
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Reducing Load Delay to Improve Performance of Internet-Computing Programs

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science and Engineering

by

Chandra Krintz

Committee in charge:

Professor Bradley Calder, Chairperson

Professor Andrew Chien

Professor Rene Cruz

Professor Urs H�olzle

Professor Joseph Pasquale

2001

Copyright

Chandra Krintz, 2001

All rights reserved.

The dissertation of Chandra Krintz is approved, and it is acceptable

in quality and form for publication on micro�lm:

Chair

University of California, San Diego

2001

iii

Dedication and Gratitude

I dedicate this work to two people that are immensely important in my life, Kristen

and Jedd. I would not be the person I am today nor could I have made it to this point without

them in my life. There is no one luckier than I to be able to receive such unconditional support,

love, and friendship from these two exceptional individuals. I am also very grateful to Bobbie

and Dick for their constant belief in me regardless of the wacky paths I considered taking.

These two people mean more to me than I am able put into words. It is the freedom they gave

to me and the strength they showed that enabled me to do all of the things I've done. On the

most di�cult days, just knowing they are part of my life makes everything easier. I am truly

lucky to have them as such amazing role models and friends.

Many thanks to my advisor, Brad Calder, for venturing down this research path,

supporting me to �nish remotely, and for showing me the road to success. I am also extremely

grateful to all of the people in my lab (Barbara, Beth, Eric, Glenn (my comrade in arms),

John, Lori, Suleyman, Tim, Wei, as well as all of the new additions) for their friendship. They

brought tremendous support, tireless listening, interesting conversation, and great fun to my

life. They helped me make it through and to even enjoy the process - on certain days... ;). I

wish them all tremendous happiness.

I am also extremely grateful to the University of Tennessee and its excellent system

support sta� (particularly Clay England and Brett Ellis) for their provision of patience as well

as the invaluable resources that enabled the completion of this dissertation.

Above all else, I thank my best friend and partner in life, Rich. Rich, I thank you

for your guidance and support, your patience and your love. You bring me such joy and I am

eternally grateful to you for sharing your life and wonderful family with me. I look forward to

a long life with you full of many more amazing moments.

iv

Two roads diverged in a yellow wood

And sorry I could not travel both

And be one traveler, long as I stood

And looked down one as far as I could

To where it bent in the undergrowth,

Then took the other as just as fair

And having perhaps the better claim;

Because it was grassy and wanted wear,

Though as for that, the passing there

Had worn them really about the same.

And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the �rst for another day!

Yet, knowing how way leads onto way

I doubted if I should ever come back.

I shall be telling this with a sigh,

Somewhere ages and ages hence:

Two roads diverged in a wood, and I -

I took the one less traveled by,

And that has made all the di�erence.

- Robert Frost

v

TABLE OF CONTENTS

Signature Page . iii

Dedication Page . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xiii

Acknowledgments . xiv

Vita, Publications, and Fields of Study . xv

Abstract . xvii

I Problem Statement . 1

II Background . 7

A. Implementation of the Java Language Speci�cation 8

1. Access Rights . 8

2. Class File Format . 9

B. The Java Virtual Machine (JVM) . 10

C. Applets v/s Applications . 12

D. The Java Execution Model . 12

III Related Work . 17

A. Transfer Delay Reduction . 17

1. Compression . 17

2. Startup Delay . 19

B. Compilation Delay Reduction . 20

1. Continuous Compilation . 20

2. Adaptive Compilation . 21

C. Other Related Work . 24

IV Experimental Methodology . 27

A. Benchmarks . 27

B. Transfer Delay Optimization Methodology . 30

1. Compression . 31

2. Simulation Model . 33

3. Veri�cation . 36

4. Transfer Delay Optimization Metrics . 38

C. Compilation Delay Optimization Methodology 40

1. Compilation Environments . 40

2. Compilation Delay Optimization Metrics . 43

V General Solutions for Reducing Transfer Delay . 45

vi

VI Transfer Delay Avoidance and Overlap: Non-strict Execution 47

A. Design and Implementation . 48

1. Transfer Schedules . 50

2. Program Restructuring . 51

3. Implications on JVM Veri�cation . 57

B. Results: Non-strict Execution . 58

1. Trusted Transfer . 59

2. Veri�ed Transfer . 75

C. Summary . 76

VII Transfer Delay Avoidance and Overlap: Class File Prefetching And Splitting . . . 81

A. Design And Implementation . 82

1. Class File Prefetching . 82

2. Class File Splitting . 89

B. Results: Class File Prefetching And Splitting . 93

1. Trusted Transfer . 94

2. Veri�ed Transfer . 100

C. Summary . 100

VIIITransfer Delay Avoidance: Dynamic Selection of Compression Formats and Selective

Compression . 113

A. Design and Implementation . 114

1. Dynamic Compression Format Selection . 114

2. Selective Compression . 117

B. Results: DCFS and Selective Compression . 118

1. Dynamic Compression Format Selection . 118

2. Selective Compression . 127

C. Discussion . 139

1. DCFS for Variable Bandwidth Connections 140

2. Prediction of Network Characteristics . 140

D. DCFS Extensions . 143

E. Summary . 144

IX General Overview on Reducing Compilation Delay 147

X Compilation Delay Avoidance and Overlap: Background Compilation 150

A. Design And Implementation . 151

1. Lazy Compilation . 152

2. The E�ect of Lazy Compilation . 153

3. Background Compilation . 159

B. Results: Lazy and Background Compilation . 162

C. Summary . 166

XI Compilation Delay Avoidance and Overlap: Annotation-guided Compilation 168

A. Design and Implementation . 169

1. Framework . 170

2. Annotation Optimizations . 173

3. Security of Annotations . 178

B. Results: Annotation-guided Compilation . 179

1. The E�ect on Startup Time . 181

vii

2. Local v/s Remote Execution . 186

3. Annotation Size . 188

C. Summary . 189

XII Conclusions . 190

XIIIFuture Directions . 198

Bibliography . 200

viii

LIST OF FIGURES

I.1 Load delay for an average mobile Java program. 3

I.2 The impact of transfer delay on startup time for an average benchmark. . . . 5

I.3 The impact of compilation delay on startup time for an average benchmark. 6

II.1 Veri�ed class �le transfer example 1. 15

II.2 Veri�ed class �le transfer example 2. 15

III.1 General depiction of an adaptive compilation environment. 22

IV.1 General depiction of our result generation model. 33

IV.2 Example of transfer delay and overlap simulation 36

VI.1 Example Java Application . 48

VI.2 Strict v/s Non-Strict Execution . 49

VI.3 Example application code . 52

VI.4 An example of a �rst-use call graph . 52

VI.5 Restructured class �les . 53

VI.6 NSE transfer schedule for method-level execution. 54

VI.7 NSE transfer schedule for MLE and intra-class reordering. 54

VI.8 NSE transfer schedule for MLE and global method reordering. 55

VI.9 NSE transfer schedule for MLE, MR, and global data reordering. 56

VI.10 Resulting non-strict transfer delay for benchmarks Bit and Compress 60

VI.11 Resulting non-strict transfer delay for benchmarks Jack and JavaCup 61

VI.12 Resulting non-strict transfer delay for benchmarks Jess and Soot 62

VI.13 SCG transfer schedule construction for benchmarks Bit and Compress. . . . 65

VI.14 SCG transfer schedule construction for benchmarks Jack and JavaCup. . . . 66

VI.15 SCG transfer schedule construction for the Jess benchmark. 67

VI.16 Performance degradation for the Soot benchmark using static estimation. . . 68

VI.17 The e�ect of NSE on program startup (Bit & Compress) and modem link. . 69

VI.18 The e�ect of NSE on program startup (Jack & JavaCup) and modem link. . 70

ix

VI.19 The e�ect of NSE on program startup (Jess & Soot) and modem link. 71

VI.20 The e�ect of NSE on program startup (Bit & Compress) using a T1 link. . . 72

VI.21 The e�ect of NSE on program startup (Jack & JavaCup) using a T1 link. . . 73

VI.22 The e�ect of NSE on program startup (Jess & Soot) using a T1 link. 74

VI.23 Di�erence in transfer delay for trusted and veri�ed execution. 75

VI.24 Resulting veri�ed transfer delay for the Bit benchmark. 76

VI.25 Resulting veri�ed transfer delay for benchmarks Jack and JavaCup. 77

VI.26 Resulting veri�ed transfer delay for benchmarks Jess and Soot. 78

VI.27 Average transfer delay (in seconds) using non-strict execution. 79

VII.1 The potential of class �le prefetching. 82

VII.2 First-use execution order of class �les in a sample application. 85

VII.3 Algorithm for �nding the basic block to place the prefetch. 87

VII.4 Prefetch insertion example. 88

VII.5 Class �le splitting example. 90

VII.6 Code splitting example. 92

VII.7 Percentage of execution time overlapped with transfer. 94

VII.8 Percent reduction in transfer size. 96

VII.9 Transfer delay for Bit & Compress using prefetching and splitting. 97

VII.10 Transfer delay for Jack & JavaCup using prefetching and splitting. 98

VII.11 Transfer delay for Jess & Soot using prefetching and splitting. 99

VII.12 Program startup (Bit and Compress) using a modem link. 101

VII.13 Program startup (Jack and JavaCup) using a modem link. 102

VII.14 Program startup (Jess and Soot) using a modem link. 103

VII.15 Program startup (Bit and Compress) using a T1 link. 104

VII.16 Program startup (Jack and JavaCup) using a T1 link. 105

VII.17 Program startup (Jess and Soot) using a T1 link. 106

VII.18 Di�erence in transfer delay for trusted and veri�ed execution. 107

x

VII.19 Veri�ed transfer delay (Bit and Compress) using prefetching and splitting. . 108

VII.20 Veri�ed transfer delay (Jack and JavaCup) using prefetching and splitting. . 109

VII.21 Veri�ed transfer delay (Jess and Soot) using prefetching and splitting. 110

VII.22 Average transfer delay using class �le prefetching and splitting. 111

VIII.1 The Dynamic Compression Format Selection (DCFS) Model. 117

VIII.2 Pct. reduction in total delay due to DCFS for Antlr and Bit. 120

VIII.3 Pct. reduction in total delay due to DCFS for Jasmine and Javac. 121

VIII.4 Pct. reduction in total delay due to DCFS for Jess and Jlex. 122

VIII.5 Total delay in (log) seconds using DCFS for Antlr and Bit. 123

VIII.6 Total delay in (log) seconds using DCFS for Jasmine and Javac. 124

VIII.7 Total delay in (log) seconds using DCFS for Jess and Jlex. 125

VIII.8 Average reduction in transfer delay enabled by DCFS. 126

VIII.9 Pct. reduction in total delay due to selective compression (Antlr). 128

VIII.10 Pct. reduction in total delay due to selective compression (Javac). 129

VIII.11 Pct. reduction in total delay due to selective compression (Jlex). 130

VIII.12 Pct. reduction in total delay due to selective compression (Jasmine). 131

VIII.13 Pct. reduction in total delay due to selective compression (Bit). 132

VIII.14 Pct. reduction in total delay due to selective compression (Jess) 133

VIII.15 Pct. reduction in total delay (across inputs) for the Bit benchmark. 135

VIII.16 Pct. reduction in total delay (across inputs) for the Jess benchmark. 135

VIII.17 Summary of results using PACK compression as base case. 136

VIII.18 Summary of results using JAR compression as base case. 137

VIII.19 Summary of results using TGZ compression as base case. 138

VIII.20 Raw data (left) and cumulative distribution functions (CDF) (right). 141

X.1 Percent reduction in methods compiled. 154

X.2 Reduction in compilation time due to lazy compilation. 155

X.3 Overall impact of lazy compilation application performance. 160

xi

X.4 Example scenarios of background compilation. 164

X.5 Summary of total time (in seconds) for the Train input. 165

X.6 Summary of total time (in seconds) for the Ref input. 165

XI.1 ORP O3 (Optimizing) Compilation Time Breakdown. 171

XI.2 The histogram used to �nd the \Hot" methods important for optimization. . 177

XI.3 Seconds of compilation delay reduced. 180

XI.4 Total compilation time for O3, O1, & annotated compilation. 181

XI.5 Speedup over optimized (ORP O3) total time due to annotated execution. . 182

XI.6 The e�ect of annotated execution on startup time (for Jack and JavaCup). . 183

XI.7 The e�ect of annotated execution on startup time (for Jess and Jsrc). 184

XI.8 The e�ect of annotated execution on startup time (for Mpeg and Soot). . . . 185

XI.9 Total compilation overhead for O3, O1, and annotated compilation. 186

XI.10 Speedup over optimized (ORP O3) total time (Remote classes only). 187

XII.1 Summary of the e�ect of our optimizations on load delay. 192

XII.2 Summary of the e�ect of our transfer delay optimizations on startup time. . 193

XII.3 Summary of the e�ect of our compilation optimization on startup time. . . . 194

xii

LIST OF TABLES

IV.1 Description of Benchmarks Used. 28

IV.2 Static statistics on the benchmarks used in this dissertation. 28

IV.3 Dynamic statistics on the benchmarks used in this dissertation. 29

IV.4 Compression characteristics of the benchmarks using PACK, JAR, and TGZ. 32

IV.5 Description of the networks used in this study. 34

IV.6 Jalape~no compilation statistics. 43

IV.7 Compilation characteristics using the Open Runtime Platform. 44

VIII.1 Total delay in seconds for the network bandwidths studied. 116

VIII.2 Pct. di�erence in sizes of complete and selective compression. 134

VIII.3 Compression-on-demand with DCFS. 145

X.1 Raw execution time data. 156

X.2 Dynamic execution count of dynamically linked sites. 159

XI.1 The added size in kilobytes due to annotations. 188

xiii

Acknowledgments

The text of Chapter VI is in part a reprint of the material as it appears in the proceed-

ings of the 8th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS). The dissertation author was the primary researcher and

author and the co-authors listed on this publication ([49]) directed and supervised the research

which forms the basis for Chapter VI.

The text of Chapter VII is in part a reprint of the material as it appears in the

proceedings of the 14th Annual ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA). The dissertation author was the primary re-

searcher and author and the co-authors listed on this publication ([48]) directed and supervised

the research which forms the basis for Chapter VII.

The text of Chapter VIII is in part a reprint of the material that has been submit-

ted to the 10th IEEE International Symposium on High-Performance Distributed Computing

(HPDC). The dissertation author was the primary researcher and author and the co-authors

listed on this publication ([47]) directed and supervised the research which forms the basis for

Chapter VIII.

The text of Chapter X is in part a reprint of the material as it appears in the Journal

of Software: Practice and Experience, Software: Practice and Experience, Volume 31, Issue 8,

pp. 717-738. The dissertation author was the primary researcher and author and the co-authors

listed on this publication ([50]) directed and supervised the research which forms the basis for

Chapter X.

The text of Chapter XI is in part a reprint of the material as it is to appear in the

proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). The dissertation author was the primary researcher and author and

the co-authors listed on this publication ([46]) directed and supervised the research which forms

the basis for Chapter XI.

xiv

VITA

May 23, 1970 Born

Monticello, IN

1988 High School Diploma, St. Joseph's Academy

Brownsville, TX

1996 Internship, NASA Goddard Space Flight Center

Greenbelt, MD

1996 B.S. California State University

Northridge, CA

1996 Platinum Solutions, Inc.

Inglewood, CA

1997-1998 Teaching Assistant, Computer Science and Engineering

Department, University of California

San Diego, CA

1998 Internship, Microsoft Research

Redmond, WA

1998 M.S., University of California

San Diego, CA

1999 Internship, IBM T. J. Watson Research Center

Hawthorne, NY

2001 Doctor of Philosophy, University of California

San Diego, CA

PUBLICATIONS

\Using Annotation to Reduce Dynamic Optimization Time." Authors: C. Krintz and B. Calder.

To appear in the Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), June 2001.

\Using JavaNws to Compare C and Java TCP-Socket Performance." Authors: C. Krintz and R.

Wolski. To appear in the Journal of Concurrency and Computation: Practice and Experience,

2001.

\NwsAlarm: A Tool for Accurately Detecting Resource Performance Degradation." Authors:

C. Krintz and R. Wolski. To appear in the Proceedings of the IEEE/ACM Symposium on

Cluster Computing and the Grid (CCGRID2001), May 2001.

\Reducing the Overhead of Dynamic Compilation." Authors: C. Krintz, D. Grove, V. Sarkar,

and B. Calder. In the Journal of Software: Practice and Experience, Software: Practice and

Experience, Volume 31, Issue 8, pp. 717-738, Dec. 2000.

\JavaNws: The Network Weather Service for the Desktop." Authors: C. Krintz and R. Wolski.

In the Proceedings of JavaGrande, Oct., 2000.

xv

\Reducing Transfer Delay Using Java Class File Splitting and Prefetching." Authors: C. Krintz,

B. Calder, and U. H�olze. In the Proceedings of the 14th Annual ACM SIGPLAN Conference on

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), Nov. 1999.

\Running EveryWare on the Computational Grid." Authors: R. Wolski, J. Brevik, C. Krintz,

G. Obertelli, N. Spring, and A. Su. In the Proceedings of Supercomputing, Oct., 1999.

\Overlapping Execution with Transfer Using Non-Strict Execution for Mobile Programs." Au-

thors: C. Krintz, B. Calder, H. B. Lee, and B. Zorn. In the Proceedings of the 8th International

Conference on Architectural Support for Programming Languages and Operating Systems (AS-

PLOS), Oct., 1998.

\Cache-Conscious Data Placement." Authors: B. Calder, C. Krintz, S. John, and T. Austin. In

the Proceedings of the 8th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), Oct., 1998.

\AGAVE: A Visualization Tool for Parallel Programming." Authors: C. Krintz and S. Fitzger-

ald. In the Proceedings of The International Association of Science and Technology for Devel-

opment (IASTED), Oct., 1995.

Field Of Study: Computer Science

xvi

ABSTRACT OF THE DISSERTATION

Reducing Load Delay to Improve Performance of Internet-Computing Programs

by

Chandra Krintz

Doctor of Philosophy in Computer Science and Engineering

University of California, San Diego, 2001

Professor Bradley Calder, Chair

Internet computing has been enabled by a mobile program execution model in which architecture-

independent programs transfer to where they will be executed. The Java language model is

designed to implement mobile execution by transferring bytecodes to a virtual machine which

translates them into native machine instructions and then executes them on the target site.

Implementing Java's mobile execution model e�ciently has proved challenging for two

reasons. First, the time required to transfer program code from the place where it is stored

to the Java Virtual Machine (JVM) that will execute it is perceived by the program's user

as execution delay. Current levels of deliverable Internet performance can cause this delay to

be substantial. Second, once the code has arrived it must either be interpreted or compiled

\just-in-time" for its execution. Just-In-Time (JIT) compilation o�ers improved execution

speed over interpretation by exploiting the opportunity for compile-time optimizations, but the

compilation time is also perceived by the program's user as execution delay.

In this thesis, we de�ne load delay as the uni�cation of these two sources of overhead:

transfer delay and compilation delay. We detail the causes of, describe the existing technology

that contributes to, and show the degree to which load delay degrades performance of Internet-

computing applications. We show that solutions to the problem of load delay in these mobile

programs can be attacked in one of two ways regardless of the source: through avoidance and

overlap. Avoidance is achieved by eliminating all or part of the cause of load delay and overlap

by performing useful work concurrently with the delay. Both have the potential to reduce the

e�ect of load delay and to improve performance of mobile programs. We present numerous

solutions to load delay that implement either avoidance, overlap, or both. Our results show

that both sources of load delay can be reduced substantially given currently available remote

execution technology. In addition, our results suggest modi�cations that can be made to existing

technology to further improve performance of Internet-computing applications.

xvii

Chapter I

Problem Statement

The Internet has been used traditionally for the provision of access. Its world-wide

system of networks facilitates access to a diverse abundance of information and resources. An

alternate use of the Internet that has become popular recently, is as a computational entity.

The fundamental di�culty associated with such use is how to e�ciently and e�ectively employ

the processing power that is available and connected via the Internet. One methodology that

has been developed to solve this problem is remote execution in which programs transfer over

the network from the machine at which the code and data is stored to a target site for execution.

We refer to remotely executed programs as mobile programs. Commonly, these pro-

grams are transferred in an architecture-independent representation that enables portable ex-

ecution at heterogeneous target sites. However, such formats must be converted to a native

representation to enable execution at the destination. This translation is commonly performed

by a compiler; a piece of software that not only converts programs to the native format but

performs optimization on the code to enable e�cient execution.

Performance of mobile programs is increasingly limited since it includes the time for

transfer and compilation, as well as for execution; since transfer and compilation both occur

while the program runs. We refer to these sources of overhead collectively as Load Delay. The

widening gap between network and processor performance, highly variant network conditions,

and the optimization complexity required for e�cient execution speeds, make it exceedingly

di�cult to maintain acceptable mobile program performance. We propose to reduce the e�ect

of load delay and to improve performance of remotely executed programs.

To summarize, we de�ne the following terms that we use throughout this dissertation:

1

2

� Remote Execution: A methodology for the use of the Internet as a computational entity

in which program code and data transfer from the machine at which it is stored to a

destination (target) machine and execute upon arrival.

� Native Code: An architecture-dependent program format.

� Mobile Program: A program that is transferred in an architecture-independent format for

remote execution.

� Transfer Delay : The time for network transmission of code and data from the source to

the destination during remote execution.

� Compilation Delay : The time for translation (and possibly optimization) of a mobile

program to native code by the destination machine as required for remote execution.

� Load Delay : The uni�cation of two sources of remote execution overhead: transfer delay

and compilation delay.

We use the Java Programming Language [28] as the experimental foundation of this

dissertation work due to its remote execution functionality and its pervasive use in Internet

computing. However, our techniques are general and can be used for other mobile program

representations, e.g., MSIL, a.k.a. DotNet [40]. Performance of mobile Java programs is neg-

atively a�ected by both sources of load delay. Transfer delay is experienced by the executing

program since program �les are loaded over the network as needed (on-demand). The execution

stalls while the request completes and the non-local �le is transferred. Compilation delay is im-

posed each time code within a �le is invoked for the �rst time; execution is further interrupted

waiting for compilation.

