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Abstract—In this paper we present Mandrake, a software
infrastructure for edge clouds (private clouds located at the
network edge), designed to provide reliable, “lights out” unat-
tended operation and application hosting in IoT deployments.
Mandrake both implements reliable private cloud operation in
restricted resource environments and data durability features
that hosted applications can leverage. We describe leveraging
Mandrake for hosting Hadoop applications at the edge. Our
empirical evaluation shows that Mandrake is able to ensure
Hadoop’s data durability guarantees efficiently in the presence
of relatively frequent failures even when resources are scarce.

Index Terms—edge cloud, cloud computing, fault tolerance,
high availability, resource allocation, data durability

I. INTRODUCTION

Cloud computing systems have been continuously evolving
to meet ever-changing workload demands. The volume of
data produced by IoT systems [1] has recently created a
need for processing this data “at the edge”, i.e. where it
is produced rather than in traditional data centers. The co-
location of processing infrastructure and IoT devices is crucial
both to reduce the latency between data acquisition and device
actuation, and to alleviate network congestion to cloud sites.

However, given limited hardware resources and the lack
of a controlled data center environment for the equipment
to operate within, edge computing infrastructure faces addi-
tional challenges. In particular, failures ranging from hardware
breakdowns to power and networking outages can occur at
any time, and unlike traditional cloud environments, these
failures might take significant portions of the cloud’s entire
resource pool offline. Once in this impaired state, it can
take an extended amount of time before any manual human
intervention restores the cloud to its original healthy state.

Mandrake addresses this robustness challenge by defining
an architecture for deploying a “lights out” edge cloud – one
that automatically reconfigures itself in response to failures
until a human operator can respond with a repair. The goal of
Mandrake is

• to provide a general purpose hosting environment for
applications running at the edge,

• to automatically reconfigure the hosting environment,
and any applications hosted within it, in response to
resource failures such that application functionality (but
not necessarily capacity) is preserved, and

• once a repair to the infrastructure is completed, to restore
full capacity.

The edge cloud hardware consists of a small cluster of
robust computing and storage elements configured as a private

cloud [2]. Mandrake implements resource management and
automated reconfiguration. It detects when a physical host
within the cloud has experienced a failure, or conversely recov-
ered from a failure, and in response automatically updates the
cloud topology. Mandrake also operates at the virtualization
layer, where user applications run, and manages the distributed
applications running within each virtual machine (VM) al-
located by the cloud’s virtualization hypervisor. It exports
an API so that applications that are hosted on a Mandrake
edge cloud can make informed decisions regarding service
failover, co-tenancy of replicated data in VMs, etc. That is,
Mandrake “breaks” the cloud abstractions and exposes tenancy
information (through an API) when a resource failure occurs.

To demonstrate and evaluate the capabilities of Mandrake,
we have assembled an edge cloud and used it to test our
system. Using a set of benchmarking workloads for big
data processing, we outline the different phases of handling
physical machine failure in the cloud. We show that on the
physical hosts, Mandrake detects and handles failures quickly.
We also show that the reallocation of resources to replace
lost computational power proceeds quickly as well. To study
the effect of failures on a big data processing workload, we
use the popular Hadoop [3] parallel processing platform and
exhibit how Mandrake enhances its availability characteristics
and data placement strategies.

Additionally, we restrict our study to Hadoop as it is
currently available (as an image) in Amazon EC2 [4]. Our
goal is to understand edge cloud auto-reconfiguration in a
context where the edge cloud and a public cloud are part
of a tiered deployment architecture for IoT. The edge cloud
we use is interface compatible with Amazon EC2 making
it possible to automatically download and use EC2 images
without modification, at the edge.

In this way, Mandrake facilitates both moving the code
(the EC2 image) to the data or the data (stored in the edge
cloud) to the code based on whichever is more efficient for
a given deployment. Thus, we present a system in which the
Hadoop installation is unmodified with respect to the publicly
available version (although we do customize its configuration
for Mandrake’s execution environment).

II. MANDRAKE

Mandrake consists of two logical sets of processes: a cloud
management system that is implemented on the physical hosts
logically as part of the private cloud software infrastructure,



and an application management system that is implemented in-
side the virtual machines (VMs) which are hosted on the edge
cloud. User workloads run in VMs i.e., alongside Mandrake’s
application management processes in VMs.

