrus [12] attempts to train
ML models using a parameter server and serverless functions.

An empirical study of FaaS software development has been
conducted in [13] that indicates that developers struggle with
the technical restrictions inherent in the model. To address
these restrictions (e.g. cold-start, memory and duration limit,
lack of local persistent storage, etc.), the serverless frame-
work [14] provides automated packaging and deployment for
serverless functions across clouds. The framework however
relies on CloudFormation [15] which adds to the cost of FaaS
use. Similarly, Terraform [16] provides automated deployment
of functions to serverless platforms. GammaRay [17] uses sim-
ilar packaging to to simplify FaaS deployment and to facilitate
profiling for AWS Lambda applications. Finally, the authors
of [18] model the performance of shuffle operations executed
on FaaS architecture with a mixture of slow and fast storage.
Seneca also provides automatic deployment and performance
profiling. However, it does so using a local Docker container to
avoid cost and overhead (vs these related works), to guarantee
execution compatibility for AWS Lambda.

Automated hyperparameter tuning is the focus of many
projects. Google Vizier [19] provides a service for black-
box optimization. Optunity [20] and Hyperopt [21] provide



a Python library for hyperparameter tuning. AWS Sage-
Maker [22] provides an automatic service that performs hyper-
parameter tuning for machine learning models. Hyperas [23]
adds another abstraction layer to hyperopt to facilitate hyper-
parameter tuning for Keras [24]. However, we are not aware of
any work that leverages serverless to perform hyperparameter
tuning and memory optimization in parallel for ML applica-
tions.

V. CONCLUSION

In this paper, we present a new framework, called Seneca,
for simplifying and expediting the training and testing of
machine learning models using AWS Lambda. Users provide
Seneca with the application code and libraries, 1+ datasets,
and the list of possible hyperparameter settings. Seneca uses
this information to automatically configure and deploy these
functions concurrently for all possible combinations of hyper-
parameter values specified. Seneca returns the best scoring
model and configuration to the user for future use on other
datasets.

We discuss the design and implementation of Senaca, and
the cost optimization it performs. Our empirical evaluation
using a machine learning classification application, shows
that Seneca is able to quickly identify the best performing
hyperparameter configuration for the application and datasets
that we consider.
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