We exemplify the degree to which load delay impacts the performance of an average

Java program in Figure I.1. The graph depicts load delay (both transfer and compilation

overhead) as a function of network bandwidth. Load delay measurements consist of the time

for transmission of the (non-library) code and data, the time to request program �les required

for execution, and the time for compilation of all executed methods. The average Java program

used for this �gure accesses 70 non-local classes requiring 178 kilobytes to be transferred, and

compiles 238 methods (totaling 3 seconds) using the Open Runtime Platform (ORP) [15] as the

Java execution environment. For a slow link, like that of a modem, load delay imposes almost

56 seconds. For a fast link, e.g., T1 (1Mb/s), load delay imposes over 10 seconds for an average

benchmark. We have measured cross-country Internet performance and our results indicate

that the bandwidth available to a common Java application falls between the 0.03Mb/s modem

range and a T1 link (1Mb/s). In addition, Internet performance is highly variable and a single

connection can experience this range of performance over a short duration.

3

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bandwidth

Lo
ad

D
el

ay
in

S
ec

on
ds

Modem Link

T1 Link

Load Delay as a Function of Network Bandwidth
Average Benchmark

70 Classes Requested
178 KB Transferred

238 Methods Compiled

Figure I.1: Load delay for an average mobile Java program.

The �gure shows load delay in seconds (x-axis) as a function of network bandwidth (y-axis).

Compilation delay accounts for 3 seconds of total load delay in this graph. The remainder is

due to transfer delay (the time for request and transmission of the program).

Figures I.2 and I.3 depict the e�ect of load delay on program startup time. The graphs

show the average cumulative delay (y-axis) that is experienced during program execution. The

x-axis is the percent of execution time completed by the average program (no transfer or

compilation delay is included in this value). The average execution time for the programs used

for this �gure is 49 seconds. The two graphs in Figure I.2 are for transfer delay: the top is

for a modem link (0.03Mb/s bandwidth) and the bottom is for a T1 link (1Mb/s bandwidth).

This data assumes that a request for each class costs 100ms, a common (based on empirical

data) cross-country round-trip time value. The graph in Figure I.3 is the average cumulative

delay due to compilation, the second source of load delay. Each graph is read by taking an

(x,y) position on the function; y seconds of delay (transfer or compilation) occurs during the

�rst x% of program execution.

The function for the modem link (top graph in Figure I.2) indicates that 39 of the 56

seconds of transfer delay occur in the �rst 10% (5 seconds) of execution time and 90% of all

transfer delay (50 seconds) occurs in the �rst 40% (44 seconds) of program execution. Similarly

for the T1 link (bottom graph in Figure I.2), 5 of the 8 seconds of transfer delay is incurred

during the �rst 10% of program execution and 90% (7 seconds) of the transfer delay occurs

4

in the �rst 30% of program execution (14 seconds). Compilation overhead is also incurred at

program startup as shown by the graph in Figure I.3. The function indicates that 1.8 seconds

of the 2.6 seconds (69%) of compilation delay occur during the �rst 10% of execution and

90% of it occurs in the �rst 30% of program execution. Almost 70% of all delay (transfer or

compilation) occurs in the �rst 10% of program execution. By reducing the e�ect of load delay

(transfer and compilation overhead) we improve the progress made at program startup as well

as throughout overall execution.

Load delay is incurred at program startup and intermittently (distributed through-

out execution) and substantially degrades mobile program performance regardless of where it

occurs. Much work in industry as well as in academic research has focussed solely on the reduc-

tion of startup delay [53, 74, 78]. In addition, other work investigated the e�ect of time-sharing

systems on productivity (e.g., see [21]), and concluded, among other things, that intermittent

interruption reduced a user's perception of performance as well as their productivity. To im-

prove mobile program performance, the e�ect of load delay must be reduced. With this work,

we attack the problem of load delay in Internet-computing programs through the design and

implementation of compiler and runtime techniques.

In this dissertation, we describe the execution model we assume for Internet comput-

ing, identify and detail the sources of load delay and articulate the degree to which load delay

degrades program performance. Solutions to performance degradation resulting from load de-

lay enable overlap of delay with useful work, avoidance of delay by directly limiting the cause

of the delay, or both. The goal of our work is to develop compiler and runtime optimizations

that both mask and avoid load delay imposed on Internet-computing applications. We present

solutions �rst for transfer and then compilation delay and summarize the performance bene�ts

in terms of load delay: The uni�cation of these two sources of overhead.

5

0

10

20

30

40

50

60

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent of Execution Time

A
ve

ra
ge

C
um

ul
at

iv
e

T
ra

ns
fe

r
D

el
ay

(S
ec

s)

Transfer Delay - Modem Link (0.03Mb/s)

0

1

2

3

4

5

6

7

8

9

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent of Execution Time

A
ve

ra
ge

C
um

ul
at

iv
e

T
ra

ns
fe

r
D

el
ay

(S
ec

s)

Transfer Delay - T1 Link (1Mb/s)

Figure I.2: The impact of transfer delay on startup time for an average benchmark.

The graphs show the average cumulative delay (y-axis) that is experienced during program

execution. The x-axis is the percent of execution time completed by the average program

The average execution time for the programs used for this �gure is 49 seconds. The top two

graphs are for transfer delay: The top graph is for a modem link (0.03Mb/s bandwidth) and

the bottom is for a T1 link (1Mb/s bandwidth). Transfer delay consists of time for request

and transmission of class �les for remote execution of an average Java program. Each graph is

read by taking an (x,y) position on the function; y seconds of transfer delay occurs during the

�rst x% of program execution. Almost 70% of all delay occurs during the �rst 10% of program

execution.

6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Total Execution Time

A
ve

ra
ge

C
um

ul
at

iv
e

C
om

pi
la

tio
n

D
el

ay
(S

ec
s)

Compliation Delay

Figure I.3: The impact of compilation delay on startup time for an average benchmark.

The graph shows the average cumulative compilation delay (y-axis) that is experienced dur-

ing program execution. The x-axis is the percent of execution time completed by the average

program The average execution time for the programs used for this �gure is 49 seconds. com-

pilation delay is the time spent compiling and optimizing the programs. Each graph is read

by taking an (x,y) position on the function; y seconds of compilation delay occurs during the

�rst x% of program execution. Almost 70% of all delay occurs during the �rst 10% of program

execution.

Chapter II

Background

The goal of this dissertation is to improve the performance of applications that are

remotely executed over the Internet. We facilitate experimentation in this study with the Java

programming language [28] and execution environment [59]. Java programs implement remote

execution with the Java applet execution model. Other languages also use remote execution for

Internet computing but we restrict our studies to Java alone due to the duration of its use, its

popularity, design, and current infrastructure availability. However, these other languages and

their runtime implementations are similar to the decisions made for Java and hence, impose

load delay in similar ways.

In this chapter, we detail the functionality and implementation of the Java language

that is intended to support mobile (remote) execution. Speci�cally, we describe the existing

state of Java technology in terms of its object-oriented framework, execution engine, and general

execution model. Each of these language and runtime features impact load delay and the

performance of Java applications for Internet computing.

The object-oriented abstractions that are implemented by the Java language facilitate

�le-level execution and transfer granularity. This allows remote �les to be loaded (and thus

transferred) independently as required by the executing program. Therefore, only remote �les

that are actually used are transferred. This reduces transfer delay since unused class �les are

not transferred. In this dissertation, we address the transfer delay that remains in this transfer

and execution model and present optimizations that further reduce the e�ect of it.

A Java program is stored in an architectural-independent format called bytecode for

portability purposes. A Java Virtual Machine (JVM) executes a Java program by converting

7

8

bytecode to the machine instructions of the underlying hardware. This conversion can be

performed by an interpreter, an instruction-by-instruction translator, or by a compiler. We

focus on the latter since it enables substantially faster execution times and exposes optimization

opportunities unavailable to interpretation. However, compilation imposes load delay. In this

chapter, we describe how compilation is performed on Java bytecode and how its use contributes

to overall load delay.

In summary, we use this chapter to explain the object-oriented features of the Java

programming language that e�ect load delay and impose constraints on modi�cation of Java

programs and execution environments. We then describe the execution engine and Internet-

computing model for mobile Java application execution and detail the inherent performance

limitations in terms of load delay.

II.A Implementation of the Java Language Speci�cation

Java is an object-oriented [62, 75] language. Object-orientation is a programming

methodology in which data and code for its manipulation are encapsulated together. A Java

program consists of multiple �les that de�ne such encapsulations, called class �les. A runtime

instance of a class �le is called an object. Data are referred to as �elds, and code as methods;

collectively they are called class members. Such modularity is ideal for Internet-computing

programs since class �les can be used as the unit of transfer and execution. That is, since the

code and data contained in a class �le is related, a class can be transferred and code within it

can be executed independent of other class �les.

II.A.1 Access Rights

An object-oriented language, among other things, provides functionality for the restric-

tion of access to data members (data hiding). This enables security for the remotely-executed

program at the destination; other class �les with possibly destructive intent are unable to

access class �les, modify �elds, or invoke methods for which access is restricted. We detail

the functionality of Java access modi�ers here since some of the techniques we present in this

dissertation modify Java class �les. In the course of describing such optimizations, we also ad-

dress the security implications of our techniques in terms of the existing Java implementation

described here.

In Java, access restriction is enabled through the inclusion of key-words [28]. in class

9

or member de�nition Members that are visible by all object instances of a class are called static

or class members; those visible only to a single object are non-static members. Objects are

allocated and non-static members are created and initialized within the object through the use

of special methods called constructors de�ned in the class. Due to this restriction in visibility,

or scope, static members are only able to access other static members; non-static members can

access static members as well as other non-static members that are part of the same object

instance. For further visibility control, the public, private, and protected key-words can be used.

The public speci�er indicates that any other class or object can access the member (according

to the class and instance access rules). The private speci�er restricts member access to only the

other members of the class itself or an object instance of the class. Protected indicates that only

the class itself (and its object instances) and any subclasses of class (and their object instances)

can access the member. Subclasses are a standard feature in object oriented programming and

we refer the reader to related texts in [72, 75, 22] for additional information on this, as well as,

further description of these and other object oriented constructions.

Java implements a mechanism called packages to enable restriction of access to a

group of �les. The keyword package followed by the name of the package must be included

in each �le contained in the package. If there is no package indicated, the �le is included in

the default, unnamed package. Any members for which there is no access speci�er explicitly

set is considered to have package access. Package access restricts access of the member to be

performed by only members from classes (and their instances) that are de�ned in the same

package. In addition, protected members are accessible by class and object members in the

same package. Note that this implies that class and instance members in the default, unnamed

package can access all non-public members in any other class in the default, unnamed package.

II.A.2 Class File Format

A Java program is composed of separate �les, each containing a class de�nition. Class

�les in Java source code are compiled into an architecture-independent representation called

bytecode. Bytecode enables the \write-once-run-anywhere" methodology [72]. A Java program

can be written by a programmer and it (in theory) can be executed on any architecture. Such a

representation is ideal for program execution on the heterogeneous resources connected by the

Internet. However, such abstraction and portability comes at a price. Since the representation

contains verbose symbolic information to facilitate conversion to and execution on di�erent

hardware, the size of an application is much larger than that of a machine-speci�c binary.

10

Increased transfer size imposes transfer delay experienced by a mobile application as substantial

startup delay and intermittent interruption. Transfer delay is one source of load delay that we

attack with the work in this dissertation.

The bytecode format is a stream of 8-bit bytes that encode the information required

for the secure 1 execution of a Java program. Method source code instructions take a pseudo-

assembly code form. We refer to non-method bytecode as Global Data throughout this thesis.

The global data and method code within the class �le are organized into multiple data struc-

tures. The data structures for the global data include a constant pool which is a table of

variable-length structures that represent string and other constants as well as names and types

of all classes and members referred to by the class. The size of the constant pool can be quite

substantial since all of the symbolic information is explicitly represented in Unicode [28], a char-

acter encoding that subsumes the ASCII standard to enable the inclusion of foreign language

characters.

In addition to the constant pool, other global data structures include magic and version

numbers, super (inheritance [62]) class information, class access rights, and information (access,

names, types, size) about all �elds and methods the class de�nes. The class �le also contains

attributes which are extra information about the class �les or its members. For example,

method code is represented by an attribute of a method member. Attributes are named and

are commonly used for the inclusion of debugging information. Any attribute in a class �le

that is unde�ned is ignored by the runtime system [28]. In part of the research presented in

this dissertation we exploit this speci�cation feature so that we are able to include user-de�ned

attributes within the class �les. Speci�cally, we use this attribute structure to carry annotations

that guide the compilation environment and reduce load delay. Since attributes are ignored if

unrecognized by the Java Virtual Machine (JVM), our class �le modi�cations remain backward

compatible with existing JVM technology (systems that are not annotation-aware).

II.B The Java Virtual Machine (JVM)

The single requirement for execution of a Java class �le in bytecode format is that

there be a Java execution environment, or abstract computing machine, called a Java Virtual

Machine (JVM) on the architecture upon which a Java program is to be executed. The JVM

performs many functions including the conversion of bytecode to native code and the initiation

1More information about secure Java bytecode execution can be found in [59] and in our later discussions

about bytecode veri�cation.

11

of execution on the underlying hardware. Other functions include memory allocation and

deallocation (garbage collection) and Java to native thread mapping and scheduling [59].

To convert bytecode to native machine code, the JVM originally only used interpreta-

tion in which each bytecode instruction is individually translated to equivalent native instruc-

tion(s) and executed. Interpretation is very simple to implement since it is a direct instruction-

by-instruction translation. In addition, execution, as experienced by the user, makes immediate

progress since the translation of a single bytecode instruction is performed very quickly. How-

ever, interpreted program execution time is notoriously slow. Since translated code is not stored

in memory once executed, it is not reused; as such, instructions are re-translated when executed

repeatedly. In addition, and more importantly, the native code generated by interpretation is

very poor since the interpreter only considers a single instruction at a time. As such, there is

redundancy and ine�ciency in the resulting code.

To overcome the performance limitations interpretation imposes, the next generation

of Java execution systems [79, 3, 15, 34] employ just-in-time (JIT) compilation. These new

JVMs dynamically compile the bytecode stream of a method into machine code prior to exe-

cuting the entire method. That is, each time a method is invoked for the �rst time, execution

of the program stops and the method is compiled. Commonly, a single method is compiled

at a time. The resulting execution performance is higher than for interpreted bytecodes since

native method code is stored and reused each time a method is invoked repeatedly. In addition,

compilation of an entire method at once exposes opportunity for optimization. Since the dy-

namic compiler analyzes multiple instructions at once and thus, more static program behavior

is visible, a more compact and e�cient set of instructions can be selected. In addition, opti-

mizing algorithms can be applied to the code to further improve e�ciency and overall program

execution times substantially.

However, since compilation (and optimization, if any) must occur during execution of

the program, there is an overhead incurred each time a method is invoked for the �rst time.

This overhead cost must be amortized by the improvement in execution speed for optimization

techniques to be practical and feasible. Since such optimization can be time consuming, this

amortization proves to be a di�cult task [3, 15]. Compilation overhead is another source of

load delay since it occurs during runtime and imposes startup and intermittent interruption

cost. We present multiple optimization for the reduction of the compilation portion of load

delay in this thesis.

12

II.C Applets v/s Applications

There are two types of Java programs, applets and applications. In this section, we

distinguish between the two since the former is the execution model for remote execution the

the one we exploit and extend in this dissertation. An applet is a program that can be executed

using one of two execution environments: an Internet browser, e.g., Netscape [63], Microsoft

Explorer [41] or an appletviewer [61]. A browser is a piece of software that enables access to

and visualization of distributed, collaborative, and hyper-media information via the httpd [38]

protocol. Browsers commonly contain built-in JVMs for the execution of Java applets. An

appletviewer is a tool that is packaged and distributed with JVM software that enables applet

execution outside of the context of a browser; it is commonly used for debugging purposes.

Either execution environment uses a JVM to initiate program execution using a special

entry point called <init> in the starting class �le. When an applet is invoked via a browser (by

a internal JVM) from a machine across a network, the applet is downloaded from its storage site

to the local machine running the browser. The applet is then executed on the local hardware

resources. Applets are highly restricted in terms of the actions it is allowed to perform. This

is due to the Java language security policy [64] which is the subject of much research [5, 85].

Some examples of applet restrictions include disk access, communication to hosts other that

the one from which the applet was downloaded, and program invocation.

Java applications are executed by invoking a JVM at the command line and passing

the program name as a command line argument. The entry point of a Java application is the

"main" routine which is similar to entry points of programs written in other languages. Applets

and applications, once invoked, execute in the same manner. We describe this execution model

in the next section. Since this work is focused on improving the performance of Internet-

computing applications, we consider only Java applet invocation. We heretofore refer to Java

applets as programs.

II.D The Java Execution Model

In this section, we describe the execution model that exists today for the execution

of mobile Java programs. We describe how remote execution is implemented in the runtime

system of the JVM. It is this system that we empirically measure and use as the base case

for comparison of the techniques we present in this dissertation. Currently, Java programs are

loaded into memory for execution using dynamic class �le loading. The dynamic class loading

13

mechanism pauses the executing program and converts a newly accessed class �le to the internal

JVM class �le representation. This occurs the �rst time the class is accessed by the execution.

Class �les can be stored on and loaded from disk (located locally or across a network)

as individual �les or together as an archive that is possibly compressed. The most common

archive/compression format for Java programs is the Java archive (jar) which uses the zip [67]

compression format. Remote Java programs archived as jar �les (that must be transferred over

a network) commonly contain all classes in a program. The jar �le is stored in memory and

class �les are decompressed from the archive individually upon �rst access by the dynamic class

�le loading mechanism. Any �les not found in the archive are searched for locally using the

JVM path list called the classpath. Class �les that are not found locally are requested from the

machine from which non-local program �les (if any) were downloaded. A remote �le (if it exists

on the remote machine) is transferred upon receipt of the request. The cost of the request is

part of the transfer delay imposed on the program. A small packet incurs the network latency

for its round trip transfer. Transfer delay also includes the time for the transmission of the

remote �le from the machine on which it is stored to the execution site since execution is unable

to continue until the class has transferred to completion.

Once the accessed class is loaded, the executing program is allowed to proceed until

the next, as-yet-unaccessed class is accessed. Types of class access include read and write of

�elds, method invocation, and object creation. Class �les can also be accessed by the JVM for

veri�cation of Java security policies.

Veri�cation is a mechanism in the JVM which checks (prior to executing) that loaded

class �les are well formed. That is, that the �les implement a set of constraints (described in the

Java language speci�cation [28]) and behave as expected to not adversely exploit the runtime

system (and local machine). Veri�cation ensures that the desired constraints hold on the class

�le it is attempting to incorporate. Examples of veri�cation checks include structural validation,

operand stack underows/overows, and validation of argument types. Since type checking is

also performed during veri�cation, all classes in the type hierarchy of the newly loaded class

�le must be loaded and veri�ed to contain the expected types. For such cases, additional

class �les (not necessarily used by the executing program) must be loaded. Veri�cation can

be used on non-local class �les only, on all class �les, or on no class �les as con�guration or

invocation options to the runtime system. All non-local class �les executed using most browsers

are commonly veri�ed by default.

Veri�cation is an important mechanism in the execution model for mobile Java pro-

14

grams since it impacts program transfer. Veri�cation in some cases requires that class �les be

transferred regardless of whether or not they are used. It also e�ects the order in which class

�les are transferred. Both e�ect decisions about optimization of class �les for transfer delay re-

duction. In this dissertation, we address the implications of program and runtime modi�cation

with and without veri�cation.

We next explain the JVM version 1.2.x veri�cation mechanism, the most current

version and the one we assume in this thesis, with two small examples. Java guarantees that

types are used consistently during execution, i.e., each assignment of a variable is consistent

with its de�ned type. If a code body contains variables with non-primitive types for which

assignments are inconsistent, the veri�er must check each class �le used in the assignments.

For example, in Figure II.1, class X must be transferred and veri�ed at program invocation.

The class, however, contains a variable of class ZSuper, called varZ. This variable may be

assigned an instance of class Z or of class ZSuper depending on the value of j. In order to

verify class X, the veri�er must transfer both class ZSuper and class Z in order to perform the

necessary consistency checks on variable varZ.

Veri�cation also requires loading and veri�cation of an entire superclass chain to verify

that the type of a subclass (a class that extends another) is correct. For example, in the above

scenario, when class Z is loaded, veri�cation requires that its ancestors, class �les ZSuper and

ZSuperSuper, are loaded and veri�ed.

Another example is shown in Figure II.2. In this case, class �le A will be transferred

and veri�ed at program invocation. Class �le B will only transfer when it is �rst used (new

B()), since all uses of varB consistently use the same type, class B, throughout the code in class

�le A. Class �le C will also be transferred on its �rst-use; it transfers when the constructor, B(),

is executed. Each class in this example is transferred and veri�ed on �rst use. Notice also that

class A contains methods that are executed conditionally. For example, error() will only be

executed if an error occurs. Despite this conditional execution, the method error() must still

be transferred as part of class A since the transfer unit of a Java program is the class �le.

Veri�cation is an important factor in the performance of mobile Java programs. Since

it requires that class �les other than those executed, it causes additional transfer delay for each

such class that is non-local. Class �les required for veri�cation may never be accessed by the

executing program and therefore are purely transfer and veri�cation overhead. In this disserta-

tion, we consider optimizations that modify the veri�cation mechanism to reduce transfer delay

while continuing to ensure secure execution enabled by it.

15

public class X {
 public static void main(String args[]) {

 varZ = new ZSuper();

 ZSuper varZ = null;
 if (j > 10) {
 varZ = new Z();
 } else if (j > 5) {

 }
 if (j > 5) {
 int i = varZ.meth();

 }

 }
 }

 System.err.println("answer: " + i);

class Z extends ZSuper {
 meth() {
 return 15;
 }
}
class ZSuper extends ZSuperSuper {

}
class ZSuperSuper {
 meth() {
 return 5;
 }
}

 }
 return 10;
 meth() {

Figure II.1: Veri�ed class �le transfer example 1.

This is the �rst Java example to demonstrate class �le transfer and its interaction with veri-

�cation when using superclasses. When class X is �rst used during execution, veri�cation of

it requires that class Z and class ZSuper be local to check that the type use of variable varZ

is correct. When class Z is �rst accessed, its veri�cation requires that both ZSuper and ZSu-

perSuper be local for type checking. Veri�cation can substantially increase transfer delay since

classes that are unused by the executing program are commonly required.

class B {

 public int var1;

 protected int var3;
 B() {

 private int var2;

 public C varC = null;

 var1 = var2 = var3 = −1;

bar () {
 (varC = new C()).foo();

 }

 var2 = 0;

}
 }

class C {
 C() { . . . }
 foo() { . . . }
}

class A {
 public B varB;
 A() { . . . }
 main(. . .) {
 bar();
 varB = new B();
 foo();

 }
 foo() { . . . }

 error() { . . . }
}

 varB.foo();

Figure II.2: Veri�ed class �le transfer example 2.