The cloud management system (termed the Mandrake Coor-
dinator, or MC) is responsible for allocating and deallocating
the appropriate VMs in response to changes in physical
resource availability. To do this, it maintains a global state
map, with a list of hosts, a mapping of VMs to hosts, and the
distributed application(s) running on each VM. When the MC
detects a host failure, it marks the failed host in this state map
and dynamically reconfigures it out of the “view” presented to
hosted applications. The updated view of the cloud’s topology
is propagated to the application management system, which
will adapt to the reduced size of the cloud. Conversely, when a
host has recovered from a failure, the application management
system is informed of the change and can integrate the newly
provisioned resources relatively quickly.

The MC’s actions are guided by a user-defined policy
configuration that includes information such as the number
of VMs to run on a host, the VM configuration, etc. In the
experimental results presented in this paper, we use a con-
figuration in which Mandrake hosts a single Hadoop cluster.
However, the extensible design allows for the multi-tenancy of
different hosted applications, while enforcing the modularity
by using the MC as the same underlying cloud management
system which facilitates resource allocation.

The application management system (termed the Mandrake
Application Orchestrator, or MAO) provides services that
can manipulate an application’s configuration and operation
dynamically to meet reliability or performance objectives. It
coordinates its activities with the MC via the system view that
the MC produces and serves to it via an API. For example, in
this paper, the MAO implements a mechanism for placing data
blocks for the Hadoop File System (HDFS) to ensure replica
failure independence when VM-to-host mappings change dy-
namically – a feature not available to Hadoop at present. Thus,
Mandrake enables host-aware data replication for Hadoop
when Hadoop is using VMs in an edge cloud. This mechanism
is not limited to Hadoop, however. Rather, it is a general
mechanism for sharing (in a controlled way) the VM-to-host
mapping information so that any system implementing replica
independence could make informed placement decisions.

A. Mandrake Coordinator

The Mandrake Coordinator (MC) is the primary host-level
service responsible for controlling the other host services and
making decisions about how to manage the system’s resources.
A process belonging to the MC runs on every host and
maintains the global mapping of the edge cloud’s state. To do
this in a consistent way, a distributed consensus mechanism
is necessary. Mandrake maintains global state information
pertaining to the cluster using Zookeeper [5] – a well-known
open source system for implementing distributed consensus. In
particular, it uses Zookeeper to implement group membership
for identifying the set of hosts currently available, to replicate

a consistent view of the resources to all hosts, and to denote
a leader responsible for initiating reconfiguration actions.

Mandrake uses a heartbeat mechanism to detect host failure.
When a “follower” machine fails, the MC “leader” notices
it missing from the host list due to the lack of a heartbeat,
and proceeds to perform the dynamic reconfiguration of the
cloud using the other software services that make up the cloud
management system. Conversely, when a machine comes back
online, the MC instance running on that machine starts up
automatically and rejoins the Zookeeper group of active hosts.
To enable this, we leverage a new feature in a beta version of
Zookeeper (r3.5.4-beta) for dynamic group reconfiguration [6]
by the MC.

Mandrake is designed to use a private cloud for resource
provisioning (i.e. VM allocation and deallocation, network
subnet provisioning, local DNS naming, etc.). The current
implementation uses Eucalyptus [2], [7] which is an open
source private cloud that implements the Amazon AWS APIs.
Eucalyptus is, itself, designed to tolerate failures, so Mandrake
treats it as a fault-tolerant, distributed provisioning service.

In addition to the AWS user APIs, Eucalyptus exports an
administrator API that the MC uses to determine virtual to
physical mappings. To avoid tying Mandrake to a specific VM
provisioning service, the MC code uses the Eucalyptus API
through a thin, generic wrapper layer. Thereby the MC can be
extended to use any private cloud or distributed provisioning
service that supports similar functionality as Eucalyptus (e.g.
OpenStack [8], Open Nebula [9], etc.).

The MC ensures consistency across separate calls to the
provisioning services it uses. For example, if it detects a failure
while it is in the process of performing a reconfiguration
requiring multiple calls to the provisioning service, it will
bring the system to a stable configuration before handling the
newly detected failures.