This is the second Java example to demonstrate class �le transfer and its interaction with

veri�cation. When class A is �rst accessed, no other class �les are required for its veri�cation.

Similarly, class B and C are transferred on-demand.

16

Each of the mechanisms described in this chapter impact the performance of remotely-

executed Java programs. The object model enables applications to be partitioned to enable

class �le loading on-demand so that only accessed classes are loaded transferred (if non-local).

This is important for the reduction of transfer delay the �rst source of overhead in load delay.

However, dynamic class �le loading still incurs substantial overhead for the transfer of non-

local class �les. Due to the execution model, this overhead can be experienced all at once

at program startup (when the application is sent as an archive) or intermittently throughout

execution (using dynamic class �le loading). Neither is a good solution since the delay severely

limits mobile program performance and hence, the wide use and acceptance of the Internet as

a computational entity. We propose optimizations in this thesis that reduce the e�ect of this

transfer delay. We also address any security implications due to modi�cations of class �les and

JVM mechanisms (described here) that arise from the incorporation of our techniques.

In addition, we describe existing execution engine (JVM) technology in this chapter.

The JVM converts the architecture-independent bytecode format of class �les to native ma-

chine code through compilation. Compilation is used over interpretation due to its potential to

substantially reduce execution time of the resulting executable. Compilation exposes opportu-

nity for optimization and at the same time imposes overhead since it occurs dynamically, while

the program is executing. Code is compiled method-by-method (method-level) the �rst time a

method is loaded (invoked), i.e., Just-In-Time (JIT). This introduces load delay in the form of

execution interruption. Compilation delay is the second source of overhead (in load delay) that

we attack and reduce in this dissertation research. Our goal is to achieve optimized execution

times with greatly reduced compilation delay. With techniques to reduce the e�ect of both

transfer and compilation delay, the two sources of load delay, we can substantially improve

mobile program performance.

Chapter III

Related Work

Our work focuses on reducing the e�ect of load delay on Internet-computing applica-

tions. Work related to this includes research for the reduction of the two sources of overhead

that collectively make up load delay: Transfer delay and compilation delay. As such, we divide

this chapter into a discussion of the related work for each of these sources separately. Following

this, we identify other existing techniques that we exploit and extend to reduce the e�ect of

load delay.

III.A Transfer Delay Reduction

Many research and industrial groups have made a concerted e�ort to reduce the e�ect

of transfer delay on programs that are remotely executed. The most common technique is

compression; the compact encoding of �les to reduce the amount transferred. In this section, we

�rst detail related compression and other research that reduces overall transfer delay. Following

this, we describe related work that focuses solely on reducing transfer delay to improve program

startup time.

III.A.1 Compression

In this dissertation, we advocate maximizing the overlap between execution and trans-

fer and avoiding transfer (by transferring less) to reduce the e�ect of transfer delay. Related

work for the reduction of overall transfer delay implements the latter. The primary transfer de-

lay avoidance mechanism is compression; such techniques are complementary to those presented

17

18

in this thesis. Compression reduces the amount of data transferred by compactly encoding the

�le that is to be transferred. Once at the destination, the �les are decoded for use. Several

approaches to compression have been proposed to reduce network delay in Internet-computing

environments which we now discuss.

Ernst et al. [23] describe an executable representation called BRISC that is compa-

rable in size to gzipped x86 executables and can be interpreted without decompression. The

group describes a second format, which they call the wire-format, that compresses the size of

executables by almost a factor of �ve (gzip typically reduces the code size by a factor of two to

three). Both of these approaches are directed at reducing the size of the actual code, and do

not attempt to compress the associated data.

Franz et al. describe a format called slim binaries in which programs are represented

in a high-level tree-structured intermediate format, and compressed for transmission across a

wire [24]. The compression factor with slim binaries is comparable to that reported by Ernst

et al., however Franz reports results for compression of entire executables and not just code

segments. Additional work on code compression includes [25, 57, 87].

Other attempts to reduce the size of program code include work at Acorn Computers

to dramatically reduce the size of a 4.3 BSD port so that it �ts on small personal computer

systems [87]. A major focus of this work is to use code compression to reduce disk utilization

and transfers. Fraser and Proebsting also explore instruction set designs for code compression,

where the \instruction set" is organized as a tree and is generated on a per-program basis [25].

In recent work, Lefurgy et al. describe a code compression method based on replacing common

instruction sequences with \codewords" that are then reconstructed into the original instruc-

tions by the hardware in the decode stage[57].

The Jax [82] utility reduces Java class �le size via renaming, name compression, static

optimizations, and other techniques. A jar �le (zip compression) is constructed from optimized

class �les that are reachable by the application, according to static analysis. Another Java-

speci�c compression utility has been proposed by Pugh in [71] in which he describes a wire

format that reduces a collection of individually compressed class �les 50% to 20% the size

of compressed jar �les on average. The wire format uses the gzip compression utility but

incorporates a very e�cient and compact representation of class �le information. In addition,

it organizes the �les into a single �le that makes the gzip utility more e�ective. The compression

algorithm determines when sharing can be performed within an application so that additional

redundant information is eliminated.

19

III.A.2 Startup Delay

Startup delay can also be reduced through transfer avoidance. One way in which

this can be done is to ensure that only those methods that will be executed are transferred

across the network. Sirer et al. describe such an optimization in [74]. In this work, Java class

�les are repartitioned to enable more e�ective utilization of the available bandwidth during

transfer. Pro�le information is used to identify methods that are unused during instrumented

execution. Unused methods are then split out into new class �les. Using existing Java class �le

loading techniques, the class �les containing the methods that are used during execution are

transferred. If methods predicted as unused and split out are not used during actual execution,

the methods are never transferred and the transfer delay is reduced. If such methods are used,

then the class �les containing them are transferred.

In this thesis work we present an optimization, called class �le splitting, that is a

similar technique. The projects were implemented independently and concurrently. Sirer et

al. describe a di�erent implementation in which a single class �le is created for all unused

methods in a class. In our work, unused methods are each split out into separate classes.

This reduces the overhead associated with transfer of a split class when usage predictions are

incorrect. We detail this in Chapter VII. In addition, Sirer et al. do not consider the impact

of the Java veri�cation mechanism. Veri�cation can cause additional class �les to transfer; the

degree to which this e�ects this related work is unclear since they only measure unveri�ed, or

trusted, transfer. Lastly, this related work does not address the security implications of the

optimization presented.

Java class �le splitting was originally described by Chilimbi, et al., in [14] to improve

memory performance. The goal of their research was to split infrequently used �elds of a class

into a separate class. When a split class is allocated, the important �elds are located next

to each other in memory space and in the cache for better performance. Separating �elds in

class �les according to the predicted usage patterns improves data memory locality in the same

manner as procedure splitting improves code memory performance [66]. As a side-e�ect, we

achieve advantages in memory performance using our class �le splitting technique. However,

since memory performance is not the focus of this thesis, we did not investigate it and do not

provide measurements for it.

In other work by Lee et al. [53], the authors describe a technique that decreases startup

time for x86 binaries by packing application code pages more e�ectively for remote execution.

Programs are reordered into contiguous blocks according to predicted use of procedures. Predic-

20

tion is guided by usage pro�les that are collected via o�-line, instrumented execution. Programs

are divided into a global data �le and page-size �les containing code. When a web engine exe-

cutes a remote binary, it loads each �le on demand and is able to continue execution once each

page-size �le arrives. The technique, when combined with demand paging, can reduce startup

latency for the benchmarks tested by 45% to 58%. This work considers binary �les only and

do not suggest or implement extensions for Java bytecode. In addition, it requires a special

execution engine to decode the packed �les for execution at the destination.

III.B Compilation Delay Reduction

The performance of remotely executed programs is greatly improved through the use

of dynamic compilation over interpretation. However, the compilation process is more complex

and imposes longer, intermittent delays during execution since execution must pause waiting

for compilation to complete. To compensate for compilation overhead, many systems use a

combination of a very fast interpreter and an optimizing compiler or two compilers (one simple

and very fast and the other optimizing).

The �rst compilation system we describe is continuous compilation [68] in which com-

pilation is overlapped with interpretation. The other systems use adaptive compilation to

amortize the cost of optimization by optimizing only frequently-executed pieces (hot spots) of

the program.

III.B.1 Continuous Compilation

A project that attempts to improve program responsiveness in the presence of dynamic

compilation is continuous compilation [68]. Continuous compilation overlaps interpretation with

Just{In{Time (JIT) compilation. A method, when �rst invoked, is interpreted. At the same

time, it is compiled on a separate thread so that it can be executed on future invocations. The

authors of this work extend this idea to Smart JIT compilation: on a single thread, interpret

or JIT compile a method upon �rst invocation. The choice between the two is made using

pro�le or dynamic information. Interpretation and JIT compilation overlap is also used in the

Symantec Visual Cafe JIT compiler, a Win32 JIT production compiler delivered with some

1.1.x versions of Sun Microsystems Inc. Java Development Kits [80].

21

III.B.2 Adaptive Compilation

Figure III.1 depicts the Java execution model in an adaptive compilation environment.

Adaptive compilation systems �rst interpret or fast-compile (compilation with little or no opti-

mization) a method when it is initially invoked. During this process the code is instrumented to

measure various performance characteristics (invocation count, execution duration, loop count,

etc.). When measured values reach a given threshold the method (or method-piece) is opti-

mized using an optimizing compiler. Compilers in the system are invoked for initial method

invocation (demarcated with [1] in the �gure), by the on-line measurement system (pro�ler), or

by the class loader (demarcated with [2] in the �gure). The class loader can load classes from

the local disk or across a network.

In the following sections, we �rst describe Self, an adaptive compilation system for pro-

grams written in the Self language. We then detail three popular, existing adaptive compilation

systems for Java programs. All of these systems attempt to improve program responsiveness by

only compiling those program sections that e�ect execution time as indicated by the pro�ler.

Self

In [33], H�olzle et al. describe an adaptive compilation system for the Self language that

uses a fast, non{optimizing compiler and a slow, optimizing compiler. The fast compiler is used

for all method invocations to improve program responsiveness. Program hot spots are then

recompiled and optimized as discovered. Hotspots are methods invoked more times than an

arbitrary threshold. When hot spots are discovered, execution is interrupted and the method,

with possibly an entire call chain, is recompiled and replaced with optimized versions.

Open Runtime Platform (ORP)

A dual-compiler, adaptive compilation system for Java, called the Open Runtime

Platform (ORP), was recently released as open source by the Intel Corporation [65]. The �rst

compiler (O1) provides very fast translation of Java programs [1] and incorporates a few very

basic bytecode optimizations that improve execution performance. The second (O3) compiler

performs a small number of commonly used optimizations on bytecode and an intermediate form

to produce improved code quality and execution time. O3 optimization algorithms were imple-

mented with compilation overhead in mind, hence only very e�cient algorithms are used [16].

Optimizations that are implemented at the time of this work include constant and copy prop-

agation, global register allocation, dead code elimination, and basic loop optimizations. These

22

Compilers
[Non-Opt,Opt,
Interpreter,...]

Class Loader

Class Load Request

Dynamic
Linker

Executing
Code

Resolution

Machine Code

[1]

[2]

Remote Class Request

Bytecode

Bytecode

Unresolved
Access

Profiler

Re-compile
Request

Figure III.1: General depiction of an adaptive compilation environment.

In an adaptive compilation environment multiple compilers are incorporated (or possibly a

compiler and an interpreter). The compilers di�er in compilation time imposed and resulting

execution e�ciency. The compilers can be invoked in multiple ways: [1] in which a method is

invoked for the �rst time by the executing program, [2] when a class �le is loaded into memory

(the entire class may be compiled). In addition, the compiler may insert instruction into the

execution stream so that the behavior of the executing code can be pro�led. If the behavior of

the program changes, the pro�ling mechanism can request that pieces of the code be recompiled

to improve execution performance. Other parts of the �gure depict the general Java class �le

loading mechanism as described in our background chapter (Chapter II).

23

optimizations, however e�ciently implemented, impose compilation delay. O3 execution time

is approximately 5% faster than O1 execution time while compilation time is 89% slower than

O1 compilation for the programs studied. To compensate for the compilation delay, the O1

compiler is used �rst and inserts instrumentation into each method. On-line measurements of

method invocation count are made. When a threshold for a method is reached, the method is

recompiled with the O3 compiler and used on future invocations.

Jalape~no Virtual Machine

Jalape~no is an adaptive compilation system for Java programs that is written in Java

(unlike ORP). It is also unique in that it is designed to address the special requirements of SMP

servers: performance and scalability. Extensive runtime services such as parallel allocation and

garbage collection, thread management, dynamic compilation, synchronization, and exception

handling are provided by Jalape~no.

At the time of this work, there are two fully{functional compilers in Jalape~no, a fast

baseline compiler and the optimizing compiler. The baseline compiler provides a near-direct

translation of Java class �les thereby compiling very quickly and producing code with execution

speeds similar to that of interpreted code. Jalape~no, using the baseline compiler, performs in

much the same way as an interpreted system. The second compiler is the optimizing compiler

and builds upon extensive compiler technology to perform various levels of optimization [12].

The compilation time using the optimizing compiler is 50 times slower on average

for the programs studied than the baseline, but produces code that executes 3{4 times faster.

To warrant its use, compilation overhead must be recovered by the overall performance of

the programs. To do this, on-line pro�les are collected using instrumented method execution.

Like other adaptive systems, when a threshold is reached, a method is recompiled using the

optimizing compiler. The optimizing compiler incorporates multiple levels of optimization that

include many simple transformations, inlining, scalar replacement, static single assignment

optimizations, global value numbering, and null check and dead code elimination. On-line

measurement continues even after initial optimization in case re-optimization using di�erent

levels is needed to further improve performance.

HotSpot

Another form of adaptive compilation for server systems is described in the Java

HotSpot performance engine [34] from Sun Microsystems. The system analyzes an application

24

as it runs, identifying the areas that are most critical to performance, i.e., where the greatest

time is being spent executing bytecode. Rather than compiling each method at initial invoca-

tion, the performance engine initially runs the program using an interpreter, and analyzes it as

it runs to discover execution hot spots. It then compiles and optimizes only those performance-

critical areas of code. This monitoring process continues dynamically throughout the life of

the program, with the performance engine adapting to the ongoing performance needs of the

application.

III.C Other Related Work

Other projects, that may not at �rst seem directly related to load delay reduction are

those that concern program restructuring and Java bytecode annotation systems. Our work

uses program restructuring to improve the performance of the algorithms and frameworks. In

addition, we propose a bytecode annotation system for the reduction of compilation overhead.

As such, we next describe related work on these two topics.

Program Restructuring

Classical program restructuring work attempts to improve program performance by

increasing program locality. Historically, because virtual memory misses have always incurred

a very high cost, programs are reorganized to increase the temporal locality of their code. For

example, if procedures are referenced at approximately the same time, then they are placed

on the same page. Attempts to understand and exploit reference patterns of code and data

have resulted in such algorithms as least recently used page replacement (e.g., see [7, 32]) and

Denning's working set model [20].

More recently, as memory sizes have increased, interest has shifted to improving both

temporal and spatial locality for all levels of memory. Many software techniques have been

developed for improving instruction cache performance. Techniques such as basic block re-

ordering [37, 66], function grouping [26, 31, 37, 66], reordering based on control structure [60],

and reordering of system code [83] have all been shown to signi�cantly improve instruction

cache performance. The increasing latency of second-level caches means that expensive cache

usage patterns, such as ping-ponging between code laid out on the same cache line, can have

dramatic e�ects on program performance.

25

Java Bytecode Annotation

Java bytecode annotation has been proposed to enable the use of complex, time-

consuming optimizations at runtime. In existing systems, Array bounds check elimination and

register allocation are performed o�-line and the results are communicated to the compilation

system at runtime. The communication is performed via bytecode annotation implemented

using an existing class �le data structure called an attribute. At runtime, the compiler uses

the annotations to implement the optimizations in the generated native code. As part of this

thesis work, we present a novel annotation framework for Java bytecode. In this section we

describe what has been proposed for similar systems as well as the inherent limitations that we

improve upon in this dissertation.

Pominville et al. in [69] describe a framework for Java bytecode annotation that en-

ables implementation of an array bounds checks elimination optimization. The empirical data

provided include the execution time with and without their optimization. The goal of this and

all other prior bytecode annotation work is to enable time-consuming optimizations to be incor-

porated by the optimizing compiler to reduce execution time without substantially increasing

compilation delay. However, like other such systems, no measurement of compilation delay

(with or without their annotation optimization) is provided. The goal of these projects is not

to reduce compilation overhead but to enable new and di�erent, time-consuming optimizations.

This distinction is subtle but important for comparison with the work we present in this thesis.

Two similar frameworks have been proposed for register allocation in Java programs.

The implementation of register allocation and related optimizations is necessarily, very time

consuming. The di�culty arises since the Java bytecode model is that of a stack-based architec-

ture. Since most architectures on which Java programs are run are register-based it is di�cult

to achieve an e�cient register mapping even without the time restrictions required for dynamic

compilation and optimization. Hummel et al. in [36], show how static register allocation in-

formation in the Ka�e JIT can be conveyed using annotations. They use a virtual register

scheme in which they assume an in�nite number of registers, make virtual register assignments

o�-line, and communicate this information to the JIT compiler for register allocation. A sim-

ilar bytecode annotation optimization for register allocation has been developed by Jones et

al. in [42]. Th authors describe a system in which 256 virtual register numbers are assigned to

the bytecode of each method to improve execution performance using the Ka�e JIT compiler.

All of these annotations substantially increase the size of the bytecode stream in an

attempt to improve runtime performance with a single optimization. Pominville et al. increase

26

application size by 7% to 16% on average; Hummel et al. show an average increase of 33%

to 97% (31% to 38% on average by Jones et al.). Since we consider load delay, the combi-

nation of transfer plus compilation overhead, we ensure that the improvements achieved by

our annotation-guided optimizations are not negated by the increase in transfer delay due to

annotated bytecodes as can occur using this prior work. In addition, these related projects do

not consider the use of annotations to reduce optimization overhead as we do in Chapter XI.

The goal of each of these prior works is to enable an expensive optimization to be performed,

which is a side-e�ect of the framework we present The goal of our annotation work is to reduce

compilation overhead (and thus load delay) for all optimizations not a speci�c few.

Another issue the must be addressed by any annotation implementation is security.

For annotations to be trusted, they must be veri�ed or implemented so as to guarantee safety

of the JVM or machine on which annotated execution is performed. The annotation-guided

optimizations presented in [69, 6] are unsafe since the annotations contain information that

e�ect the semantics of the program and no veri�cation is performed at the destination. For

example, in [69], the authors present an annotation for array bounds check elimination. If

this annotation in intercepted and modi�ed by an untrusted party, a boundary check might be

eliminated and cause illegal memory access. Likewise, in [6], the authors implement register

allocation, and annotation manipulation can cause program behavior that can potentially harm

the JVM in which it is executing as well as the underlying machine. For such annotations to be

trusted, some mechanism for veri�cation must be implemented. The annotations we present for

remote execution (Section XI.B.2) are safe without requiring veri�cation since their modi�cation

only a�ects program performance not semantic behavior.

Chapter IV

Experimental Methodology

In this chapter, we introduce the experimental methodology used for the results pre-

sented in this dissertation. We describe the benchmarks incorporated then detail the execu-

tion, simulation, and compilation environments we use to evaluate our techniques. In each of

the following research chapters (Chapters V through XI), we articulate any additions to this

methodological framework that are speci�c to the technique(s) presented in the chapter.

IV.A Benchmarks

Throughout this dissertation we present empirical results for the thirteen Java pro-

grams described in Table IV.1. The programs, which include the SpecJvm98 benchmarks, are

well known and have been used in previous studies to evaluate tools such as Java compilers,

decompilers, pro�lers, bytecode to binary, and bytecode to source translators [55, 70]. Subsets

of this list are used for the di�erent techniques we present due to the change in and diversity

of the infrastructures used for our experimental results at the time the work was performed

(1998-2001). In addition, as new benchmarks became available throughout this period we

incorporated them into our studies.

Tables IV.2 and IV.3 show the general, static and dynamic statistics, respectively, of

each benchmark. Column two of Table IV.2 is the number of class �les in the application.

Columns three and four show the total number of methods and instructions, respectively. The

last column is the size (in KB) of the application; the percentage of this size that is global data

is indicated in parentheses. On average, global data accounts for 63% of the total application

size.

27

28

Table IV.1: Description of Benchmarks Used.

Antlr Parser generator

Bit Bytecode instrumentation tool: Each basic block

in the input program is instrumented

to report its class and method name

Compress SpecJvm95 compression utility

DB SpecJvm95 database access program

Jack SpecJvm95 Java parser generator based

on the Purdue Compiler Construction Toolset

Jasmine Bytecode obfuscation tool

Javac SpecJvm95 Java to bytecode compiler

Jcup LALR parser generator: A parser is created

to parse simple mathematics expressions

Jess SpecJvm95 expert system shell benchmark:

Computes solutions to rule based puzzles

Jlex Lexical analyzer for Java

Jsrc Java bytecode to HTML converter

Mpeg SpecJvm95 audio �le decompression benchmark:

Conforms to the ISO MPEG Layer-3 audio speci�cation

Soot Bytecode processing tool: converts Java

class �les to an intermediate format: Jimple

Table IV.2: Static statistics on the benchmarks used in this dissertation.

For each benchmark, the �rst three columns provide the number of static classes, methods, and

instructions. The last column is the size (in KB) of the application; the percentage of this size

that is global data is indicated in parentheses. The average across all benchmarks is the last

entry in the table.

Total Number of Total

Program Classes Methods Insts (1000s) KB Size (% GData)

Antlr 118 1318 49 418 (52%)

Bit 53 317 14 152 (57%)

Compress 12 44 2 18 (78%)

DB 3 34 2 10 (58%)

Jack 56 315 19 128 (53%)

Jasmine 207 1160 33 404 (79%)

Javac 176 1190 41 548 (70%)

Jcup 36 385 14 130 (59%)

Jess 151 690 18 387 (81%)

Jlex 20 134 12 85 (52%)

Jsrc 33 414 15 145 (52%)

Mpeg 55 322 34 117 (50%)

Soot 721 3607 65 1111 (74%)

Avg 126 764 24 281 (63%)

29

Table IV.3: Dynamic statistics on the benchmarks used in this dissertation.