Mandrake also implements two separate services that it uses
internally alongside the MC. The State Service exposes an
endpoint for the MC’s consistent view of the system’s state
and a Watchdog Service tracks the activity of the main MC
process and attempts to restart it if it becomes inactive. The
State Service runs as a single instance on the MC leader node,
fielding requests from both the MC and MAO. The system
mapping is sent from the MC to the State Service via a single
RESTful POST request. Similarly, the MAO periodically sends
a GET request to obtain the current version of the mapping,
and if the mapping is newer than its copy, it sends another
request to obtain the current mapping. Since edge clouds are
by definition resource constrained, we expect the size of the
clouds to be on the order of tens of machines and the size of
the state description to be on the order of bytes to kilobytes.

B. Mandrake Application Orchestrator

The Mandrake Application Orchestrator (MAO) runs within
the VMs spawned at the request of the MC and acts as an
automated application management system, configuring and
running applications in place of a human operator. While the
MC provisions and tracks the underlying resources, the MAO



ensures that the resources are correctly configured for use by
a specific application and that there is minimal degradation
when reconfiguring an application after a failure.

The MAO comprises a number of internal services. The
MAO also uses a Watchdog Service to ensure its liveness.
Together with the application it manages, it instantiates its own
instance of Zookeeper and a Key Exchange Service (for SSH
key exchange during bootstrapping) in each VM. All other
VM services and the MAO communicate via SSH. There is
no single master (thus no single point of failure) in the MAO
– instances use the distributed consensus service, Zookeeper,
to communicate, elect leaders for individual tasks, and store
critical information. Finally, MAO instances poll the State
Service hosted on the leader MC node for the system mapping
via HTTP. Each instance stores this information locally and,
when the polled version of the system mapping differs from
the local version, the MAO requests the new mapping and
initiates a reconfiguration.

Similar to the MC, the MAO uses Zookeeper’s watcher,
ephemeral znode, and dynamic reconfiguration [6] mecha-
nisms. The Zookeeper clusters running in the MC and MAO
are completely separate pools and do not communicate.

The application we use for Mandrake evaluation is Hadoop
(version 3.0.3), a mature, widely used, and highly config-
urable data processing framework that implements the MapRe-
duce [10] parallel computation paradigm, which has proven
useful in solving many kinds of problems [11]. Hadoop is
interesting for our study since it includes its own internal
data replication mechanism that assumes it can assign replicas
to separate resources to ensure failure independence. In a
virtualized, resource constrained, and multi-tenant setting (e.g.
in an edge cloud) VMs can be mapped to the same physical
hosts with no way for Hadoop’s mechanisms to properly
determine this co-location.

Therefore, we attempt to determine in our experiments
whether Mandrake can force Hadoop to use a replica place-
ment pattern that ensures failure independence without modi-
fying Hadoop internally so that it works “out of the box” in an
edge cloud setting. Not only does this save us the potentially
difficult work of modifying Hadoop’s internals, it allows us to
work with publicly available and vetted images pre-configured
with Hadoop (such as those on the AWS Marketplace [12]),
accruing the additional benefit that applications that run on a
Mandrake-enabled edge cloud could also run unmodified in a
traditional cloud environment.

C. Mandrake’s Replica Mover

Hadoop makes its decisions about data placement to im-
prove availability and reliability statically, i.e., using the host
and network topology (e.g. rack placement) in place when its
processes start up. While this is not a problem in a “bare
metal” setting, it can result in sub-optimal decisions when
executing or reacting to Hadoop node failures in a virtualized
environment if the probability of co-locating VMs is high as
it might be on an edge cloud.

To deal with such scenarios, we extend the MAO with
a “Replica Mover” that ensures replica independence for
Hadoop externally. Thus, using only configuration options that
disable the internal replica placement mechanisms of Hadoop,
the MAO can induce Hadoop to preserve replica independence
without modifying its internal mechanisms. Thus, “standard”
Hadoop images available in public clouds like AWS are
compatible with Mandrake. 1 We overview how this is done
in Mandrake in this subsection.

Data in a Hadoop cluster is stored using the Hadoop Dis-
tributed File System (HDFS), a distributed file system that uses
data replication as the mechanism for achieving availability
and reliability. Files are partitioned into blocks, which are
replicated across the cluster using a specified replication factor
(the default is three) and stored on multiple nodes called
“DataNodes”. When fewer copies of data blocks are available
than required by the replication factor, HDFS creates a new
copy on a different node.

The current implementation of HDFS does not provide an
interface for manually moving data under user control.2 As
such, to transfer a replica from node A to node B, the Replica
Mover first copies its metadata and data files from A to B. It
then deletes the metadata file from node A and restarts it. The
restart is required to force Hadoop to detect that the replica is
no longer on node A.

The Replica Mover then restarts node B, causing HDFS
to recognize the new replica. Finally, the data file from node
A is deleted. This method of moving replicas requires that
we disable Hadoop’s own replica repair features, which we
achieve by increasing its repair interval, giving the Replica
Mover time to finish before Hadoop’s mechanisms kick in.

The Replica Mover is started periodically (every minute)
by MAO, and additionally using Zookeeper’s watch callback
mechanism [5] whenever the MAO learns about a system
change from the MC. For simplicity and to ensure consistency,
the Replica Mover always runs from a single elected leader.

To determine a replica movement plan, the Replica Mover
uses Hadoop’s fsck command to determine the location and
status of replicas. Based on that information, it computes
where replicas should be placed to achieve failure indepen-
dence. Next it determines how replicas should be moved from
co-located VMs and also where replicas for under-replicated
blocks should be created. Finally, it attempts to place replicas
so that each physical host ends up with a roughly equal
number of replicas, i.e., it balances the replicas across physical
rather than virtual hosts (Hadoop’s balancing mechanism only
considers virtual hosts). For every replica identified in a

1Note that while currently, we have implemented the Replica Mover for
Hadoop only, the mechanism is general and can be re-targeted to other
distributed file systems or data stores potentially used in edge clouds.

2The current release does support a “balancer” [13] that attempts to
distribute data evenly among DataNodes, but it does not have a way to
incorporate cloud tenancy information in its placement decisions. It may
be possible to leverage BlockPlacementPolicyRackFaultTolerant [3] (treating
physical hosts as racks) or a more advanced custom policy (as described
in [14] and [15]) to prevent co-tenancy but hosts with multiple VMs would
hold significantly more data than others, hurting failure resiliency.



movement plan the Replica Mover records the source and
destination of the replica, and flags whether the source should
be deleted after the move.

This plan is executed as follows: the Replica Mover decides
on an order of source DataNodes (rather than moves). After all
moves from a source are completed, the node is restarted so
that the HDFS learns about any deleted replicas. This ensures
that the node does not classify the blocks as over replicated.
All DataNodes that now have no more moves planned to them
(from any source) are restarted to make them report that the
replicas are available at their respective locations. The Replica
Mover then repeats this for the next source in the order.

One exception to this strategy must be made in the case
where restarting the DataNode would cause the last reported
copy of a data block to disappear from HDFS’s accounting. In
this case, the Replica Mover restarts a different DataNode with
another copy first. This ensures that the block replication does
not reach 0. This case may result in over-replication of other
blocks but we attempt to avoid his using the plan’s source
order.

If the Replica Mover is activated while it is in the process
of performing an earlier execution, e.g., when the MAO learns
about an additional change to the cloud before a plan is fully
executed, the Replica Mover cancels the current plan and
restarts the current source DataNode as well as all DataNodes
with unreported replicas. It then creates a new plan based on
the latest system state mapping and proceeds as described. As
long as mapping changes happen less frequently than the time
it takes the Replica Mover to carry out its work, the system will
eventually stabilize. In section III we evaluate the performance
of the Replica Mover and its timeline of operation.

Since Hadoop and Mandrake are operating independently of
each other and are not synchronized, race conditions between
Hadoop and Mandrake can occur. Two scenarios are possible:

1) If Hadoop writes to a replica on a DataNode when
the Replica Mover restarts it, the write will fail, and
Hadoop will simply create a replica on some other
DataNode. This results either in an over replication
of the data block, or the data block being placed on
a Hadoop-chosen location (potentially not where the
Replica Mover wants it to be).