For each benchmark, the �rst three columns provide the number of classes, methods, and

instructions executed using input1. In each of these columns, the same data for input2 is

shown in parenthesis. We provide data on two inputs since some of our optimizations are

pro�le-guided. For these techniques we provide results for pro�les generated with both inputs.

The fourth column of data is the interpreted execution time for each program and input (input2

in parenthesis). The last column is the size (in KB) of the class �les used by the application

for each input. The average across all benchmarks is the last entry in the table.

Characteristics of Programs (Ref)

(Train in parenthesis)

Number of Executed Interpreted

Insts. Execution Used

Program Classes Methods (100000s) TTime in Secs Size (KB)

Antlr 67 (69) 538 (549) 87 (26) 15.37 (4.97) 268 (269)

Bit 40 (37) 158 (153) 599 (342) 56.03 (29.63) 137 (134)

Compress 12 (12) 32 (32) 1138 (954) 54.02 (46.12) 18 (18)

DB 3 (3) 27 (24) 1115 (25) 3630.34 (7.61) 10 (10)

Jack 46 (46) 265 (265) 233 (27) 227.07 (27.54) 120 (120)

Jasmine 165 (159) 714 (669) 461 (110) 49.27 (22.50) 326 (317)

Javac 139 (132) 740 (713) 911 (25) 276.43 (7.96) 472 (225)

Jcup 29 (29) 213 (213) 42 (4) 24.52 (2.18) 123 (123)

Jess 133 (135) 412 (412) 1554 (3) 206.10 (8.52) 351 (357)

Jlex 18 (18) 99 (97) 28 (12) 6.96 (2.49) 81 (81)

Jsrc 29 (30) 318 (329) 8 (20) 7.49 (16.97) 128 (128)

Mpeg 42 (42) 201 (200) 11489 (1220) 491.83 (51.52) 111 (111)

Soot 158 (158) 346 (346) 3(2) 16.63 (7.69) 317 (317)

Avg 68 (67) 313 (308) 1359 (213) 389.39 (18.13) 189 (170)

30

These static statistics (Table IV.2) apply to any inputs; the dynamic statistics in

Table IV.3 show data for two inputs a Ref input and a Train input (in parenthesis). Columns

two through four in the dynamic statistics table show the number of executed classes, methods,

and instructions, respectively. The �fth column is the total execution time when the programs

are interpreted and the �nal column is the size of class �les that are used during execution.

We provide statistics for two inputs (Ref and Train) since many of our techniques use

pro�le information to guide optimization. We report results from the use of the Ref input for

all of our measurements. However, two sets of result data are shown for each pro�le-guided

technique which are distinguished by Ref-Ref and Ref-Train labels. For these techniques, we

generate pro�les and guide our optimizations using both inputs. We denote results that use the

pro�le generated using the Ref input by Ref-Ref (the �rst Ref indicates the input used for result

generation, the second indicates that used for pro�le generation). Using the same data set for

both pro�le and result generation provides ideal performance since we have perfect information

about the execution characteristics of the programs. Results demarcated with Ref-Train are

those that use the pro�le generated using the Train input to guide optimization. Ref-Train, or

cross-input, results indicate realistic performance since the characteristics used to perform the

optimization can di�er across inputs and the input that will be used is not commonly known

ahead of time. As mentioned above, results are executed using Ref regardless of the input used

for pro�le creation.

We use two general experimental methodologies for the measurement of the bene�ts

achieved on the benchmarks by the techniques and optimizations we present. The �rst is

used for the transfer delay optimizations (Chapters V- VIII); the second is that used for the

compilation delay optimizations (Chapters IX- XI).

IV.B Transfer Delay Optimization Methodology

Results presented for our transfer delay optimizations are generated on (and assume)

a single processor, 300 MHz x86 platform, running Debian Linux version 2.2.15. The Java

implementation we use is JDK version 1.1.8 for Linux provided by Blackdown Corp. [11].

As mentioned previously, many of our techniques are pro�le-guided: o�-line measure-

ments are made of execution behavior and are used to perform program optimizations. Pro�les

are generated by executing instrumented versions of the benchmarks. Instrumentation is per-

formed using the Bytecode Instrumentation Tool (BIT) [54, 55]. The BIT interface enables

31

elements of the bytecode class �les, such as bytecode instructions, basic blocks and methods,

to be queried and manipulated. In particular, BIT allows an instrumentation program to navi-

gate through the basic blocks of a bytecode program, collect information about the use of local

and constant pool variables, opcodes, branch conditionals, etc., and perform control-ow and

data-ow analysis. The type of information collected using pro�les is speci�ed in each of the

the research chapters (V- XI) in which pro�ling is used to guide the technique presented.

IV.B.1 Compression

For this dissertation, some of the techniques for transfer delay reduction exploit and

extend existing compression research. For these techniques, we consider three commonly used

compression formats for of mobile, Java programs: JAR, PACK, TGZ. The Java archive (jar)

format (referred to here forward as JAR), is the most common tool for collecting (archiving)

and compressing Java application �les. The format is based on the standardized PKWare zip

format [67] and enables archival of various components of Java applications (class, image, and

sound �les). For this study we consider compression of only class �les.

PACK [71] is a jar �le compression tool from the University of Maryland. This utility

de�nes a compact representation of class �le information and substantially reduces redundancy

by exploiting the Java class �le representation, and by sharing information between class �les.

The compression ratios achieved by this tool are far greater than any other compression utility

for Java applications. However, pack utility has very high decompression times since the class

�les must be reconstituted from this complex format.

Gzip is a standard compression utility, commonly used on UNIX operating system

platforms. Gzip does not consider domain speci�c information and uses a simple, bit-wise algo-

rithm to compress �les. As such, gzip has very fast decompression times but does not achieve

the compression ratios of pack. The TGZ format refers to �les that are �rst combined (archived)

using the UNIX tape archive (tar), then compressed with gzip. Tar combines a collection of

class �les, uncompressed and separated by headers, into a single �le in a standardized format.

Decompression Time

To load a mobile Java program or class �le, the JVM class loader reads a stream

of bytes from which class �les are constructed and placed into memory. The stream of bytes

can be generated from any source (�les stored locally on disk or obtained from a remote site

over a network, etc.) using Java library routines. To incorporate decompression into the class

32

Table IV.4: Compression characteristics of the benchmarks using PACK, JAR, and TGZ.

The three columns of data are for each compression technique. For each benchmark and

compression format, the decompression rate is shown with the compressed application size

in parenthesis.

Compression Format & Decompression Characteristics

Sizes are in kilobytes and times are in seconds

PACK JAR TGZ

Compression Dec Compression Dec Compression Dec

Program Size Size Time Time Size Time Time Size Time Time

Antlr 418 58 16.53 3.66 222 2.19 0.30 172.30 0.31 0.03

Bit 152 18 6.40 1.25 85 1.07 0.14 57.00 1.07 0.03

Jasmine 404 34 8.68 2.69 219 2.93 0.32 127.70 2.93 0.03

Javac 548 49 14.99 3.32 276 2.93 0.34 179.20 2.93 0.03

Jess 387 23 4.32 1.83 185 2.37 0.34 164.80 2.37 0.03

Jlex 85 14 5.95 1.04 48 0.56 0.20 37.80 0.56 0.04

Average 332 33 9.48 2.30 172 2.01 0.27 123.13 1.70 0.03

loading process, a decompression library is needed to convert a compressed stream of bytes

(an application or class �le) into the corresponding, decompressed byte stream for class �le

construction.

Java (v1.1.x and above) provides these libraries for the zip (JAR) and gzip formats.

A public domain, Java library for the tar format is provided by [39] and is used in coordination

with the gzip library for TGZ decompression. For these formats (JAR, TGZ), we time the

decompression process for each compressed benchmark, with a user-de�ned class loader using

these libraries. Since PACK at the time of this study, did not provide a mechanism for its

incorporation into a class loader, we made o�-line timings using the command-line interface.

We simply decompressed the benchmarks 100 times on the same dedicated system as used

for JAR and TGZ timings and took the average. Table IV.4 provides the characteristics on

the benchmarks we consider in the compression study. We repeat the static, decompressed

application size from Table IV.2 for the �rst column of data. For each compression format,

we present three columns of data: the compression time (in seconds), the compressed size (in

kilobytes), and the decompression time (in seconds). The average across all benchmarks is

shown in the bottom row in the table.

33

Java Bytecode Execution

Transfer Simulation

Report ResultsProfile Information

Overlap Simulation

Figure IV.1: General depiction of our result generation model.

Pro�le information from o�-line execution is passed to the execution environment. This in-

formation is used to guide the optimization. Once the optimization has been performed the

program is executed. Transfer time is simulated using real network trace data and the amount

of overlap is computed by determining the execution time of each basic block. The simulation

results for each of our transfer delay optimizations are then reported.

IV.B.2 Simulation Model

Many of the techniques presented in the research chapters that follow (V- VIII) attack

transfer delay. The amount and reduction of transfer delay is dependent upon the substratal

network. We therefore must incorporate network performance measurement into our studies

to evaluate our techniques. As such, we incorporate a range of representative values taken

from traces of performance characteristics form actual Internetwork technologies. Since we use

trace values (for repeatability) as opposed to real-time measurements, our result model is one

of simulation.

In addition to simulation of transfer, we also simulate overlap of transfer with execu-

tion in some of our transfer delay reduction techniques. A depiction of our result generation

environment is shown in Figure IV.1. Pro�le (if needed), transfer, and overlap information

is used during execution to measure the e�ect of our transfer optimizations. We �rst detail

the simulation of transfer then of overlap. We then discuss the assumptions we make and the

implications resulting from this simulation model on Java bytecode veri�cation.

34

Table IV.5: Description of the networks used in this study.

Each network is represented by a bandwidth value. These values are obtained from actual trace

data collected using the connection. UTK indicates the University of Tennessee, Knoxville and

UCSD is the University of California, San Diego. The residence used is located in Knoxville,

TN.

Name: From: To: Bandwidth:

MODEM Residence (East) UTK (East) 0.03 Mb/s

ISDN Residence (East) UTK (East) 0.128 Mb/s

INET UCSD (West) UTK (East) (Internet) 0.28 Mb/s

INET UCSD (West) UTK (East) (Internet) 0.50 Mb/s

INET UCSD (West) UTK (East) 0.75 Mb/s

LAN UCSD (West) LAN (10Mb/s Ethernet) 1.00 Mb/s

Network Transfer

We gather network performance traces using the JavaNws [51], a Java library ported

from a subset of the Network Weather Service (NWS) [89] toolkit1. The JavaNws provides

users or utilities with measurements of current network performance and accurate predictions of

short-term future performance deliverable to an application or download. To measure network

performance, the JavaNws conducts in a series of communication probes between itself and

the server machine of interest. During each probe, measurements are taken of round-trip

time and bandwidth. Other tools are available for similar trace generation, e.g., netperf [43],

TTCP [76]. However, we chose to use the JavaNws since it is written in Java and provides

network performance prediction. JavaNws prediction is detailed further in Chapter VIII.

We examine the e�ect of our transfer delay techniques for a variety of networks. Since

it is di�cult to characterize a network by a single bandwidth value, we selected a range of

representative bandwidth values from 24-hour trace data. Table IV.5 shows the bandwidth

values used in this study and the corresponding networks. UTK indicates the University of

Tennessee, Knoxville and UCSD is the University of California, San Diego. The residence used

is located in Knoxville, TN. The network performance available from these traces include a

28.8 baud modem (MODEM), an integrated services digital network link (ISDN), a series of

common cross-country, common-carrier, Internet connections, and a 10Mb/s local area Ethernet

connection(LAN).

We assume that the time to request a non-local �le from its source is the time for

one round-trip of the network. In addition, we assume that this time is 100ms (based our

1The NWS also performs measurement and prediction services for other resources (CPU, memory, etc). The

JavaNws implements the subset of the NWS that provides these services for the network resource only.

35

cross-country Internet measurement); in addition, this value is commonly assumed in similar

studies [35]. We compute the time to transfer a requested �le by multiplying the size of the

transferred �le by the network bandwidth.

Overlap of Transfer and Execution

Some of our techniques enable overlap with execution with transfer. To do this we use

simulated execution of programs instrumented using BIT. Currently, Java execution environ-

ments disallow execution to occur concurrently with transfer. To model this type of execution

we need to measure the transfer delay imposed. To do this we intercept execution at each basic

block and determine if it is the �rst block to execute from the class �le it is contained in. If

so, we determine, given the size of the class �le and the underlying network performance, what

the transfer delay (wait time in seconds) that would be imposed on a program that is executed

without simulation.

To enable simulated overlap, we extend this model. Figure IV.2 exempli�es our simu-

lation procedure. We model the transfer delay as described above and in addition, we compute

the execution time of the basic block. It is this execution time that can be overlapped. We

simply reduce the transfer delay by this overlap measurement. More speci�cally, instrumenta-

tion causes execution to be interrupted and a simulator method to be invoked at the start of

each basic block. This method (simulation(...) in the �gure) �rst determines if the class �le

containing the basic block has transferred (indicated by the boundary comparison in the �gure).

If an insu�cient amount has transferred, the execution is stalled (the simulator increments the

wait time) while the transfer completes. To compute the overlap (in seconds), the simulator

next computes the execution time (in seconds) of the block. This computation is performed by

multiplying the number of bytecode instructions in the block by the average bytecode cycles per

instruction (BCPI) of the program. This number is then divided by the megahertz rate of the

assumed CPU (300Mhz in our studies). The BCPI is computed by executing (interpreting) the

benchmark o�-line 100 times using a dedicated processor. Once we know the execution time of

the block we can compute, based in the network bandwidth (actual or traced), the amount of

transfer delay that can be overlapped by multiplying the seconds executed by the number of

bytes per second that can be transferred (given the bandwidth).

36

Wait if necessary
for the code to arrive

Compute amount of transfer
overlapped with execution

static simulate(...) {
 . . .

 . . .
}

 boundary = bb.method_end;
 if (boundary > tranfer_schedule_end) {

 forward_transfer_schedule(waitbytes);
 waitsecs = getSecs(waitbytes);
 }

 waitbytes = boundary−transfer_schedule_end;

 forward_transfer_schedule(overlapped_bytes);
 overlapped_bytes = overlap_secs * get_B_per_sec(getNetworkBw());

Simu.simulate(. . .);
. . .

Simu.simulate(. . .);
. . .

Simu.simulate(. . .);
. . .

Class SimuExecution of
Method foo(...)

Basic Block 1

Basic Block 2

Basic Block 3 overlap_secs = compute_bbexec_in_secs((bb.inst_count*BCPI)/Mhz);

Figure IV.2: Example of transfer delay and overlap simulation

Each basic block of an application is instrumented so that our simulation method is invoked

just prior to it during execution. The simulator determines whether or not enough transfer

has completed for the method in which the basic block is contained can execute. If it has not,

then the execution must stall (we increment the wait time in this case). If overlap is enabled

then the simulator computes the number of seconds the basic block will executed and from that

computes the amount of data that can transfer during that time.

IV.B.3 Veri�cation

Veri�cation in Java is a security mechanism used to ensure that a program is struc-

turally correct, does not violate its stack limits, implements correct data type semantics, and

respects information hiding assertions in the form of public and private variable quali�ers.

To reduce the complexity of these tasks, the veri�er requires that each class �le be present

at the execution site in its entirety before the class is veri�ed and executed for the �rst time.

Veri�cation may require additional classes to be loaded (without regard to whether or not they

are executed) in order to check for security violations across class boundaries. We refer to this

process as veri�ed transfer. Veri�cation is performed on each untrusted class in the class-loader

prior to the �rst use of the class; this additional processing increases the delay in execution

imposed by dynamic loading. For our results using veri�cation, we modeled the veri�cation

mechanism in JDK 1.2. This process is clari�ed in the Background chapter (Chapter II). We

refer to results using no veri�cation as trusted transfer (veri�cation can be turned o� using the

-noverify runtime ag if desired).

We incorporate veri�cation information by pro�ling the order in which class �les are

loaded for veri�cation and �rst used during execution. Veri�ed loading is made explicit by the -

37

verify and -verbose runtime ags. Such pro�ling enables construction of veri�cation dependency

chains for the class �les used during execution. During simulated generation of our veri�ed

transfer results we account for any and all dependencies each time a class �le is �rst used

(and transferred). Partial output from the sample program presented in Figure II.1 of the

Background chapter (Chapter II) is shown below; �rst using an input of 5 to the X class �le

(java -verify -verbose X 5) and then using an input of 5 (java -verify -verbose X 6).

myhost > java -verify -verbose X 5

. . .

[Loaded ./X.class]

[Loaded ./Z.class]

[Loaded ./ZSuper.class]

[Loaded ./ZSuperSuper.class]

[Loaded /users/ckrintz/java/classes/nonstrict/NS_Sim.class]

[Loaded java/io/Reader.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/io/FileReader.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/io/InputStreamReader.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/util/Vector.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/lang/ArrayIndexOutOfBoundsException.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/util/NoSuchElementException.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/lang/FloatingDecimal.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/lang/Double.class from /usr/lib/jdk1.1/lib/classes.zip]

CLASS: X FIRST EXECUTED AT INSTRUCTION: 6.0

myhost >

myhost > java -noverify -verbose X 6

. . .

[Loaded ./X.class]

[Loaded ./Z.class]

[Loaded ./ZSuper.class]

[Loaded ./ZSuperSuper.class]

[Loaded /users/ckrintz/java/classes/nonstrict/NS_Sim.class]

[Loaded java/io/Reader.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/io/FileReader.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/io/InputStreamReader.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/util/Vector.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/lang/ArrayIndexOutOfBoundsException.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/util/NoSuchElementException.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/lang/FloatingDecimal.class from /usr/lib/jdk1.1/lib/classes.zip]

[Loaded java/lang/Double.class from /usr/lib/jdk1.1/lib/classes.zip]

CLASS: X FIRST EXECUTED AT INSTRUCTION: 6.0

CLASS: ZSuper FIRST EXECUTED AT INSTRUCTION: 18.0

38

CLASS: ZSuperSuper FIRST EXECUTED AT INSTRUCTION: 20.0

answer: 10

myhost >

To generate the sample output, we instrumented the program so that for each basic

block executed, the class name and time of execution is printed out. The time of execution is

given as the cumulative bytecode instruction count so far. If a class name has already been

printed (and hence transferred), it is not printed again. The output when an input of 5 is

used, shows that even though class �les are not accessed during execution, they still must be

transferred for veri�cation. The dependencies on class X for this �rst case are class Z, class

ZSuper, and class ZSuperSuper. Therefore, during transfer simulation, when X is �rst used

we accumulate the total transfer time for X, Z, ZSuper, and ZSuperSuper. Then when Z (or

any of these classes) are ever used by the executing program we do not incur the transfer delay

required for them since they have already transferred to verify X. Each class that the simulation

transfers is marked as local so that it is only accounted for once.

IV.B.4 Transfer Delay Optimization Metrics

In this section, we summarize the various metrics we use to model and measure the

e�cacy of our transfer delay techniques. These metrics allow us to empirically evaluate the

di�erences between existing technology and the advances that our runtime and compiler opti-

mizations enable.

Request time = number of classfiles requested � 100ms

Request time is the round trip time required for a non-local class �le to be requested

from the server at which it is stored to the client for use during execution. Since class �les are

dynamically loaded individually they are requested and transferred (if compressed archives are

not used for execution) as needed by the application at the client. We assume a round trip

time of 100ms. This is a measured average value of a cross-country link between the University

of Tennessee, Knoxville and the University of California, San Diego.

Transfer Delay = Request time+ (wait in bytes � bytes per second(NetworkBW
�))

At any time during simulated execution when the total amount transferred so far is

insu�cient to continue execution, program progress must halt until the necessary transfer has

occurred. We accumulate the number of bytes that is waited on during execution to compute

39

wait in bytes in the above expression. Each time stalling occurs, the currently available network

bandwidth value is obtained (hence, the asterisk). For the work in this dissertation, we use a

single value each time bandwidth is requested. However we perform the simulation for multiple

bandwidth values. Our system is easily extended to use trace data and real network data. We

use single bandwidth \snapshots" for repeatability purposes.

BCPI = ET secs � (1=bytecode instruction count) �Mhz

BCPI stands for average bytecode cycles per instruction. To compute this value we

time the execution of a program 100 times on a 300Mhz dedicated processor to get the execution

time in seconds (ET secs). Instrumented execution is used to compute the number of bytecode

instructions are executed by the program for a given input. The execution time is multiplied

by the inverse of the number of bytecode instructions and the megahertz rate of the processor

(300Mhz in this case).

bblock ET secs = bb:bytecode instruction count �BCPI

For our transfer and overlap simulations, we use the number of seconds a basic block

will execute for (bblock ET secs). To compute this we take the BCPI and multiply it by the

bytecode instruction count of the basic block.

bytes per second(NetworkBW) = Network megabits per second � (220=8)

To determine the number of bytes that can transfer per second given a certain network

bandwidth we divide the bandwidth (Network megabits per second) by eight to get megabytes

per second and then multiply this by 220 to get bytes per second. The bandwidth value itself

can be obtained from trace or live network data.

olapped bytes = bblock ET secs � bytes per second(NetworkBW)

To compute the number of bytes that can be overlapped during execution of a program

we compute the execution time of each basic block (bblock ET secs) and then multiply that

by the number of bytes per second that can transfer given a speci�c network bandwidth value

(NetworkBW).

wait secs = wait bytes=bytes per second(NetworkBW)

To compute the amount of wait time a program experiences due to transfer (wait secs)

we must �rst compute the number of bytes which are required for execution to proceed. To

40

compute the latter, simply determine the number of additional bytes that needed for execution

to continue. We then divide this number by the number of bytes per second that the underlying

network can currently support.

Decompression Rate = compressed size=average seconds to decompress

Some of our techniques assume compressed transfer. For these, we consider the time

required for decompression. We compute this time by repeatedly (100 times) decompressing a

benchmark on a 300Mhz dedicated processor. For our studies we use an average decompression

rate (di�erent for each benchmark). We compute this by taking the compressed application

size and dividing it by the average decompression time.

Total Delay = Transfer Delay + (Decompression Rate � compressed size)

In addition to decompression rate, we compute total delay for the techniques for which

we consider compression. To compute this we take the average decompression rate and multiply

it by the size of the compressed �le. We then add this to the transfer delay. In some cases,

we also include compression time into this total delay �gure. When we do so, we make it

explicit in the text. Compression time is computed much like decompression: the application

is compressed 100 times and timed on a 300Mhz dedicated processor.

IV.C Compilation Delay Optimization Methodology

The second source of load delay the overhead of dynamic compilation. We measure

and implement optimizations that reduce the e�ect of dynamic compilation for two compilation

environments. Many of the optimizations are pro�le-based: o�-line statistics of execution

behavior are collected and used during optimization. For compilation delay, we gather pro�les

of method compilation. To do this, we have extended each of our compilation environments to

log the compilation that takes place and the time required for it during program execution. Like

for transfer delay optimizations we also use pro�les of invocation counts. For these, we use the

same pro�les generated for the transfer delay optimizations using the Bytecode Instrumentation

Tool (BIT) [54, 55] as described above in Section IV.B.

IV.C.1 Compilation Environments

All of the techniques for transfer delay reduction use and assume JDK 1.1.8 execution

environment using interpretation. For the techniques that attack compilation delay we use two

41

di�erent compilation environments. Both infrastructures are designed for adaptive compila-

tion. As such, they include multiple compilers (optimizing and fast, non-optimizing) to adapt

to program runtime behavior. We do not use the adaptive framework with our compilation

optimizations but do exploit the inclusion of multiple compilers in such systems. The �rst

compilation environment we use is Jalape~no; the second is the Open Runtime Platform (ORP).

Jalape~no Virtual Machine

In one of the studies we present for compilation delay reduction (Chapter X), we

attempt to reduce compilation delay incurred by the use of the Jalape~no Virtual Machine, a

JVM being developed at the IBM T. J. Watson Research Center [2, 3]. Jalape~no is written

in Java and designed to address the special requirements of SMP servers: performance and

scalability. Extensive runtime services such as parallel allocation and garbage collection, thread

management, dynamic compilation, synchronization, and exception handling are provided by

Jalape~no.

Jalape~no uses a compile{only execution strategy, i.e., there is no interpretation of

Java programs. Currently there are two fully{functional compilers in Jalape~no, a fast baseline

compiler and the optimizing compiler. The baseline compiler provides a near-direct translation

of Java class �les thereby compiling very quickly and producing code with execution speeds

similar to that of interpreted code. Jalape~no, using the baseline compiler, performs in much

the same way as an interpreted system.

The second compiler is the optimizing compiler and builds upon extensive compiler

technology to perform various levels of optimization [12]. The compilation time using the

optimizing compiler is 98% slower on average for the programs studied than the baseline,

but produces code that executes 71% faster. To warrant its use, compilation overhead must

be recovered by the overall performance of the programs. All results are generated using a

December, 1999 build of the Jalape~no infrastructure. We report results for both the baseline

and optimizing compilers. The optimization levels we use in the latter include many simple

transformations, inlining2, scalar replacement, static single assignment optimizations, global

value numbering, and null check elimination.

Jalape~no is invoked using a boot image [2]. A subset of the runtime and compiler

classes are fully optimized prior to Jalape~no startup and placed into the boot image; these class

�les are not dynamically loaded during execution. Including a class in the boot image, requires

2The optimizing compiler performs both unguarded inlining of static and �nal methods and guarded inlining

of non-�nal virtual methods.

42

that the class �le does not change between boot-image creation and Jalape~no startup. This is

a reasonable assumption for Jalape~no core classes. This idea can be extended with mechanisms

to detect if a class �le has changed since it is statically compiled to enable arbitrary application

classes to be pre-compiled. This topic is further described in [73]. Infrequently used, specialized,

and supportive library and Jalape~no class �les are excluded from the boot image to reduce the

size of the JVM memory footprint and to take advantage of dynamic class �le loading. When a

Jalape~no compiler encounters an unresolved reference, i.e., an access to a �eld or method from

an unloaded class �le, it emits code that when executed invokes Jalape~no runtime services to

dynamically load the class �le. This process consists of loading, resolution, compilation, and

initialization of the class. If, during execution, Jalape~no requires additional Jalape~no system

or compiler classes not found in the boot image, then they are dynamically loaded: there is no

di�erentiation in this context between Jalape~no classes and application classes once execution

begins. To ensure that our results are repeatable in other infrastructures, we isolate the impact

of our approaches to just the benchmark applications by placing all of the Jalape~no class �les

required for execution into the boot image.

The results we present using Jalape~no are gathered by repeatedly executing appli-

cations on a dedicated, 166MhzX4{processor PowerPC-based machine running AIX v4.3. Ta-

ble IV.6 shows various compilation characteristics of subset of benchmarks we used in this study.

Compilation time (CT) and execution time (ET), in seconds, using the Jalape~no optimizing

and the fast baseline compilers are shown for each input. The compilation time includes the

time to compile only the class �les that are used.

Open Runtime Platform (ORP)

For our compilation delay reduction techniques, we also consider the Open Runtime

Platform (ORP), an open-source, dual-compiler system [65] which was recently released by

the Intel Corporation [17]. The �rst compiler (O1) provides very fast translation of Java pro-

grams [1] and incorporates a few very basic bytecode optimizations that improve execution per-

formance. The second (O3) compiler performs a small number of commonly used optimizations

on bytecode and an intermediate form to produce improved code quality and execution time.

O3 optimization algorithms are implemented with compilation overhead in mind, hence only

very e�cient algorithms are used [16]. The optimizations implemented include many simple

transformations, inlining of small methods, copy and constant propagation, common subex-

pression elimination and simple loop optimizations. The compilation overhead, total time, and

43

Table IV.6: Jalape~no compilation statistics.

This data CANNOT be compared to that from other tables and �gures since the measurements

were made on a 166MhzX4 PowerPC processor during an internship at IBM Research during

which Jalape~no was made available to us. The �rst four columns of data contain the execution

(ET) and compile (CT) times when the Jalape~no optimizing compiler is used. The last four

columns are the execution and compile times when the Jalape~no baseline compiler is used.

Times for both inputs are given.

Optimized Baseline{Compiled

Time (Secs) Time (Secs)

(Used Classes) (Used Classes)

Train Ref Train Ref

Benchmark ET CT ET CT ET CT ET CT

Compress 7.4 8.2 84.0 8.1 47.0 0.1 525.1 0.1

DB 1.9 8.2 102.7 8.0 2.9 0.3 162.6 0.3

Jack 9.9 16.0 84.3 16.0 10.9 0.4 93.2 0.4

Javac 2.0 38.6 66.3 38.5 3.0 0.6 103.5 0.6

Jess 2.5 27.2 45.2 27.6 6.4 0.3 109.8 0.3

Mpeg 7.3 15.9 71.3 15.9 47.6 0.4 452.1 0.4

Avg 5.2 19.0 75.6 19.0 19.6 0.4 241.1 0.4

the number of methods compiled by the ORP compilers is shown in Table IV.6. Total time

consists of both compile and execution time. For comparison, O3 execution time is 8% faster

than O1 execution time on average and the compilation time of the O3 compiler is 89% slower

than that for O1 on average in the programs studied.

The results we present using ORP are gathered by repeatedly executing applications

on a dedicated, 300Mhz x86 machine running Linux version 2.2.15. Table IV.7 shows various

compilation characteristics of subset of benchmarks we used in the ORP study. Compilation

time (CT) and execution time (ET), in seconds, using the ORP O3 and O1 compilers are shown

for each input. The compilation time includes the time to compile only the class �les that are

used.

IV.C.2 Compilation Delay Optimization Metrics

In this section, we summarize the various metrics we use to model and measure the

e�cacy of our compilation delay techniques. These metrics allow us to empirically evaluate

the di�erences between existing technology and the advances that our runtime and compiler

optimizations enable.

Compilation secs = average time for compilation

44

Table IV.7: Compilation characteristics using the Open Runtime Platform.

The �rst four columns of data contain the execution (ET) and compile (CT) times when the

ORP O3 optimizing compiler is used. The last four columns are the execution and compile

times when the ORP O1 compiler is used. Times for both inputs are given.

O3 (Optimized) O1-Compiled

Time (Secs) Time (Secs)

(Used Classes) (Used Classes)

Train Ref Train Ref

Benchmark ET CT ET CT ET CT ET CT

Jack 4.9 2.9 38.7 2.8 5.5 0.3 41.9 0.3

JavaCup 6.4 3.3 44.5 3.2 6.7 0.3 48.6 0.3

Jess 1.3 2.6 40.4 2.6 1.5 0.3 41.8 0.3

Jsrc 16.9 3.0 48.2 3.0 17.9 0.3 49.6 0.3

Mpeg 3.2 2.4 30.8 2.4 4.0 0.3 37.5 0.3

Soot 1.0 1.8 5.2 1.7 1.0 0.3 6.7 0.3

Avg 5.6 2.7 34.6 2.6 6.1 0.3 37.7 0.3

Compilation time using either infrastructure is computed in similar ways. The com-

pilation system is instrumented so that each time a compiler is invoked a time is started. Upon

completion, the time is stopped and the compilation time is recorded. This metric is accu-

mulated throughout program execution. We repeatedly execute the programs, measuring the

compilation time, 100 times using a dedicated processor.

Execution secs = average total time� Compilation secs

Average total time (compilation plus execution) is computed by repeatedly timing

(100 times) application execution using uninstrumented compilation environments. We refer to

this value as Total Time in the chapters on compilation delay reduction (Chapter IX- XI). The

compilation time (Compilation secs) is then subtracted from this value (average total time) to

determine the execution time of the program without compilation.

Chapter V

General Solutions for Reducing

Transfer Delay

The performance of Internet-computing applications that use remote execution (mobile

programs) is dictated by the speed of the processor on which it executes as well as by the

underlying, dynamically changing, network characteristics. As the gap between processor and

network speeds continues to widen, mechanisms to compensate for transfer time are required to

maintain acceptable performance of mobile programs. We next present �ve di�erent techniques

that reduce the e�ect of transfer delay and substantially improve mobile program performance.

General solutions to the problem of transfer delay work in one of two ways: By

overlapping transfer with useful work and by reducing the amount that is transferred i.e.,

avoid ing the delay. We �rst present a methodology that does both: Non-strict Execution (NSE).

Non-strict execution enables transfer delay overlap and avoidance through JVM modi�cation.

We propose an extension to the existing JVM transfer and execution model in which the

granularity with which mobile programs transfer and execute is changed from the class �le

to the method. In addition, the transfer model is further modi�ed to implement a model in

which the server pushes the necessary code and data to the destination for execution. This is

in contrast to the existing model in which the destination requests class �les as required by the

execution. We refer to this existing implementation as the request model and our modi�cation

of and extension to it as the push model.

Non-strict execution requires changes to existing Java Virtual Machine technology

to achieve its performance bene�ts. In Chapter VII, we introduce two techniques that use

avoidance and overlap to improve mobile program performance without JVM modi�cation. We

�rst present Class File Splitting, a technique that avoids delay by transferring only the code

45

46

and data that will be executed, i.e. the hot sections. The technique partitions a class �le into

separate hot and cold class �les, so that only the code predicted as used during execution is

transferred.

To enable overlap of transfer with useful work without JVM modi�cation, we then

present Class File Prefetching. This technique enables premature access, and thus transfer, of

class �les to occur in the background. Using a separate thread of execution to perform prefetch-

ing, transfer occurs concurrently with executing application thread(s). When the application

thread accesses a (prefetched) class for the �rst time, the class has partially or completely

transferred so that transfer delay is reduced.

In Chapter VIII, we then consider the e�ect of existing compression techniques for

reducing transfer delay in mobile programs. We present Dynamic Compression Format Se-

lection (DCFS), a technique that exploits the trade-o� made by all compression algorithms:

To achieve high compression ratios requires that there be expensive (in terms of time) decom-

pression algorithms. With DCFS, on-line measurement of dynamic network performance is

used to guide selection of the compression format the minimizes the total delay required for

transfer and decompression. The application is stored at the server in multiple compression

formats; DCFS uses the underlying resource performance characteristics to determine which

format the application should be transferred in to achieve the least delay (from transfer and

decompression).

In this same chapter, we also present a technique that archives and compresses together

only those �les that will be used during execution. This pro�le-guided technique, called Selective

Compression reduces the amount that transfers in a compressed archive and thus transfer

delay. We detail each of these techniques for the reduction of transfer delay, the �rst source of

load delay overhead, in the three chapters that follow. Within each chapter, we describe the

implementation of each technique and use empirical data to evaluate the extent to which each

reduces transfer delay.

Chapter VI

Transfer Delay Avoidance and

Overlap: Non-strict Execution

Network transfer delays can result in signi�cant startup time and substantially degrade

execution time of mobile applications. To amortize the cost of network transfer to the execution

site, code execution should occur concurrently with (i.e., overlap) code and data transfer.

However, existing mobile execution facilities such as those provided by the Java programming

environment [27] typically enforce strict execution semantics as part of their runtime systems.

Strict execution requires a program and all of its potentially accessible data to fully transfer

before execution can begin. The advantage of this execution paradigm is that it enables secure

interpretation and straightforward linking and program veri�cation. Unfortunately, strictness

prevents overlap of execution with network transfer, and little can be done to reduce the cost

of transfer latency.

In this chapter we investigate the e�cacy of non-strict execution (NSE) in which

methods execute at the remote site before transfer has completed for the class the methods

are contained in. This small change enables an abundance of optimizations to be implemented

for the reduction in transfer delay through overlap and avoidance. Overlap is enabled when

transfer is able to continue in the background concurrently with execution. Since execution

can begin once method code and data is available, transfer of the remaining class �le can be

performed while the method is executing.

Transfer delay avoidance is enabled through �le restructuring. Since methods can be-

gin executing earlier than with strict execution, transfer delay can be minimized when methods

are transferred in the order they will execute. This order is predicted through the use of o�-line

pro�ling techniques. File restructuring allows transfer of unused code and data to be avoided.

47

48

Class A Class B Class C

Global Data

}

}

}

}

. . .

. . .

. . .

. . .

}

}

}

. . .

. . .

. . .

Global Data

B(...) {

Global Data

}

}

. . .

. . .

C(...) {

foo(...) {

bar(...) {

foo(...) {error(...) {

foo(...) {

bar(...) {

main(...) {

Figure VI.1: Example Java Application

In addition, since method execution order is determined using this technique, there is no need

for the client to request program pieces as required by the execution. Using this push model as

a replacement for the existing request model, transfer time required for requests is also avoided.

VI.A Design and Implementation

Using existing implementations of the JVM, each Java class is contained a separate

�le. Figure VI.1 provides a visual of the class �les from an arbitrary application. There are

three classes, A, B and C, containing four, three, and two methods, respectively. The classes

also contain global data (as denoted). The order of the methods in the class �le is equivalent

to that in the Java source �le from which the bytecode is generated.

Each time a class �le is accessed by the executing program or JVM (for veri�cation

purposes) it is loaded into memory. Non-local class �les are transferred at this time. During

this dynamic class �le loading, execution is stalled and does not proceed until the all necessary

class �les are completely loaded. We call this constraint Strict Execution. Strict execution of

classes imposes a major performance limitation on Internet-computing programs. Given exist-

ing network transfer delays, the startup time and overall transfer delay using strict execution

can be signi�cant.

To decrease transfer delay, we propose a Non-strict execution and transfer model in

which execution and transfer both occur at the method-level. Method-level execution (MLE)

49

Internet

Source Destination

error() GDfoo()bar()main(...)

Non−Strict Execution:

Strict Execution (Existing approach):

Internet

Source Destination

error() main()bar()foo() GD

Class A

Class A (reordered)

Arrives at
destination first

Wait until this point to
continue execution

Figure VI.2: Strict v/s Non-Strict Execution

is implemented so that method execution takes place when the necessary code and data are

in memory. This precludes the requirement that the entire class �le be available to invoke

a method within the class �le. We address the implications of MLE on the Java veri�cation

mechanism in Section VI.A.3. Method-level transfer (MLT) is necessary so that method code

and related data can be identi�ed in the bytecode stream and placed in memory for execution.

MLT is implemented by the inclusion of method delimiters in the bytecode stream. We describe

the implementation of MLT and delimiters in Section VI.A.1 on program restructuring.

Both strict and non-strict execution are depicted in Figure VI.2. Strict execution is

shown in the top half of the �gure. A class �le (Class A from our example above in this case)

must transfer to completion before any method or �eld within the class is invoked or accessed,

respectively. With non-strict execution (bottom half of the �gure), method execution begins

once the necessary code and data are loaded. That is, even if the class �le containing the invoked

method has not completed transfer, the method can execute. This enables execution to proceed

earlier since it is not required to stall waiting for transfer and loading of the remaining portion

of the class. Method-level transfer enables identi�cation of method code and data boundaries

and method-level execution allows execution to proceed once the code and data are in memory.

We propose method-level execution and transfer due to the modularity that methods

provide. Non-strict execution can also be performed at the basic block level; however, pre-

liminary experiments show that checking for a delimiter at the conclusion of each basic block

50

incurs substantial overhead with little added bene�t. In addition, code reuse in object-oriented

languages, like Java, results in small method sizes. The applications we use for our simulations

support this claim. With method level support for non-strict execution, large methods can still

bene�t by using the compiler to break the method up into smaller methods. We do not perform

any method splitting since the methods in our test programs are of reasonable size.

If the methods in the class �le are in the order they will execute (as in the Class A

(Reordered) in the bottom half of the �gure), then transfer delay can be substantially reduced

since only the code and data required for continuation of execution is waited for. If no reordering

is performed (as in the top half of the �gure) then the transfer delay incurred using non-strict

execution can be equivalent to that of strict execution. We use program restructuring, an

optimization in which code and data within a program is reordered, to exploit the non-strict

execution model and reduce transfer delay.

VI.A.1 Transfer Schedules

To restructure programs for use in a non-strict execution environment, we �rst break

each application into pieces called transfer units. Transfer units consist of method code and the

global data required to execute the method. From the transfer units we construct a transfer

schedule which contains the transfer-unit representation of the program. The transfer schedule

is shipped from the source to the destination for remote execution of the program.

Transfer units are placed into the transfer schedule in the order in which the methods

contained within them will execute at the destination. Since such an ordering is input-dependent

and future input use is not known, we must predict future execution order. Unlike prior code

reordering research, this ordering is the First-Use ordering of methods. That is, our goal is to

place transfer units (methods) into the transfer schedule in the order they are �rst used by the

executing program. We examine the performance of two �rst-use prediction techniques. The

�rst approach uses static program estimation and the second uses o�-line pro�ling to predict

the �rst-use method order.

Static, First-Use Estimation

The �rst technique we examine for �rst-use order prediction uses a static call graph.

To obtain this ordering, we construct a basic block control ow graph for each method with

inter-procedural edges between the basic blocks at call and return sites. The predicted static

invocation ordering is derived from a modi�ed depth �rst search (DFS) of this control ow

51

graph, using a few simple heuristics to guide the search.

A ow graph is created to keep track of the number of loops and static instructions

for each path of the graph. When generating the �rst-use ordering, we give priority to paths

with loops on them, predicting that the program will execute them �rst. When processing a

forward non-loop branch, �rst-use prediction follows the path that contains the greatest number

of static loops. In addition, looping implies code reuse, and thus increases the opportunity for

overlap of execution with transfer. The order in which methods are �rst encountered during

static traversal of the ow graph determines the �rst-use transfer order for the methods. When

processing conditional branches inside of a loop, the �rst-use traversal traverses all the basic

blocks inside the loop searching for method calls, before continuing on to the loop-exit basic

blocks.

To process all the basic blocks inside of a loop before continuing on, �rst-use prediction

uses a stack data structure and pushes a pair, (x,y), onto the stack when processing a loop-

exit or back edge from a conditional branch. The pair consists of the unique basic block ID

and the ID of the loop-header basic block. These pairs are place holders, which allow us to

continue traversing the loop-exit edges once all the basic blocks within the loop have been

processed. When all the inner-basic blocks have been traversed, and control has returned to

the loop-header basic block, the algorithm continues the psuedo-DFS on the loop-exit edges by

popping the pairs o� the top of the stack. Upon termination of the modi�ed-DFS algorithm,

the �rst-use method order discovered by the static traversal is output.

Pro�le-Guided, First-Use Estimation

A �rst-use pro�le is generated by logging the order in which methods are invoked

during a program's execution using a particular input. Any unexecuted methods are given a

�rst-use ordering using static estimation described in the previous section. To evaluate the

impact of pro�le-driven prediction, we measure the reduction in transfer delay when the same

input is used to construct the transfer schedule as is executed with at the destination as well

as when a di�erent input is used for transfer schedule construction. We refer to the former as

Ref-Ref results and the latter as Ref-Train results.

VI.A.2 Program Restructuring

Both static estimation and pro�le-base �rst-use ordering algorithms output the meth-

ods as a �rst-use call graph like the one depicted in Figure VI.4 for our sample application

52

class B {

 public int var1;

 protected int var3;
 B() {

 private int var2;

 public C varC = null;

 var1 = var2 = var3 = −1;

bar () {
 (varC = new C()).foo();

 }

 var2 = 0;

}
 }

class C {
 C() { . . . }
 foo() { . . . }
}

class A {
 public B varB;
 A() { . . . }
 main(. . .) {
 bar();
 varB = new B();
 foo();

 }
 foo() { . . . }

 error() { . . . }
}

 varB.foo();

Figure VI.3: Example application code

A::main(...) A::bar() A::foo() B::foo()B::B()

Figure VI.4: An example of a �rst-use call graph

The �rst use call graph is generated using the static �rst use estimation or the pro�le. It is

then used to generate the transfer schedule for remote execution.

introduced in Figure VI.3. Each node in the graph identi�es a class and method, the �rst node

is the �rst method to execute and the �nal node is the last method to execute.

There are many ways to construct a transfer schedule in the predicted method execu-

tion order. For example, we can reorder just class �les and leave the methods within them in

the default order. We can reorder within classes but not across them. We can reorder across

classes and put all of the global data up front to ensure that all data is available when used.

Or we can distribute both methods and global data across all classes of an application in the

�rst-used order. We describe each of these constructions and measure its e�ect on transfer

delay.

The �rst type of program restructuring is to reorder class �les within an application

without modifying the code and data within them. This is the simplest of transfer schedule

construction algorithms. Complete class �les are placed in their entirety into the transfer

schedule in the order the class �les are �rst accessed. The methods within the class �les are in

the order in which programmer coded them (default ordering). Such a reordering and schedule

is shown in Figure VI.5. Methods begin executing (as for all transfer schedules) as soon as

the necessary code and data becomes available. We refer to this type of transfer schedule

construction in our results as MLE (method-level execution).

53

Class A Class B Class C

Global Data

}

}

}

}

. . .

. . .

. . .

. . .

}

}

}

. . .

. . .

. . .

Global Data Global Data

}

}

. . .

. . .