2) If Hadoop writes to a block while some replica has
already been moved by the Replica Mover but not yet
reported to Hadoop (via restarts), Hadoop will classify
this replica as outdated (as it performed a later write to
one of them) and will delete them.

Both may result in sub-optimal placement or over/under
replication. The Replica Mover fixes both cases during its
subsequent run.

III. RESULTS

A. Experimental Setup

We test and evaluate Mandrake using a Eucalyptus [2] edge
cloud and Hadoop v3. For all software the Linux distribution
is CentOS 7. Each VM is allocated 2 CPU cores, 4 GB of

TABLE I
EXPERIMENT CATEGORIES

Category Replica Repair Spawn VM Use New VM
RM Replica Mover Yes Yes
R Hadoop Yes Yes
NR Hadoop Yes No
NR2 Hadoop No No

memory, and 100 GB of disk space. The cloud consists of 9
Intel Next Unit of Computing (NUC) machines connected via
a gigabit switch.

Our evaluation of Mandrake studies the effects of its use on
the Hadoop service while attempting to ensure that data repli-
cas are always hosted on separate physical nodes (to preserve
failure independence). We consider three Hadoop benchmarks
from the HiBench [11] benchmarking suite: Indexing (Nutch),
TeraSort, and Naive Bayes.

The Mandrake Coordinator (MC) attempts to maintain the
invariant that Hadoop will be allocated 8 VMs regardless
of physical node count. At the start of each experiment, it
assigns one VM per physical node (the 9th node in the cloud
is a control node). The Mandrake Application Orchestrator
(MAO) configures these VMs into a working, empty Hadoop
cluster. The Hadoop specific configuration settings we use
are available at https://github.com/MAYHEM-Lab/Mandrake-
App-Hadoop-Configs. In particular, we use Hadoop’s default
replication count of three replicas in all experiments.

The MAO installs a HiBench benchmark and any necessary
data in HDFS and executes the benchmark. We use the same
data for every experiment that uses the same benchmark. Once
the Map phase completes approximately 10% of execution
time, we simulate a failure by rebooting a physical host. We
chose this point in the execution because doing so (without
recovery) causes both work and data loss (i.e. all workers are
busy) in Hadoop. Since each host has sufficient resources to
host two VMs at a time, Mandrake has sufficient capacity to
maintain the invariant of 8 VMs through co-location.

Hadoop’s own internal repair mechanisms require a sig-
nificant amount of time (more than 10 minutes, by default)
to detect and reschedule work from a failed VM. To aid
experimentation, we configured this repair response interval
to be 1 minute instead of 10.

Importantly, we are not yet accounting for any “NameNode”
(Hadoop’s master process) failures since Hadoop has options
for its high availability (HA) [16]. Unfortunately, our use of
this option in our resource constrained setting destabilizes
Hadoop (e.g. causes it to crash, hang, etc.), when we deploy
it with the other Hadoop processes (without Mandrake). So,
our results do not include the use of this Hadoop option. We
hope to explore this option more in future work.

B. Experiment Categories

Table I shows the different types of experiments (in terms
of failure occurrences and Mandrake responses) to which we
subjected our system in this study. RM (Reconfigure + Replica
Mover) implements Mandrake’s full functionality (Hadoop’s



Fig. 1. Time line of phase duration during host fail over, with average latencies
(in blue) and error bars (in red) depicting the empirical 0.95 confidence
intervals.

internal replica repair system is disabled for this category).
In all other experimental categories, we disable the Replica
Mover and allow Hadoop to implement replica repair using
its own internal mechanisms. In these cases, however, Hadoop
may assign replicas to VMs that share physical nodes (Man-
drake will not), thus introducing the possibility for correlated
failures. As such, the R (Reconfigure) experiments implement
VM replacement without data movement latencies; R depicts
base cloud reconfiguration times.

For the NR (No Reconfigure) and NR2 (No Reconfigure
v2) categories, we do not configure a replacement VM into
Hadoop. With NR, we spawn a VM but do not use it;
with NR2, we do not spawn a VM. We compare RM to
R to gauge Replica Mover interference (vs Hadoop’s replica
repair). We compare R and RM to NR and NR2 to gauge the
performance impact of replacing a VM. We also compare NR
to NR2 to measure any interference caused by the MC’s repair
operations.