C(...) {

B(...) {

foo(...) {

bar(...) {

main(...) {

bar(...) {

foo(...) {

error(...) {

foo(...) {

Figure VI.5: Restructured class �les

The example application is reordered according to the �rst-use static call graph pictured in

Figure VI.4. Classes are restructured so that methods appear in the order each is �rst invoked.

For the next transfer schedule, we reorder the methods within the classes (not across

classes) as well as the classes themselves prior to schedule placement. The resulting transfer

schedule for the example program is shown in Figure VI.7. We refer to this type of schedule as

MLE plus Intra-Class Reordering (CR) (MLE + CR). Alternately, we can construct a transfer

schedule by interleaving methods across classes as shown in Figure VI.8. For our results, we

refer to this MLE plus Global Method Reordering (MR) (MLE + MR).

In each of these types of transfer schedule, the global data in each class �le is placed

just prior to the method placed earliest in the transfer schedule. An alternative placement

would be to also distribute the global data throughout the transfer schedule according to its

use by methods (determined by a static scan of the bytecode). Figure VI.9 depicts this scenario

in the �nal transfer schedule construction algorithm. The global data required for execution of

a method is placed just prior to the earliest method that uses that global data. We are able to

determine which methods use which global data using static compiler analysis of the class �les.

We refer to this MLE plus MR plus Global Data Reordering (GDR) (MLE + MR + GDR) in

our results. Any global data (like methods) that are unreachable or accessed only by methods

predicted as unused during �rst-use call graph construction are placed at the end of the transfer

schedule in the order determined by the modi�ed-DFS of unused methods.

54

C::Global Data

A::Global Data

B::Global Data

C::foo(...) {...}

C::C(...) {...}

A::error(...) {...}

A::foo(...) {...}

A::bar(...) {...}

A::main(...) {...}

B::foo(...) {...}

B::bar(...) {...}

B::B(...) {...}

Class A

Global Data

Class B

Global Data

B(...) {...}

Global Data

Class C

C(...) {...}

Transfer Schedule

foo(...) {...}

bar(...) {...}

foo(...) {...}

error(...) {...}

foo(...) {...}

bar(...) {...}

main(...) {...}

Figure VI.6: NSE transfer schedule for method-level execution.

This transfer schedule is a combination of all of the class �les in an application. Class �les are

inserted into the schedule in the order they are predicted to execute. However, no reordering

within class �les is performed. A method can execute at the destination once the necessary code

and data becomes locally accessible. We refer to this in our results as method-level execution

(MLE).

A::main(...) {...}

A::bar(...) {...}

C::Global Data

A::Global Data

A::foo(...) {...}

B::bar(...) {...}

A::error(...) {...}

B::Global Data

B::foo(...) {...}

B::B(...) {...}

C::foo(...) {...}

C::C(...) {...}

Class A

Global Data

Class B

Global Data

B(...) {...}

Global Data

Class C

C(...) {...}

Transfer Schedule

foo(...) {...}

bar(...) {...}

foo(...) {...}

error(...) {...}

foo(...) {...}

bar(...) {...}

main(...) {...}

Figure VI.7: NSE transfer schedule for MLE and intra-class reordering.

Methods are �rst reordered within class �les and then the class �les are inserted into the transfer

schedule. There is no reordering performed across classes. We refer to this in our results as

method-level execution plus intra-class reordering (MLE + CR).

55

Class A

Global Data

Class B

Global Data

B(...) {...}

Global Data

Class C

C(...) {...}

Transfer Schedule

foo(...) {...}

bar(...) {...}

foo(...) {...}

A::main(...) {...}

A::bar(...) {...}

A::Global Data

B::Global Data

B::B(...) {...}

A::foo(...) {...}

B::foo(...) {...}

A::error(...) {...}

B::bar(...) {...}

C::Global Data

C::C(...) {...}

C::foo(...) {...}

error(...) {...}

foo(...) {...}

bar(...) {...}

main(...) {...}

UNUSED

Figure VI.8: NSE transfer schedule for MLE and global method reordering.

For this transfer schedule, methods are reordered across all class �les so that they can be

interleaved into the schedule in the order they are predicted to execute in. We refer to this in

our results as method-level execution plus global method reordering (MLE + MR).

Once the transfer schedule is constructed, it is transferred to completion from the

source to the destination when the program is invoked. If the program exits before the transfer

schedule has completed transfer, transfer is ceased. When this occurs (and it is the common

case with the programs we studied), non-strict execution reduces the amount that transfers

(over dynamic class �le loading) thereby avoiding transfer delay.

If the code (or data) has not arrived when needed by the execution, the program stalls

(as in the existing JVM class loading mechanism) until it arrives at the destination (according

to the schedule). Our results indicate that even when predicted �rst-use order is incorrect and

the program must stall to correct the misprediction, transfer delay is still reduced just not to

the same degree as when prediction is correct. If this model proves to increase transfer delay

(degrading strict execution performance) then we propose to use a hybrid transfer model which

combines the push and request models. Using this model, the transfer schedule contains only

those methods predicted as used during execution. If additional methods are invoked that

were not predicted as used, they are requested on-demand by the destination. This incurs the

overhead of round-trip time for the request but may require less transfer delay than if waiting

for the invoked method in the transfer schedule. However, for the programs we studied in this

thesis, misprediction has not proven to cause performance degradation.

56

Class A

Global Data

Class B

Global Data

B(...) {...}

Global Data

Class C

C(...) {...}

Transfer Schedule

foo(...) {...}

bar(...) {...}

foo(...) {...}

A::main(...) {...}

A::bar(...) {...}

B::B(...) {...}

A::foo(...) {...}

B::foo(...) {...}

A::error(...) {...}

B::bar(...) {...}

C::C(...) {...}

C::foo(...) {...}

error(...) {...}

foo(...) {...}

bar(...) {...}

main(...) {...}

UNUSED

Figure VI.9: NSE transfer schedule for MLE, MR, and global data reordering.

For this transfer schedule, methods are reordered across all class �les so that they can be

interleaved into the schedule in the order they are predicted to execute in. In addition, instead

of placing all of the global data prior to the �rst method transferred from each class, we

distribute it throughout the transfer schedule. Global data used by a method is placed in the

transfer schedule just prior to the �rst method in the program that accesses that global data.

We refer to this in our results as method-level execution plus global method reordering plus

global data reordering (MLE + MR + GDR).

57

Notice that since the transfer schedule dictates the order in which methods and global

data are transferred (and thus the order of class �les �rst-access), there is no need for the

destination to dynamically request parts of the program via the JVM dynamic class �le loading

mechanism. We refer to this existing model as the request model. Our measurements indicate

that requesting class �les over a cross-country Internet link requires approximately 100ms;

adding to the total transfer delay. By eliminating this overhead imposed by the request model

through the use of transfer schedules, we are able to further reduce the transfer delay imposed

by existing technology. We refer to the incorporation of transfer schedules for remote execution

as the push model.

VI.A.3 Implications on JVM Veri�cation

For our non-strict execution approach to be viable, we need to address its e�ect on

Java class �le veri�cation. Veri�cation enables security checks to be performed by the JVM

to ensure a set of constraints are met. These constraints are described in the Methodology

Chapter and detailed in [59]. In this subsection, we provide a high level overview of the the

JVM veri�cation changes that are necessary to support non-strict execution. Veri�cation is, by

default, performed on all non-local class �les but can be performed on all class �les or turned

o� completely.

To convert the Java bytecode class representation to the internal JVM representation

for execution, the JVM performs (1) veri�cation, (2) preparation, and (3) resolution on the

bytecode stream when the class is �rst loaded. Veri�cation is the process of checking the

structure of a Java class �le to ensure that it is safe to execute. Preparation involves allocation

of static storage and any internal JVM data structures needed for execution of the loaded class

�le. Resolution is the process of checking a symbolic reference before it is used. Symbolic

references are usually replaced with direct references during this phase. While veri�cation and

preparation can be performed once the global data is transferred, resolution can be performed

lazily as methods are invoked.

With non-strict execution, veri�cation and preparation must be modi�ed to perform

lazily (as needed) as well. Since preparation, is performed using the global data in the class �le

(any non-code information about the class �le structure). As global data becomes available,

static allocation (preparation) can be performed. Modi�cation to the veri�cation mechanism

is more complicated.

The JVM performs �ve steps during veri�cation of a class �le as described in [59]. Step

58

1 ensures that the class �le format is correct, Step 2 ensures that static constraints are met on

the constant pool and that �eld and method references are well formed. Step 3 veri�es that the

method code in the class meets speci�c constraints (this includes checks for consistent/correct

usage of types, operand stack, method arguments, etc.). Step 4 checks that a newly loaded class

is used consistently and correctly by the accessing instruction. Steps 3 and 4 are performed

lazily, i.e. only when the method is invoked for the �rst time or a new class is accessed is step

3 or 4 performed, respectively. As such, only steps 1 and 2 need to be modi�ed for use with

non-strict execution.

Since both step 1 and 2 perform checks on the global data (class �le structure) and do

not access method code, we propose to change each step in a similar manner. Each time a class

�le is accessed for the �rst time, a \skeleton" of the class �le is laid out in memory. As global

data becomes available, the class �le skeleton is �lled in. During this incremental process,

checks in steps 1 and 2 are performed on the newly added portions of the class �le. When

other classes are needed for cross-class dependency resolution, we use this same mechanism to

perform the necessary checks incrementally. For example, to verify that a subclass implements

the correct parent type, the global data from the parent class is transferred (using the non-

strict execution model) and implemented into a class �le skeleton and veri�ed. This enables

execution to proceed without waiting for the entire parent class to transfer since only the

information required for veri�cation is needed. When the parent class eventually transfers, the

corresponding class �le skeleton is �lled in and incrementally veri�ed just as all other class �les

are.

Other ways to ensure that a Internet-computing program can be trusted include the

use of digital signatures [10] or software fault isolation [86]. We do not address the changes

necessary for such veri�cation systems to work with non-strict execution. We do however,

measure the impact of our techniques both with and without veri�cation.

VI.B Results: Non-strict Execution

To evaluate the impact of non-strict execution and program restructuring we present

simulation results. Our simulation model is described in detail in Chapter IV (Methodology). In

brief, we intercept program execution at each basic block and compute the amount of overlap

that can occur during the execution of the block. In addition, we compute the amount of

transfer (of the transfer schedule) that can occur during this overlap. Each time a method is

59

invoked or global data is accessed we check that the transfer schedule has transferred enough to

make the code and data available. If it is not available, we determine the delay incurred by the

necessary transfer. Once available, execution proceeds until the next basic block is executed.

We �rst present our results for trusted transfer in which no veri�cation is used e.g., by

setting the Java -noverify ag. Following this, we present results for veri�ed transfer (in which

veri�cation of class �les is performed).

VI.B.1 Trusted Transfer

Figures VI.10, VI.11, and VI.12 show the transfer delay (in seconds) that is experienced

by the application with and without non-strict execution. A separate graph is shown for each

benchmark, each containing both same-input (Ref-Ref) and cross-input (Ref-Train) results.

The x-axis is bandwidth values for various network links ranging from a modem link (0.03Mb/s)

to a T1 link (1Mb/s). For each network bandwidth there are eight bars. The �rst bar (far left) is

the base case (strict execution) transfer delay. The second bar from the left for each bandwidth

shows the e�ect of method-level execution (MLE) without any reordering; the transfer schedule

for this contains the class �le containing the \main" method �rst followed by all other class

�les in alphabetical order. The methods within the class �les are in the default order. The

next three pairs of bars (in the set of eight) show the results for pro�le-guided transfer schedule

construction for each type of schedule previously described; for each type, Ref-Train and Ref-

Ref results are shown. Ref-Train results again are those for which a di�erent input was used

to generate the pro�le that guides reordering than was used to generate the results. Ref-Ref

results are those for which the same input was used for pro�le and result generation. The

di�erent types of transfer schedules can be summarized as follows:

� MLE + CR: method-level execution with method reordering within class �les (intra-class

reordering). Execution proceeds at the method-level and no interleaving of the class �les

is performed during transfer schedule construction. The transfer schedule is like that

shown in Figure VI.7. Results are shown for both Ref-Train and Ref-Ref con�gurations.

� MLE + MR: method-level execution with interleaved class �les. Method reordering is

performed globally across all class �les in an application. The transfer schedule is like that

shown in Figure VI.8. Results are shown for both Ref-Train and Ref-Ref con�gurations.

� MLE + MR + GDR: method-level execution with global class, method, and data re-

ordering in an interleaved transfer schedule. The transfer schedule is like that shown in

Figure VI.9. Results are shown for both Ref-Train and Ref-Ref con�gurations.

The average strict-execution transfer delay for these benchmarks is 56 seconds. The

average number of classes requested using the base case request model is 70, therefore 7 seconds

60

0

5

10

15

20

25

30

35

40

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE

MLE + CR (Ref-Train) MLE + CR (Ref-Ref)

MLE + MR (Ref-Train) MLE+ MR (Ref-Ref)

MLE + MR + GDR (Ref-Train) MLE + MR + GDR (Ref-Ref)

BIT

0

1

2

3

4

5

6

7

8

9

10

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE
MLE + CR (Ref-Train) MLE + CR (Ref-Ref)
MLE + MR (Ref-Train) MLE+ MR (Ref-Ref)
MLE + MR + GDR (Ref-Train) MLE + MR + GDR (Ref-Ref)

Compress

Figure VI.10: Resulting non-strict transfer delay for benchmarks Bit and Compress

Each graph provides a set of bars for each network bandwidth (x-axis). The y-axis is seconds

due to transfer delay. From left to right, the eight bars in a set represent the total transfer

delay that results from strict execution (Base), and non-strict execution using method-level

execution (MLE) alone, (MLE) plus intra-class reordering (CR) (Ref-Train and Ref-Ref), MLE

plus global method reordering (MR) (Ref-Train and Ref-Ref), and MLE plus MR and global

data reordering (GDR) (Ref-Train and Ref-Ref).

61

0

5

10

15

20

25

30

35

40

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE
MLE + CR (Ref-Train) MLE + CR (Ref-Ref)
MLE + MR (Ref-Train) MLE+ MR (Ref-Ref)
MLE + MR + GDR (Ref-Train) MLE + MR + GDR (Ref-Ref)

Jack

0

5

10

15

20

25

30

35

40

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE

MLE + CR (Ref-Train) MLE + CR (Ref-Ref)

MLE + MR (Ref-Train) MLE+ MR (Ref-Ref)

MLE + MR + GDR (Ref-Train) MLE + MR + GDR (Ref-Ref)

JavaCup

Figure VI.11: Resulting non-strict transfer delay for benchmarks Jack and JavaCup

Each graph provides a set of bars for each network bandwidth (x-axis).The y-axis is seconds

due to transfer delay. From left to right, the eight bars in a set represent the total transfer

delay that results from strict execution (Base), and non-strict execution using method-level

execution (MLE) alone, (MLE) plus intra-class reordering (CR) (Ref-Train and Ref-Ref), MLE

plus global method reordering (MR) (Ref-Train and Ref-Ref), and MLE plus MR and global

data reordering (GDR) (Ref-Train and Ref-Ref).

62

0

10

20

30

40

50

60

70

80

90

100

110

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE
MLE + CR (Ref-Train) MLE + CR (Ref-Ref)
MLE + MR (Ref-Train) MLE+ MR (Ref-Ref)
MLE + MR + GDR (Ref-Train) MLE + MR + GDR (Ref-Ref)

Jess

0

10

20

30

40

50

60

70

80

90

100

110

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE
MLE + CR (Ref-Train) MLE + CR (Ref-Ref)
MLE + MR (Ref-Train) MLE+ MR (Ref-Ref)
MLE + MR + GDR (Ref-Train) MLE + MR + GDR (Ref-Ref)

Soot

274s

Figure VI.12: Resulting non-strict transfer delay for benchmarks Jess and Soot

Each graph provides a set of bars for each network bandwidth (x-axis). The y-axis is seconds

due to transfer delay. From left to right, the eight bars in a set represent the total transfer

delay that results from strict execution (Base), and non-strict execution using method-level

execution (MLE) alone, (MLE) plus intra-class reordering (CR) (Ref-Train and Ref-Ref), MLE

plus global method reordering (MR) (Ref-Train and Ref-Ref), and MLE plus MR and global

data reordering (GDR) (Ref-Train and Ref-Ref).

63

of transfer delay in the average base case is due to round-trip request time. Non-strict execution

uses the push model and incurs no such overhead. In our discussion of results, we refer to only

the cross-input results (Ref-Train) since they are more representative of real world non-strict

execution performance.

Using MLE (method-level execution alone without reordering), 0 to 5 seconds of trans-

fer delay can be reduced on the modem link and 3 to 10 seconds for the T1 link for all but the

Soot benchmark. Notice though, that for Soot, MLE alone actually increases transfer delay.

This is because no �le restructuring is performed and the default ordering includes many un-

used methods and data and hence mispredicts them across inputs. This increase emphasizes

the need for �le restructuring to be combined with non-strict execution.

Using reordering within classes but not across them (MLE + CR), transfer time re-

duction for the modem link ranges from 2.5 to 20 seconds and a T1 link, 1.1 to 16 seconds.

Global method reordering (MLE + MR) results show 2.6 to 38 seconds of reduction for modem

and 1.1 to 16 for T1. Global data reordering (MLE + MR + GDR) reduces transfer time for the

modem by 3.8 to 62 seconds and 1.1 to 16 seconds for the T1 link on average. In every case, the

performance improvement due to restructuring and non-strict execution is substantial. When

the raw reduction time is small, it is still a substantial percentage of that which results from

strict execution (the base case). That is, for fast links, non-strict execution reduces almost all

transfer delay. However, the base case delay for such links is small to begin with. Most of the

transfer delay improvement for the fast links results from the elimination of the dynamic class

�le loading requests (7 seconds on average).

All of the results presented in the previous �gure were generated from transfer sched-

ules that are constructed from pro�le-guided, �rst-use estimation. We can instead use static

estimation, as described in Section VI.A.1, to determine the �rst-use ordering (using a modi�ed-

DFS of the control ow graph of the program). The bene�t such estimation o�ers is that no

o�-line execution of the instrumented program is required. Figures VI.13, VI.14, and VI.15

show the e�ect of using a static call graph (SCG in the graphs) to guide our transfer schedule

construction for non-strict execution. The graphs are the same as those in the previous �gures

(Figures VI.10, VI.11, and VI.12) and present the transfer delay in seconds (one graph for

each benchmark). However, the same-input (Ref-Ref) results have been removed and bars for

static call graph estimation have been added (denoted as SCG). Results for the various types

of transfer schedule construction are shown for both SCG results and pro�le-based, cross-input

results (method level execution (MLE) with intra-class reordering (MLE + CR), with global

64

method reordering (MLE + MR), and with global method and data reordering (MLE + MR

+ GDR)).

The results in this �gure indicate that static estimation for transfer schedule con-

struction reduces transfer delay, i.e., bars 2, 4, and 6 are all less than the base case (bar 1).

For these benchmarks, pro�le-guided estimation, however reduces transfer delay an additional

250-640ms for 1Mb/s bandwidth (T1) and 6-16 seconds for 0.03Mb/s bandwidth (modem) over

static estimation on average. However for these benchmarks, when o�-line pro�les are unavail-

able, non-strict execution can be used with static transfer schedules to reduce delay. On average

across benchmarks, static estimation reduces delay for the T1 link 2-38 seconds and 5-6 seconds

for the modem link.

We have purposely left out Soot benchmark results from this group. A graph for this

benchmark is shown in Figure VI.16. Soot proves to be an anomaly in the performance of bench-

marks using non-strict execution and static estimation to guide transfer schedule construction.

For all links with bandwidths less than 0.5Mb/s, such use of static estimation degrades perfor-

mance. For 0.5Mb/s bandwidths and greater, it reduces transfer delay however to a much lesser

degree than the pro�le-guided techniques. This results since the predicted �rst-use method or-

der that is generated using our modi�ed-DFS algorithm is substantially di�erent from the actual

�rst-use order and misprediction proves costly since there are so many methods and class �les

in application.

We next show the e�ect of NSE on program startup in Figures VI.17, VI.18, and VI.19

for the modem link (0.03Mb/s) and in Figures VI.20, VI.21, and VI.22 for the T1 link (1Mb/s).

Two cumulative distribution functions (CDF) are given in each graphs (one for each bench-

mark). Each function indicates the cumulative transfer delay (y-axis) in seconds at particular

point during execution of the programs (shown as percentage of program execution completed

on the x-axis). A CDF is shown for strict execution and for non-strict execution cross-input

(Ref-Train) results. The non-strict results shown are those for method-level execution with

global method and data reordering. For every benchmark, the reduction in transfer delay

translates to substantial progress made at program startup. Much less transfer delay is in-

curred in the �rst 10% of program execution. The average execution time of these programs is

49 seconds. Non-strict execution with global method and data reordering reduce the transfer

delay that is required during the �rst 10% (5 seconds) of program execution by 21 seconds for

the modem link and 5 seconds for the T1 link.

65

0

5

10

15

20

25

30

35

40

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

MLE + CR (SCG)

MLE + CR (Ref-Train)

MLE + MR (SCG)

MLE + MR (Ref-Train)

MLE + MR + GDR (SCG)

MLE + MR + GDR (Ref-Train)

BIT

0

1

2

3

4

5

6

7

8

9

10

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

MLE + CR (SCG)

MLE + CR (Ref-Train)

MLE + MR (SCG)

MLE + MR (Ref-Train)

MLE + MR + GDR (SCG)

MLE + MR + GDR (Ref-Train)

Compress

Figure VI.13: SCG transfer schedule construction for benchmarks Bit and Compress.

This �gure is the same as those shown in Figures VI.10, VI.11, and VI.12 without the Ref-Ref

results. In addition, results showing the e�ect of using a static call graph (SCG) to determine

�rst-use estimation and hence, construct non-strict transfer schedules have been added (denoted

by SCG). Use of an SCG precludes the need for o�-line pro�ling. Results for the various types

of transfer schedule construction are shown for both SCG results and pro�le-based, cross-input

results (method level execution (MLE) with intra-class reordering (MLE + CR), with global

method reordering (MLE + MR), and with global method and data reordering (MLE + MR

+ GDR)).

66

0

5

10

15

20

25

30

35

40

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

MLE + CR (SCG)

MLE + CR (Ref-Train)

MLE + MR (SCG)

MLE + MR (Ref-Train)

MLE + MR + GDR (SCG)

MLE + MR + GDR (Ref-Train)

Jack

0

5

10

15

20

25

30

35

40

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

MLE + CR (SCG)

MLE + CR (Ref-Train)

MLE + MR (SCG)

MLE + MR (Ref-Train)

MLE + MR + GDR (SCG)

MLE + MR + GDR (Ref-Train)

JavaCup

Figure VI.14: SCG transfer schedule construction for benchmarks Jack and JavaCup.