We remove outliers in our experimental results that are more
than three standard deviations away from the median. This
process did not remove more than one point (out of 50+ runs)
from any category. We did consider relative significance with
and without the outliers and found the results to be the same.
Our results include 50 runs from every category.

C. Mandrake Coordinator Time Line

Figure 1 shows average execution time in seconds for the
phases most relevant to the MC when we enable the Replica
Mover (i.e. perform an RM experiment) for a typical, single-
failure, repair operation. We compute the average phase dura-
tions using 50 runs of the Naive Bayes Hadoop benchmark.
We induce a failure approximately 50 seconds after startup.
The error bars show the empirical 0.95 confidence interval for
each average which exposes the variability of this real system.

On average, the MC detects and processes the failure
approximately 20 seconds after the failure is induced (marked
Process Failure in the figure). Next, the MC spawns an
instance about a minute after detection (Spawn Instance). At
this point, the MC informs the MAO that a new instance is
available. The MAO requires 30 seconds on average (marked
Process Instance) to deploy Hadoop and all other MAO
services in the newly spawned VM.

Note that the 0.95 empirical confidence intervals (shown as
red horizontal error bars in the figure) of the later phases are
quite large relative to the average. This is primarily due to the

TABLE II
TERASORT RUNTIME

Category Average Runtime Standard
(seconds) Deviation

RM 460 9.84
R 447 12.0
NR 444 9.21
NR2 446 8.87

TABLE III
TERASORT SIGNIFICANCE

Comparison Significance
P-Value T-Value Mean Perc. Diff.

RM v R 1.264e-07 5.716 2.788%
RM v NR 8.158e-13 8.236 3.507%
RM v NR2 5.340e-11 7.384 3.085%

NR v R 0.1407 -1.486 0.7191%
NR2 v R 0.5347 -0.6231 0.2968%

NR v NR2 0.3061 -1.029 0.42223%

variability of when each phase occurs, and how this variability
propagates such that it magnifies the “range” of the confidence
intervals with each succeeding phase.

This time line also provides some insight into the fre-
quency of failures Mandrake can tolerate without halting the
application to wait for stability. For this benchmark, the MC
“hands off” the mapping of the reconfigured VMs to the
MAO for “ingestion” by the Replica Mover (and, subsequently,
Hadoop) approximately 80 seconds after a failure. Again,
Hadoop does not pause its execution so this time period
represents the average time from a failure to a full repair of
the virtualized infrastructure. Thus Mandrake can completely
restore the infrastructure needed by Hadoop approximately
every 80 seconds.

Internally, the critical time period during which Mandrake
may experience additional failures is short. Indeed, the period
of stability required to synchronize the current Eucalyptus state
with MAO using Zookeeper is approximately 6.5 seconds. The
rest of the delay observed in the time line is the amalgamation
of latencies associated with the eventual consistency of the
Eucalyptus and Zookeeper platforms. Thus it is possible that
Mandrake can tolerate a much higher failure frequency than
one failure every 80 seconds. We have not, at this juncture,
tested the upper bound on failure rate and, instead, report only
the rate at which Mandrake can make a full restoration of the
virtualized infrastructure.

D. Mandrake’s Impact on Application Performance

Mandrake’s infrastructure repair times are remarkably simi-
lar across benchmarks. Thus, for brevity, rather than providing
a time line similar to that shown in Figure 1 for each
benchmark, we illustrate the impact of Mandrake on the “end-
to-end” benchmark performance in this subsection.

Table II shows the average and standard deviation across
the 50 runs of TeraSort. We use a 16GB data set (48GB
with replication) for this test. TeraSort is CPU bound in
the Map phase and I/O bound in the Reduce phase. The
average run times for TeraSort shown in Table II are quite
similar, and the standard deviations relatively low. Comparing
RM (full Mandrake reconfiguration with durability guarantees)



TABLE IV
NAIVE BAYES RUNTIME

Category Average Runtime Standard
(seconds) Deviation

RM 1571 43.98
R 1519 39.58
NR 1543 47.69
NR2 1540 38.47

to R (no durability guarantees) shows that the “cost” of
preserving replica failure independence for data durability is
approximately 13 seconds out of a 450 second execution time.