This �gure is the same as those shown in Figure VI.11 without the Ref-Ref results. In addition,

results showing the e�ect of using a static call graph (SCG) to determine �rst-use estimation

and hence, construct non-strict transfer schedules have been added (denoted by SCG). Use

of an SCG precludes the need for o�-line pro�ling. Results for the various types of transfer

schedule construction are shown for both SCG results and pro�le-based, cross-input results

(method level execution (MLE) with intra-class reordering (MLE + CR), with global method

reordering (MLE + MR), and with global method and data reordering (MLE + MR + GDR)).

67

0

20

40

60

80

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

MLE + CR (SCG)

MLE + CR (Ref-Train)

MLE + MR (SCG)

MLE + MR (Ref-Train)

MLE + MR + GDR (SCG)

MLE + MR + GDR (Ref-Train)

Jess

Figure VI.15: SCG transfer schedule construction for the Jess benchmark.

This �gure is the same as that for Jess in Figure VI.12 without the Ref-Ref results. In addition,

results showing the e�ect of using a static call graph (SCG) to determine �rst-use estimation

and hence, construct non-strict transfer schedules have been added (denoted by SCG). Use

of an SCG precludes the need for o�-line pro�ling. Results for the various types of transfer

schedule construction are shown for both SCG results and pro�le-based, cross-input results

(method level execution (MLE) with intra-class reordering (MLE + CR), with global method

reordering (MLE + MR), and with global method and data reordering (MLE + MR + GDR)).

68

0

20

40

60

80

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

MLE + CR (SCG)

MLE + CR (Ref-Train)

MLE + MR (SCG)

MLE + MR (Ref-Train)

MLE + MR + GDR (SCG)

MLE + MR + GDR (Ref-Train)

Soot

272
275

259

Figure VI.16: Performance degradation for the Soot benchmark using static estimation.

This graph is the same as those presented in Figures VI.13, VI.14, and VI.15 but is for the Soot

benchmark. It indicates the transfer delay in seconds required without non-strict execution

(BASE) and with non-strict execution. Pro�le-guided transfer schedule techniques (MLE +

CR,MLE + MR, and MLE + MR + GDR) are repeated from those in Figures VI.10, VI.11,

and VI.12. Three bars have been added for each of the techniques for which static estimation has

been used guide transfer schedule construction. For all links with bandwidths less than 0.5Mb/s,

such use of static estimation degrades performance. For 0.5Mb/s bandwidths and greater, it

reduces transfer delay however to a much lesser degree than the pro�le-guided techniques. Soot

is the only benchmark for which this happens.

69

0

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Bit

0

1

2

3

4

5

6

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Compress

Figure VI.17: The e�ect of NSE on program startup (Bit & Compress) and modem link.

Each of these graphs (one for each benchmark) shows the cumulative distribution of bytes

transferred during program execution time. The top function is strict execution. The lower

is non-strict execution with method-level execution (MLE) and restructuring with global data

distribution using imperfect information (Ref-Train).

70

0

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Jack

0

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

JavaCup

Figure VI.18: The e�ect of NSE on program startup (Jack & JavaCup) and modem link.

Each of these graphs (one for each benchmark) shows the cumulative distribution of bytes

transferred during program execution time. The top function is strict execution. The lower

is non-strict execution with method-level execution (MLE) and restructuring with global data

distribution using imperfect information (Ref-Train).

71

0

10

20

30

40

50

60

70

80

90

100

110

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Jess

0

10

20

30

40

50

60

70

80

90

100

110

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Soot

Figure VI.19: The e�ect of NSE on program startup (Jess & Soot) and modem link.

Each of these graphs (one for each benchmark) shows the cumulative distribution of bytes

transferred during program execution time. The top function is strict execution. The lower

is non-strict execution with method-level execution (MLE) and restructuring with global data

distribution using imperfect information (Ref-Train).

72

0

1

2

3

4

5

6

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Bit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Compress

Figure VI.20: The e�ect of NSE on program startup (Bit & Compress) using a T1 link.

Each of these graphs (one for each benchmark) shows the cumulative distribution of bytes

transferred during program execution time. The top function is strict execution. The lower

is non-strict execution with method-level execution (MLE) and restructuring with global data

distribution using imperfect information (Ref-Train).

73

0

1

2

3

4

5

6

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Jack

0

0.5

1

1.5

2

2.5

3

3.5

4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

JavaCup

Figure VI.21: The e�ect of NSE on program startup (Jack & JavaCup) using a T1 link.

Each of these graphs (one for each benchmark) shows the cumulative distribution of bytes

transferred during program execution time. The top function is strict execution. The lower

is non-strict execution with method-level execution (MLE) and restructuring with global data

distribution using imperfect information (Ref-Train).

74

0

2

4

6

8

10

12

14

16

18

20

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Jess

0

2

4

6

8

10

12

14

16

18

20

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Soot

Figure VI.22: The e�ect of NSE on program startup (Jess & Soot) using a T1 link.

Each of these graphs (one for each benchmark) shows the cumulative distribution of bytes

transferred during program execution time. The top function is strict execution. The lower

is non-strict execution with method-level execution (MLE) and restructuring with global data

distribution using imperfect information (Ref-Train).

75

0

20

40

60

80

100

120

140

160

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Bandwidth

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Bit Bit-Verify

Compress Compress-Verify

Jack Jack-Verify

JavaCup JavaCup-Verify

Jess Jess-Verify

Soot Soot-Verify

Figure VI.23: Di�erence in transfer delay for trusted and veri�ed execution.

For each benchmark, there are two bars presented. The �rst of each pair is the transfer delay for

trusted transfer and the second (striped) is for veri�ed transfer. For the latter, all application

class �les (non-library) required to verify the program according to the JVM speci�cation must

transfer regardless of whether or not they are used.

VI.B.2 Veri�ed Transfer

Veri�cation is commonly used to ensure expected behavior of Java programs. This

mechanism checks that the program is well-formed and type-safe, among other things. The

process must occur at runtime just prior to execution of untrusted programs. In this section

we consider the e�ect of veri�ed-execution with and without non-strict execution. As with all

of our results, we only consider the e�ect of our optimizations (and in this case veri�cation) on

application code (not local library �les).

Five of the six benchmarks presented in the previous sections have di�erent class �le

loading characteristics when veri�cation is turned on (Compress accesses the same �les with

or without veri�cation so we omit repeating results for it). Figure VI.23 shows the di�erence

in transfer delay for each of these benchmarks with and without veri�cation. Transfer delay

with veri�cation is shown by striped bars. Veri�cation has a signi�cant e�ect on Jess and Soot

benchmarks for which it increases transfer delay 2s, 26s, respectively, for the T1 link and 9s,

60s, respectively, for the modem link. The others account for increases of 100ms to 1s for the

T1 link and 300ms to 3 seconds for the modem link.

76

0

5

10

15

20

25

30

35

40

45

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE + CR (Ref-Train)

MLE + CR (Ref-Ref) MLE + MR (Ref-Train)

MLE+ MR (Ref-Ref) MLE + MR + GDR (Ref-Train)

MLE + MR + GDR (Ref-Ref)

BIT

Figure VI.24: Resulting veri�ed transfer delay for the Bit benchmark.

The graph shows a set of bars for each network bandwidth (x-axis). The y-axis is seconds. From

left to right, the eight bars in a set represent the total transfer delay that results from strict

execution (Base), and non-strict execution using method-level execution (MLE) alone, (MLE)

plus intra-class reordering (CR) (Ref-Train and Ref-Ref), MLE plus global method reordering

(MR) (Ref-Train and Ref-Ref), and MLE plus MR and global data reordering (GDR) (Ref-

Train and Ref-Ref). The compress benchmark class loading characteristics are the same with

and without veri�cation so we have omitted it from this �gure.

Figures VI.24, VI.25, and VI.26 show the e�ect of non-strict execution on veri�ed-

transfer delay. Again we present results for the various transfer schedule construction tech-

niques. Relative to the trusted transfer results, the percent reduction in transfer delay is very

similar when using veri�ed transfer. As with trusted transfer, method and global data restruc-

turing are most e�ective for transfer delay reduction.

VI.C Summary

In this chapter, we present a non-strict model for transferring and executing programs

for Internet computing. We present new techniques for restructuring code and data of Java pro-

grams for more e�cient non-strict execution. A summary of results is presented in Figure VI.27

in terms of transfer delay (in seconds). Five bars are shown for each network bandwidth and

the values of each bar is an average over all benchmarks. The �rst bar (far left) is the base

case transfer delay. The top graph shows the results for trusted transfer and the bottom graph

77

0

5

10

15

20

25

30

35

40

45

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE + CR (Ref-Train)
MLE + CR (Ref-Ref) MLE + MR (Ref-Train)
MLE+ MR (Ref-Ref) MLE + MR + GDR (Ref-Train)
MLE + MR + GDR (Ref-Ref)

Jack

0

5

10

15

20

25

30

35

40

45

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE + CR (Ref-Train)

MLE + CR (Ref-Ref) MLE + MR (Ref-Train)

MLE+ MR (Ref-Ref) MLE + MR + GDR (Ref-Train)

MLE + MR + GDR (Ref-Ref)

JavaCup

Figure VI.25: Resulting veri�ed transfer delay for benchmarks Jack and JavaCup.

Each graph provides a set of bars for each network bandwidth (x-axis). The y-axis is seconds.

From left to right, the eight bars in a set represent the total transfer delay that results from strict

execution (Base), and non-strict execution using method-level execution (MLE) alone, (MLE)

plus intra-class reordering (CR) (Ref-Train and Ref-Ref), MLE plus global method reordering

(MR) (Ref-Train and Ref-Ref), and MLE plus MR and global data reordering (GDR) (Ref-

Train and Ref-Ref).

78

0

10

20

30

40

50

60

70

80

90

100

110

120

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE + CR (Ref-Train)
MLE + CR (Ref-Ref) MLE + MR (Ref-Train)
MLE+ MR (Ref-Ref) MLE + MR + GDR (Ref-Train)
MLE + MR + GDR (Ref-Ref)

Jess

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base MLE + CR (Ref-Train)
MLE + CR (Ref-Ref) MLE + MR (Ref-Train)
MLE+ MR (Ref-Ref) MLE + MR + GDR (Ref-Train)
MLE + MR + GDR (Ref-Ref)

Soot

Figure VI.26: Resulting veri�ed transfer delay for benchmarks Jess and Soot.

Each graph provides a set of bars for each network bandwidth (x-axis). The y-axis is seconds.

From left to right, the eight bars in a set represent the total transfer delay that results from strict

execution (Base), and non-strict execution using method-level execution (MLE) alone, (MLE)

plus intra-class reordering (CR) (Ref-Train and Ref-Ref), MLE plus global method reordering

(MR) (Ref-Train and Ref-Ref), and MLE plus MR and global data reordering (GDR) (Ref-

Train and Ref-Ref).

79

0

10

20

30

40

50

60

70

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

MLE + MR (Ref-Train)

MLE+ MR (Ref-Ref)

MLE + MR + GDR (Ref-Train)

MLE + MR + GDR (Ref-Ref)

0

10

20

30

40

50

60

70

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base (VER)

MLE + MR (Ref-Train) (VER)

MLE+ MR (Ref-Ref) (VER)

MLE + MR + GDR (Ref-Train) (VER)

MLE + MR + GDR (Ref-Ref) (VER)

Figure VI.27: Average transfer delay (in seconds) using non-strict execution.

Five bars are shown for each network bandwidth and the values of each bar is an average

over all benchmarks. The �rst bar (far left) is the base case transfer delay. The top graph

shows the results for trusted transfer and the bottom graph shows the same for veri�ed trans-

fer. Results for global method reordering alone and global method and data reordering are

shown. Both cross-input (Ref-Train) and same-input (Ref-Ref) results are given for each type

of restructuring.

80

shows the same for veri�ed transfer. Using existing technology, transfer delay costs 53 and 65

seconds on average for trusted and veri�ed transfer, respectively, when using a modem link.

Over a T1 link the cost is 8 and 12 seconds, respectively on average. Non-strict execution

using method-level execution with method reordering globally across class �les eliminates 13

and 20 seconds of delay for trusted and veri�ed transfer, respectively across inputs on average

over a modem link. Global data reordering reduces this same delay (modem) by 28 and 38

seconds, respectively for trusted and veri�ed transfer. For the T1 link, delay is reduced 8 and

12 seconds for trusted and veri�ed transfer, respectively by global data reordering. In addition,

the substantial reduction in trusted-transfer delay equates to improved progress at program

startup since most class �les in an application transfer in the �rst 10% (5 seconds) of program

execution. On average across inputs, global method and data reordering eliminates 21 seconds

of transfer delay in the �rst 10% of program execution for the modem link and 5 seconds for

the T1 link.

The text of this chapter is in part a reprint of the material as it appears in the

1998 conference proceedings of the 8th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS). The dissertation author was the

primary researcher and author and the co-authors listed on this publication directed and su-

pervised the research which forms the basis for this chapter.

Chapter VII

Transfer Delay Avoidance and

Overlap: Class File Prefetching

And Splitting

In the previous chapter we presented non-strict execution, a JVM modi�cation that

overlaps transfer with useful work and avoids unnecessary transfer. Changes made to the JVM

enabled method-level transfer and execution and transfer to occur concurrently with execution.

In this chapter, we present two complementary techniques that also use overlap and avoidance

to improve mobile program performance using existing JVM technology. They are Class File

Prefetching and Splitting.

For class �le prefetching, we insert prefetch commands into the bytecode instruction

stream that cause as-yet-unaccessed class �les to be accessed and transferred prematurely. Since

the request is made on a thread separate from the application thread, transfer is performed in

the background. The goal of this optimization is to prefetch the class �le far enough in advance

to remove part or all of the transfer delay associated with the �rst access of the class �le by

the application thread. Since prefetching modi�es only class �les, no changes to existing JVM

technology are needed to enable the performance improvements.

We next propose class �le splitting to partition a class �le into separate sections that

contain frequently used and infrequently used (or unused) code. We refer to the frequently

used code sections as \hot" and the unused as \cold". When only hot sections are used by

the executing program, less is transferred so transfer delay is reduced. If a cold class is ever

accessed, the existing dynamic class �le loading mechanism in the JVM initiates their transfer.

Like prefetching, splitting is implemented using existing JVM technology.

81

82

 varB = new B();
 foo();
 varB.foo();

class A {
 public B varB;
 A() { . . . }
 main(. . .) {
 bar();
 varB = new B();
 foo();

 }
 foo() { . . . }

 error() { . . . }
}

 varB.foo();

Global Data

Class A Class Bwith prefetch requests
Class A

First−use of B

Execution continues
without stalling

Global Data

class A {
 public B varB;
 A() { . . . }
 main(. . .) {

}
 . . .
 }

 bar();

Global Data

class B {
 . . .
}

T
R
A
N
S
F
E
R

Prefetch

 aThread.prefetch(B);

Figure VII.1: The potential of class �le prefetching.

A prefetch to class �le B is inserted into class �le A. The full transfer delay will be masked if

class �le B has fully transferred by the time the command new B() is executed.

VII.A Design And Implementation

We �rst describe the implementation of class �le prefetching, a technique that enables

overlap of transfer with useful work. Following this, we detail class �le splitting for transfer

delay avoidance. Both techniques reduce the e�ect of transfer delay without JVM modi�cation.

VII.A.1 Class File Prefetching

Figure VII.1 shows the potential bene�t of prefetching on a example application. The

�rst class to be transferred is class A. Execution starts with the main routine. While executing

main, a prefetch request initiates the loading of class B. We insert a prefetch request for class

B, since it is needed when the �rst-use for class B is executed at the new B() instruction in

main. If class A executes long enough prior to this �rst reference to class B, the statement

new B() will execute without waiting on the transfer of B. Alternately, if there are not enough

useful compute cycles to hide class B 's transfer (that is, the time to transfer class B is greater

than the number of cycles executed prior to A's instantiation of B), then the program must

wait for the transfer of class B to complete before performing the execution of new B(). In

either case, prefetching reduces the transfer delay since without prefetching execution stalls for

the full amount of time necessary to transfer class B.

In the optimal case, the overlap enabled by class �le prefetching can eliminate the

transfer delay a user experiences. E�ective prefetching requires (1) a policy for determining

at what point during program execution each load request should be made so that overlap is

maximized, and (2) a mechanism for triggering the class �le load to perform the prefetch.

83

Overview of Prefetching Algorithm

The prefetch algorithm contains �ve main steps:

1. Build basic block control ow graph

2. Find �rst-use references

3. Find cycle in which each basic block is �rst executed

4. Estimate transfer time for each class

5. Insert a prefetch request for each �rst-use reference

First, the algorithm builds a basic block control ow graph for the entire program,

with interprocedural edges between the basic blocks at call and return sites. The next step of

the algorithm �nds all �rst-use references to class �les. These are the �rst references that cause

a class �le to be transferred if it has not already. When a �rst-use reference to class B is found,

the algorithm constructs a list of the class �les needed in order to perform veri�cation on class

B ; class B 's �rst-use reference causes these class �les to be transferred.

The third step of the algorithm estimates the time at which each basic block in the

program is �rst executed (measured in cycles since the start of the program). This start time

determines the order in which �rst-use references are processed and the position at which to

place a prefetch request for each class. Next we estimate the number of cycles required to

transfer each class �le. We use this �gure to determine how early in the CFG the prefetches

need to be placed in order to mask the entire transfer delay. The �nal step of the algorithm

processes the �rst-use references in the predicted order of execution and inserts prefetch requests

for the class �le being referenced. The following sections discuss all of these steps in more detail.

Finding First-Use References

We use program analysis to �nd each point in the program where �rst-use references

are made. This is the same technique used to create the �rst-use call graph using static

estimation for non-strict execution presented in the previous chapter. A �rst-use reference is

any reference to a class that causes the class �le to be loaded. Therefore, for a class B reference

to be considered a �rst-use reference, there must exist an execution path from the main routine

to that reference, such that there are no other references to class B along that path. All of the

�rst-use references to class �les are found using a depth-�rst search of the basic block control

ow graph (CFG) using a few simple heuristics to guide the search.

84

First, a ow graph is created to keep track of the number of loops and static instruc-

tions for each path of the graph. When generating the �rst-use ordering, we give priority to

paths with loops on them, predicting that the program will execute them �rst. When process-

ing a forward non-loop branch, �rst-use prediction follows the path that contains the greatest

number of static loops. In addition, looping implies code reuse, and thus increases the oppor-

tunity for overlap of execution with transfer. The order in which methods are �rst encountered

during static traversal of the ow graph determines the �rst-use transfer order for the methods.

When processing conditional branches inside of a loop, the �rst-use traversal traverses all the

basic blocks inside the loop searching for method calls, before continuing on to the loop-exit

basic blocks.

To process all the basic blocks inside of a loop before continuing on, �rst-use prediction

uses a stack data structure and pushes a pair, (x,y), onto the stack when processing a loop-exit

or back edge from a conditional branch. The pair consists of the unique basic block ID and the

ID of the loop-header basic block. These pairs are place holders, which allow us to continue

traversing the loop-exit edges once all the basic blocks within the loop have been processed.

When all the inner-basic blocks have been traversed, and control has returned to the loop-

header basic block, the algorithm continues the psuedo-DFS on the loop-exit edges by popping

the pairs o� the top of the stack. Upon termination of the modi�ed-DFS algorithm, the static

traversal of the methods determines their �rst-use order, and the methods are reordered within

each class �le to match this ordering.

First-Execution Ordering and Cycle Time of First-Use References

Once all �rst-use references are found we need to order them so that prefetch requests

can be appropriately inserted. Ideally, we should prioritize according to the order in which the

references will be encountered during execution. This �rst-execution basic block order is the

sequential ordering of blocks (and thus �rst-use references in those basic blocks) based on the

�rst time each basic block is �rst executed. Figure VII.2 shows the �rst-use execution order

of the class �les in a sample application. Since we cannot predict program execution exactly,

we need to estimate the cycle in which each basic block is �rst executed and thus the �rst-use

order of class �les. To do this we generate pro�les to determine this �rst-execution order of

class �les and cycle of execution at which they occur.

For pro�le generation, we log the order of procedure invocations and basic block

executions during program execution for a particular input. The order of the �rst-use references

85

Class A Class B Class C

Figure VII.2: First-use execution order of class �les in a sample application.

The �rst class accessed is A. Next is class B followed by class C. We couple such a �rst-

use ordering with a temporal ordering of basic blocks to determine the point during program

execution at which to insert of prefetch requests.

during the pro�le run determines the order in which we place prefetch requests into the class

�les. We also account for class �les that are required for veri�cation purposes. All procedures

and basic blocks that are not executed are given an invocation ordering and �rst cycle of

execution based on a traversal of the control ow graph using the same static heuristics described

above. For example in Figure VII.2, class C is included in the graph but may not have been

placed in the position it is in by pro�led-execution. It is possible for it to be placed at the end

of the �rst-use list (if unused) according to the modi�ed-DFS ordering.

Prefetch Insertion Policy

In the �fth step of the prefetching algorithm, we determine the basic blocks in which

to place the prefetch requests. Prefetch requests must be made early enough so that the

transfer delay is overlapped. Finding the optimal place to insert a prefetch can be di�cult.

The two (possibly conicting) goals of prefetch request placement are to (1) prefetch as early

as possible to eliminate or reduce the delay when the actual reference is made, and (2) ensure

that the prefetch is not put on a path which causes the prefetch to be performed too early. If

a prefetch starts too early, it may interfere with classes that are needed earlier than the class

being prefetched. In this case, the prefetch can introduce delays by using up available network

bandwidth.

Figure VII.3 is the algorithm we use for this step. We clarify it with the example shown

in Figure VII.4. In the example, we wish to insert two prefetches for the �rst-use references to

class B and class C. Figure VII.4 shows part of a basic block control ow graph for a procedure

in class A. Nodes are basic blocks with the name of the basic block inside each node. The dark

edges represent the �rst traversal through this CFG during execution, and the lighter dashed

edges represent a later traversal through the CFG. The �rst part of the prefetch placement

algorithm determines the �rst-execution cycle and order of the basic blocks. This indicates

that a prefetch for the �rst-use reference (in basic block Z) to class B needs to be inserted

before the prefetch for �rst-use reference (in basic block Q) to class C. We process the classes

86

in increasing order of �rst use reference.

The algorithm inserts a prefetch for each �rst-use reference (twice in our example).