Indeed, the data in Table II warrants a test for statistical
significance for the differences of the means. In Table III, we
show Student t-test statistics and p-values between means for
each pair of experiment categories for TeraSort. Gray rows of
the table indicate a rejection of the NULL hypothesis that the
means are the same at the α = 0.05 significance level. For
illustration purposes, we also show the percentage difference
between the means.

From the table, it is clear that the effect of the Replica
Mover on the mean execution time is small, but significant.
However the effect of the MC (as shown by NR versus
R and NR2 versus R) is not detectable at the α = 0.05
significance level. Thus, it is the overhead of moving replicas
to ensure failure independence and not the overhead of virtual
infrastructure repair that accounts for the difference in the
mean benchmark times end-to-end.

The results for Naive Bayes are slightly different than for
TeraSort. Table IV shows a comparison of the average run
times and their standard deviations for the 50 runs of Naive
Bayes. For this benchmark RM, NR, and NR2 are similar,
but R is dramatically lower. In this case, allowing Hadoop
to reconfigure its replicas internally (the R experiment) im-
proves average execution time over the case where we use
the external Mandrake Replica Mover to move the replicas.
Unlike TeraSort, this workload consists of multiple “chained”
jobs, each requiring replica reconfiguration. Hadoop’s internal
replica management mechanisms are, thus, more efficient but
they do not ensure 3-replica failure independence in this
setting. That is, R is faster, but replicas are often co-located
on the same physical node. Thus the difference between R and
RM in this case shows the cost of maintaining data durability
guarantees when many short jobs are chained together in a
Hadoop workload. Again we performed a t-test statistic on
these results, which showed that the difference between all
means (except NR versus NR2) is statistically significant at
the α = 0.05 significance level (significance table omitted
due to space constraints).

The Nutch Indexing benchmark results are qualitatively be-
tween those for TeraSort and for Naive Bayes. We summarize
them due to space constraints. Like TeraSort, there is a small
but significant difference in mean execution time introduced
by Mandrake end-to-end (the overall execution time for the
Indexing benchmark is approximately 580 seconds). Like
Naive Bayes, Hadoop’s replica management is faster than the
Replica Mover (although only slightly in the case of Indexing)

TABLE V
REPLICA MOVER ACTIVITY

Rep. Mover Naive Bayes TeraSort
Activity Avg. Secs Avg. Percent Avg. Secs Avg. Percent
Prepare 17.0s 6.97% 14.2s 3.30%
Execute 88.0s 35.3% 272s 61.3%
Restart 77.4s 28.1% 86.1s 20.4%
Cancel 55.3s 22.1% 54.5s 12.6%
Clean 11.5s 4.14% 9.95s 2.20%

Avg. Total 248 Seconds 435 Seconds

but it again does not preserve failure independence.

E. Replica Mover Performance

Clearly, from the data shown in the previous subsection,
Mandrake’s ability to preserve failure independence imposes
a performance overhead with respect to Hadoop’s execution
performance. To understand these effects more completely,
we instrument the Replica Mover’s internal mechanisms and
describe their timings.

The Replica Mover interacts with Hadoop by interrogating
HDFS to determine the current replica status. We denote this
activity as Prepare in our analysis. The current implementation
of Hadoop requires the DataNode to restart in order to “sense”
a change in the population of replicas that are co-located
with it. The Replica Mover carefully coordinates these restart
events (as described in section II-C and denoted Restart) when
it moves replicas from one VM to another. The DataNode
on the source VM must be restarted to “forget” the replica
and the DataNode on the target VM must be restarted to
record the arrival of a replica. Moreover, at no time can
more than 3 active DataNodes record a replica as being local
(or the NameNode will mark a replica as “EXCESS” and
begin to ignore it, eventually deleting it). The Replica Mover
ensures this invariant. If a failure happens while the Replica
Mover is engaged in this coordination or if a new VM is
added to the resource pool for Hadoop, the Replica Mover
performs a global replica state synchronization by restarting
all DataNodes with unreported replicas (denoted as Cancel).
The data movement phase of the Replica Mover is denoted
Execute in our analysis and the time when the Replica Mover
deletes a replica that has been moved from a source to a target
from its source is denoted as Clean.

Table V shows average times for these phases after ac-
tivations of the Replica Mover due to a failure. For these
experiments, we allowed the Replica Mover to complete after
each failure and Mandrake to complete a repair (hence the
timings for Cancel).

Table V shows how factors change as the amount of data to
manage increases. The Naive Bayes experiments used 2 GB
of data (6 GB after replication), and the TeraSort experiments
used 16 GB (48 GB). As expected, the percentage of time
spent executing relative to other phases increased. The total
time of Restart increased as well with the larger data amount,
but the relative percentage decreased. This is because the low
amount of data for Naive Bayes meant not every DataNode
got involved in every Replica Mover run. This data scaling
suggests that improving the way the Replica Mover executes



data transfers to work in a more distributed manner would
be beneficial. Currently, only the Replica Mover leader (as
determined by Zookeeper) actually executes the transfers.
However, such a system would still incur the costs of Restart
and Cancel.

We also investigated whether network and/or disk I/O
contention could be the cause of the Replica Mover overhead
and found, instead, that the primary source of overhead was, in
fact, Restart and Cancel activities. Apparently, a combination
of setting Hadoop’s replica repair interval to much higher
than usual and aggressively restarting DataNodes causes the
slowdown. We hypothesize that part of the effect may be due
to a loss of locality, consistent with results reported in [17],
but we have yet to identify the root cause for this overhead.

IV. RELATED WORK

Various groups have investigated running cloud applications
on cheap and resource-limited devices [18] [19] [20]. The
authors of [18] provide guidance for running Hadoop in
resource constrained settings.

Similarly, fault tolerance and automated recovery has been
widely studied for cloud systems. Li et al. [21] describe a cloud
auto-healing framework consisting of a multi-part system in
which the user defines a policy to guide the health and
recovery services in handling failures. Javed et al. [22] explore
fault tolerance and automated recovery in a small edge cluster
via Containers, Kubernetes, and Apache Kafka. Su et al. [23]
provide automated recovery of failed components in a M2M
sensor network by invisibly replicating them. Similar to our
system, theirs aims for the “deploy once, run forever” model
of enabling applications to run without human intervention.

V. CONCLUSION

Mandrake is a system for automatically recovering from
failures in small edge clouds without human intervention.
When a failure occurs, the Mandrake Coordinator reallocates
resources to fit user-defined goals, allowing for continued
operation at degraded performance (but not degraded func-
tionality). The Mandrake Application Orchestrator, running on
the provisioned VMs, manages the application configuration
changes needed to continue operation in the face of system
configuration changes (in place of a human administrator).
With Hadoop as a case study, we have demonstrated that
our collection of services introduces little overhead compared
to “native” Hadoop execution. Furthermore, Mandrake can
resiliently place and balance HDFS data with only minor
slowdowns and without modifying Hadoop. We hope to ex-
plore the effects of this in future work, as well as expand
on the fault tolerance mechanisms and multi-application-aware
reconfiguration capabilities of the system.

This work is funded in part by NSF (CNS-1703560, OAC-
1541215, CCF-1539586, ACI-1541215), and ONR NEEC
(N00174-16-C-0020).
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L. Miori, M. Angriman, J. Rikkilä, X. Wang, K. Hamily, and S. Bu-
goloni, “Affordable and energy-efficient cloud computing clusters: The
bolzano raspberry pi cloud cluster experiment,” in 2013 IEEE 5th
International Conference on Cloud Computing Technology and Science,
vol. 2, Dec 2013, pp. 170–175.

[20] F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros, “The
glasgow raspberry pi cloud: A scale model for cloud computing infras-
tructures,” in 2013 IEEE 33rd International Conference on Distributed
Computing Systems Workshops, July 2013, pp. 108–112.

[21] X. Li, K. Li, X. Pang, and Y. Wang, “An orchestration based cloud auto-
healing service framework,” in 2017 IEEE International Conference on
Edge Computing (EDGE), June 2017, pp. 190–193.

[22] A. Javed, K. Heljanko, A. Buda, and K. Främling, “Cefiot: A fault-
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