When placing a prefetch, the basic block variable bb is initially set to the basic block containing

the �rst-use reference (node Z for class B, and node Q for class C), and cycles left is initialized

to the estimated number of cycles required to transfer the class �les. The algorithm examines

each parent of the current basic block to determine prefetch placement for each path in the CFG.

The estimated number of cycles each basic block executes is subtracted from cycles left during

examination. The algorithm follows the edge from bb to each parent in the CFG until either

(1) cycles left is reduced to zero, or (2) the parent lies on a prefetched or already encountered

path. Otherwise, we keep searching up the CFG and recursively call this routine on the parent

of the current basic block.

For class B in our example, the algorithm starts at basic block U and performs a

reverse traversal of the CFG processing the parents of each basic block. At each basic block

encountered, cycles left is decremented by the estimated cycle time of the current basic block.

In our example, enough cycles execute during the loop between X and T to reduce cycles left

to zero. Since the relative distance in cycles between the �rst-use reference of B and basic block

W is large enough to mask the transfer of B, the prefetch to class B is inserted immediately

before basic block X.

The algorithm stops searching up a path when the basic block being processed is

already on a prefetched path. A prefetched path is one that contains a prefetch request for

a previously processed class. Placing a new prefetch on a prefetched path consumes available

bandwidth for more important class prefetches and imposes unnecessary transfer delay on the

class. When a prefetch is inserted onto a path, all of the basic blocks on that path are marked

with the class �le name of the prefetch and a processed ag. These ags are used to prevent

later �rst-use prefetches from being placed on the same path. In our example, once the prefetch

for �rst-use reference B is inserted, the algorithm continues with the next �rst-use reference for

class C. When inserting the prefetch to class C, the prefetch does not propagate up into basic

block U, since basic block U is on the prefetch path for B. Therefore, the prefetch to class C is

inserted right before entering basic block V.

Prefetch Implementation

Once we determine all points in the program at which prefetch requests should be

made, we insert prefetch instructions into the original application. For prefetching to be cost

87

Procedure: �nd bb to add prefetch(

Reference ref,BasicBlock bb, int cycles left)

/* ref - a pointer to the �rst use reference for a class �le X */

/* bb - the current basic block to try and place the prefetch */

/* cycles left - number of cycles left to mask when prefetching

the class �les for this �rst-use */

bb.processed = TRUE;

bb.prefetch path name = ref.class �le name;

/* get one of the parent basic blocks of bb in the CFG */

parent = bb.parent list;

while (parent ! = NULL) f

if (parent.processed) f
/* if parent basic block already is on a path for a prefetch

then insert the prefetch at the start of basic block bb */

insert prefetch at start bb(ref, bb);

g else f
/* parent is not yet on a prefetch path, so calculate the

number of cycles that can be masked if the prefetch was

placed in the parent basic block */

cycles between bb = parent.�rst cycle - bb.�rst cycle;

if (cycles between bb >= cycles left) f
/* all the transfer cycles will be masked by placing the

prefetch at the end of basic block parent */

insert prefetch at end bb(ref,parent);

parent.processed = TRUE;

parent.prefetch path name = ref.class �le name;

g else f
if (cycles between bb > 0) f

/* need to keep traversing up the CFG, because the

�rst time parent is executed is not far enough

in the past to mask all the transfer delay */

�nd bb to add prefetch(

ref, parent, cycles left - cycles between bb);

g else f
/* do nothing */

/* the parent was �rst executed *after* the current bb,

so don't put a prefetch up this parent's path */

g
g

g

/* process next parent of basic block bb */

parent = parent.next

g

Figure VII.3: Algorithm for �nding the basic block to place the prefetch.

88

W

Prefetch B

Ref C

Ref B

X

Y

VZ

U

T

Prefetch C

Q

Figure VII.4: Prefetch insertion example.

In this �gure, nodes represent basic blocks in the control ow graph. Solid edges represent the

basic blocks executed on the �rst traversal through the CFG. The dashed edges represent a

later traversal through the CFG. Class B is �rst referenced in basic block Z, and class C is �rst

referenced in basic block Q.

e�ective, the prefetch mechanism must have low-overhead and must not cause the main thread

of execution to stall and wait for the �le being prefetched to transfer. To prefetch a class �le

B, we use the standard Java loadClass method.

When adding prefetching to a package, we create one separate prefetch thread to

perform the loading and resolution of each class �le. An inserted prefetch request then inserts

a list of class �les onto a prefetch queue, which the prefetch thread consumes. The prefetch

thread prevents the main threads of execution from stalling unnecessarily while the class �le

is transferring. Therefore, this solution allows computation (performed by one or more of the

main threads) and class transfer (initiated by the prefetch thread) to occur simultaneously.

Most existing JVMs (including the Sun JDK VM) only block the requesting thread

when loading a class, and allow multiple threads to load classes concurrently. Therefore, our

approach does not require any changes to these VMs. If the prefetch of a class is successful, the

JVM will have loaded the class based on the request issued by the prefetch thread before any

main thread needs that class. Alternatively, if a main thread of execution runs out of useful

work before a required class is fully loaded, the JVM will automatically block this thread until

the class becomes available.

89

A prefetch inserted for a �rst-use of class B may actually prefetch several class �les as

needed to perform veri�cation for class B as described in section IV.B.3. Before each prefetch

request, a ag test is used to determine if a class is local or has already been fetched. If the

ag indicates that no prefetch is necessary than the overhead of our prefetch mechanism is

equivalent to a compare and branch instruction.

VII.A.2 Class File Splitting

Class �le prefetching enables overlap of communication and computation just as with

non-strict execution but without JVM modi�cation. A complementary technique that avoids

unnecessary transfer (also like non-strict execution) is class �le splitting. Using this technique,

a class �le is split into two: a hot class containing used �elds and methods; and a cold class

containing unused, or infrequently used, �elds and methods.

Like prefetching, splitting requires no changes to the JVM. When class �les are ac-

cessed, regardless of whether they are hot or cold, loading, transfer (if non-local), and possibly

veri�cation, occur using existing class �le loading mechanisms. Splitting reduces the amount

that transfers when cold classes go unused as predicted.

Splitting Algorithm

Class �le splitting is applied to Java bytecode as depicted in Figure VII.5. The splitting

algorithm relies on pro�le information of �eld and method usage counts. With the pro�le

information as input, a static bytecode tool performs the splitting. We classify a �eld or

method as cold if it is not used at all during pro�ling. In addition, we only perform splitting

when it is bene�cial to do so, e.g., when the total size of cold �elds and methods is greater than

the overhead for creating a cold class. The minimum number of bytes required for the represent

ion of an empty class �le is approximately 200 bytes. In this section, we explain the primary

steps for class �le splitting using Figure VII.6 to exemplify the algorithm and to expose the

potential bene�ts of our approach. The steps are:

1. Create execution pro�les for multiple inputs and identify classes to split

2. Construct cold class �les for each class selected for splitting

3. Move unused �elds and methods from original (hot) class to cold class

4. Create references from hot class to cold class and vice versa

5. Update variable usages in hot and cold class code to access relocated �elds/methods via

the new reference

90

Global Data

}

}

}

}

. . .

. . .

. . .

. . .

error(...) {

foo(...) {

bar(...) {

main(...) {

error(...) {

}

Class Cold$A

main(...) {

}

bar(...) {

}

foo(...) {

}

error(...) {

}

 . . .

 . . .

 . . .

 ... coldptr.error(); ...

Cold$A coldptr;

Global Data

Class AClass A

Split

Global Data

Figure VII.5: Class �le splitting example.

Using class �le splitting, infrequently used or unused methods in a class �le are split out into

a cold class (in this example, error() is split out into a cold class). If error() is never called

then the transfer of the cold class is avoided. If it is called then the existing dynamic class �le

loading mechanism is used to initiate transfer of the cold class.

The original code, shown in Figure VII.6(a), contains class A with a �eld reference to

class B, and class B that references class C in its constructor. The �rst step of the algorithm

pro�les the use patterns of �elds and methods during execution. Classes containing unused

�elds and methods are appended to a list of classes to be split. In the example, the pro�le

determines that mumble() and error() in class A are rarely used, as well as method bar() in

class B. Both class A and class B are added to the list of classes to split.

The next step of the algorithm, using the list as input, splits class A into class A and

class Cold$A. A similar split is done for class B into class B and class Cold$B. The constant

pool, method table, and �eld table entries are constructed for the cold classes, with any other

necessary class �le information. All cold code and data is then inserted into each cold class in

the third step of the algorithm.

Next, a �eld cldRef is added to both original classes; this �eld holds a direct reference

to the respective cold class. This �eld enables access to the cold class from within each hot

class. In addition, the cold classes have a �eld hotRef, which holds a reference to the hot class

for the reverse access. In the hot class, cldRef is assigned an instance of the cold class when

one of the cold �elds or methods is accessed for the �rst time. Upon each reference to cold

91

�elds and methods a check is added to determine if the cold object pointed to by cldRef has

been instantiated. A new instance of the cold class will only be created during execution if one

does not already exist. When the cold class is instantiated, the constructor of the cold class

initializes hotRef to reference the hot class.

We emphasize that this new cold class reference is not created in the constructor of the

respective hot class. If cold class instantiation is performed in the constructor, transfer of the

cold class would be triggered prematurely (prior to the actual �rst use of the class), negating

any bene�t from splitting. Instead, we delay transfer of cold class �les until �rst use (if it ever

occurs). For example, in Figure VII.6(b), Cold$A will only be transferred if either methods

mumble() or error() are executed. Likewise, Cold$B will only be transferred if method bar() is

invoked.

In the �nal step of the algorithm, we modify the code sections of both the hot and

the cold class. For each access to a cold method or �eld in the hot class, we modify the code so

that the access is performed through the cold class reference. The same is done for the accesses

to hot �elds by the cold class. At this point the �eld and method access ags are modi�ed

as necessary to enable package access to private and protected members between the hot and

cold classes. For example, originally class B contained a private quali�er for var2. Since class

Cold$B must be able to access var2, the permissions on the variable are changed to package

access (public to the package). We address the security implications of this decision below.

In the example, our splitting algorithm also �nds that the reference to class C, varC,

in class B is only used in procedure bar(), which was marked and split into the cold class. Our

compiler analysis discovers this, and moves varC to the cold class as shown in Figure VII.6(b).

Maintaining Privacy When Class File Splitting

As described above, a hot class must contain a reference to the cold class so that

cold members can be accessed. The members of the hot class must be able to access the cold

members as if they were local to the hot class. Likewise the object instance of the cold class

must be able to reference all �elds and methods in the hot class according to the semantics

de�ned by the original, unmodi�ed application.

The problem with this constraint is that if a class member is de�ned as private, it is

only accessible by methods within the class itself. If a member is de�ned as protected, only

descendents (subclasses) of this class can access the member. To retain the semantics of the

original program during splitting, hot class members must be able to access cold class members

92

class B {

 public int var1;

 protected int var3;
 B() {

 private int var2;

 public C varC = null;

 var1 = var2 = var3 = −1;

bar () {
 (varC = new C()).foo();

 }

 var2 = 0;

}
 }

 hotptr = ptr;
 }
 bar() {

 hotptr.var2 = 0;
 }
}

 Cold$B(B ptr) {

 (varC = new C()).foo();

class A {
 public B varB;
 A() { . . . }
 main(. . .) {
 bar();
 varB = new B();
 foo();

 }
 foo() { . . . }

 error() { . . . }
}

 varB.foo();

class Cold$A {
 private A hotptr = null;
 Cold$A(A ptr) {
 hotptr = ptr;
 }
 error() { . . . }
}

class Cold$B {
 public C varC = null;
 private B = hotptr = null;

class C { C(){...} foo(){...}}

class A {
 public B varB;
 private Cold$A coldptr = null;
 A() { . . . }
 main() {
 bar();
 varB = new B();
 foo();
 varB.foo();
 }
 foo() { . . . }
 error() {
 if (coldptr == null)
 coldptr = new Cold$A(this);
 coldptr.error();
}

class C { C(){...} foo(){...}}

 private Cold$B coldptr = null;
class B {

 private int var2;

 B() {
 var1 = var2 = var3 = −1;
 }

 bar() {

 if (coldptr == null)
 coldptr = new Cold$B(this);

 }
 coldptr.foo();

}

 public var1, var3;

Figure VII.6: Code splitting example.

93

and vice versa.

In our implementation, we change all cross referenced (cold members used by hot and

vice versa) private and protected members to package access. This is accomplished by removing

the private and protected access ags for these �eld variables as shown in Figure VII.6 for var2

and var4. Package access means that members are public to all of the routines in the package,

but not visible outside the package.

As previously stated, we apply our Java class �le splitting optimization after com-

pilation using a binary modi�cation tool called BIT [55]. The original application has been

compiled cleanly and is without access violations before splitting is performed. Therefore,

changing the access of private or protected �elds to package access happens after the compiler

has performed its necessary type checking.

If package access is used during splitting, then splitting does not provide complete

security, and may not be suitable for all class �les in an application. For a secure application,

we propose that the bytecode optimizer performing the splitting be given a list of classes for

which splitting is disallowed. These are classes with private/protected �elds that must remain

private/protected for security reasons. The developer can then specify the classes for which

splitting should not be used.

VII.B Results: Class File Prefetching And Splitting

We �rst present results for class �le prefetching alone. In Figure VII.7, we show the

percentage of execution time that is available for overlap given various network bandwidths.

The number of seconds an average program executes (without load delay) is 49 seconds. Two

bars are shown for each network bandwidth. The left bar is the Ref-Train, or cross-input

results; the right is the results using the Ref-Ref input (perfect information). On average, just

under 2 seconds can be overlapped by prefetching for the modem link and 400 milliseconds for

the T1 link. The amount available for overlap is small due to the transfer of a majority of the

application at program startup. We articulate the e�ect of our techniques on program startup

later in this section.

The percentage overlap di�ers across network performance since such performance

determines the number of bytes that can transfer. Assume, for example, that an application

only uses two class �les during execution and the �rst one has transferred and is executing.

In the background, the second class �le transfers during execution. With a very fast link, the

94

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Average Execution Time for Benchmarks In This Study: 49 seconds

P
er

ce
n

t
o

f
E

xe
cu

ti
o

n
T

im
e

O
ve

rl
ap

p
ed

Pref (Ref-Ref)

Pref (Ref-Train)

Figure VII.7: Percentage of execution time overlapped with transfer.

This graph shows the amount of execution time that can be overlapped by prefetched execution

on average across all benchmarks. On average the the benchmarks executed for 42 seconds.

Two bars are shown for each network bandwidth. The left bar is the Ref-Train, or cross-input

results; the right is the results using the Ref-Ref input (perfect information). On average, just

under 4 seconds can be overlapped by prefetching for the modem link and 2 seconds for the T1

link.

class may complete transfer before execution reaches the point at which the class �le is �rst

used. In this case, the percentage of execution time that is overlapped is the transfer time of

the second class �le. For a slow link, execution may reach the �rst access before the class has

completed transfer, stalling the application thread. In this case, the overlapped execution time

is the time from the start of the prefetch to the �rst access. In this example the fast link will

have a smaller percentage of execution time overlapped by transfer.

We next evaluate the e�ect of class �le splitting and the combined e�ect of prefetching

and splitting. To do this, we present simulation results both in terms of trusted transfer, in

which no bytecode veri�cation is performed, and of veri�ed transfer.

VII.B.1 Trusted Transfer

We �rst present the percent reduction in transfer size due to class �le splitting. Fig-

ure VII.8. illustrates this reduction for each benchmark. The average application size across

these benchmarks is 178KB. The top graph shows the impact of having perfect pro�le informa-

tion (Ref-Ref); the bottom graph shows results using imperfect pro�le information (Ref-Train).

In both graphs we consider two ways of performing the splitting. Using the �rst, called Sin-

95

gleSplit we move all of the cold methods from a class into a single cold class. For the second,

called MultiSplit we move the methods each into their own cold class.

For results using the same input for pro�le and result generation(Ref-Ref), SingleSplit

does slightly better in reducing the amount transferred. This occurs since more global data

must be inserted into a MultiSplit hot class so that it can reference each of the MultipSplit

cold classes. However, as the bottom graph indicates, the cost of misprediction is much higher

for SingleSplit classes. Using SingleSplit, when a cold class is accessed (mispredicted) it is

transferred on-demand. Since it can contain many cold methods that are possibly unused and

hence, unnecessary transferred, it can degrade performance. Using MultiSplit, no such degra-

dation occurs. On average across benchmarks (far right bars in each graph), class �le splitting

(MultiSplit) avoids 36% of the transfer using perfect information (Ref-Ref) and 30% across

inputs (Ref-Train). For the remainder of this chapter we use only the MultiSplit technique and

refer to it as simply Split.

We next present the transfer delay (in seconds) required for non-local class request and

transfer with and without class �le prefetching and splitting (Figures VII.9, VII.10, and VII.11).

A graph is presented for each benchmark. For each network bandwidth, a set of seven bars

is shown. The �rst bar (Base) depicts the base-case transfer delay (dynamic class �le loading

without prefetching and splitting). The second two bars (Pref (Ref-Train) and Pref (Ref-Ref))

show the Ref-Train and Ref-Ref pro�le results for prefetching alone. The next two bars (Split

(Ref-Train) and Split (Ref-Ref)) show the same for splitting alone. The �nal two bars (Pref

+ Split (Ref-Train) and Pref + Split (Ref-Ref)) depict the transfer delay that results from the

combination of class �le prefetching and splitting (and each pro�le input).

On average, across-inputs (Ref-Train), class �le prefetching reduces transfer delay by

2 seconds for the modem link and 300 milliseconds for the T1 link. Class �le splitting reduces

transfer delay 19 seconds for the modem link across inputs on average and 200 milliseconds

for the T1 link. When splitting is combined with prefetching, transfer delay is reduced by 20

seconds for the modem link and 600ms on average across inputs. Combined results can be

better than the sum of the two individual optimizations since splitting may expose additional

opportunity for overlap.

We next show the e�ect of class �le prefetching and splitting on program startup in

Figures VII.12 through VII.17. Two cumulative distribution functions (CDF) are given in each

graphs (one for each benchmark). Each function indicates the cumulative transfer delay (y-axis)

at particular point during execution of the programs (shown as percentage of program execution

96

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bit Compress Jack JavaCup Jess Soot Average

P
ct

R
ed

u
ct

io
n

In
T

ra
n

sf
er

S
iz

e

SingleSplit (Ref-Ref)
MultiSplit (Ref-Ref)

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bit Compress Jack JavaCup Jess Soot Average

P
ct

R
ed

u
ct

io
n

In
T

ra
n

sf
er

S
iz

e

SingleSplit (Ref-Train)
MultiSplit (Ref-Train)

Figure VII.8: Percent reduction in transfer size.

These two graphs depict the percent reduction in the number of bytes transferred. The left

graph shows the perfect information results (Ref-Ref) and the left graphs shows the cross-input

(Ref-Train) results. The left bar of each pair shows the SingleSplit e�ect in which all of the

cold methods from a class are split into a single cold class. The right bar depicts the MultiSplit

e�ect in which each cold method is contained in its own cold class. Since more global data

are necessary to represent the multiple cold classes in MultiSplit, SingleSplit Ref-Ref results

show greater reduction in transfer size. Across inputs (Ref-Train) however, SingleSplit degrades

performance since the use of a mispredicted cold class requires that all cold methods in a class

be transferred. For the remainder of this chapter we use and assume MultiSplit and refer to it

as simply Split.

97

0

5

10

15

20

25

30

35

40

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Bit

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

Pref (Ref-Train)

Pref(Ref-Ref)

Split (Ref-Train)

Split (Ref-Ref)

Pref + Split (Ref-Train)

Pref + Split (Ref-Ref)

0

2

4

6

8

10

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Compress

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

Pref (Ref-Train)

Pref(Ref-Ref)

Split (Ref-Train)

Split (Ref-Ref)

Pref + Split (Ref-Train)

Pref + Split (Ref-Ref)

Figure VII.9: Transfer delay for Bit & Compress using prefetching and splitting.

Each graph provides a set of bars for each network bandwidth (x-axis). From left to right, the

seven bars in a set represent the total transfer delay that results from strict execution (Base)

and from strict execution with prefetching alone (Ref-Train and Ref-Ref), with splitting alone

(Ref-Train and Ref-Ref), and prefetching and splitting combined (Ref-Train and Ref-Ref). in

the bottom row of graphs.

98

0

5

10

15

20

25

30

35

40

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Jack

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

Pref (Ref-Train)

Pref(Ref-Ref)

Split (Ref-Train)

Split (Ref-Ref)

Pref + Split (Ref-Train)

Pref + Split (Ref-Ref)

0

5

10

15

20

25

30

35

40

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

JavaCup

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

Pref (Ref-Train)

Pref(Ref-Ref)

Split (Ref-Train)

Split (Ref-Ref)

Pref + Split (Ref-Train)

Pref + Split (Ref-Ref)

Figure VII.10: Transfer delay for Jack & JavaCup using prefetching and splitting.

Each graph provides a set of bars for each network bandwidth (x-axis). From left to right, the

seven bars in a set represent the total transfer delay that results from strict execution (Base)

and from strict execution with prefetching alone (Ref-Train and Ref-Ref), with splitting alone

(Ref-Train and Ref-Ref), and prefetching and splitting combined (Ref-Train and Ref-Ref). in

the bottom row of graphs.

99

0

10

20

30

40

50

60

70

80

90

100

110

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Jess

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

Pref (Ref-Train)

Pref(Ref-Ref)

Split (Ref-Train)

Split (Ref-Ref)

Pref + Split (Ref-Train)

Pref + Split (Ref-Ref)

0

10

20

30

40

50

60

70

80

90

100

110

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Soot

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

Pref (Ref-Train)

Pref(Ref-Ref)

Split (Ref-Train)

Split (Ref-Ref)

Pref + Split (Ref-Train)

Pref + Split (Ref-Ref)

Figure VII.11: Transfer delay for Jess & Soot using prefetching and splitting.

Each graph provides a set of bars for each network bandwidth (x-axis). From left to right, the

seven bars in a set represent the total transfer delay that results from strict execution (Base)

and from strict execution with prefetching alone (Ref-Train and Ref-Ref), with splitting alone

(Ref-Train and Ref-Ref), and prefetching and splitting combined (Ref-Train and Ref-Ref). in

the bottom row of graphs.

100

completed on the x-axis). The average execution time for the programs is 49 seconds. CDFs

are shown for unoptimized transfer and execution, as well as that with both prefetching and

splitting across inputs (Ref-Train). Figures VII.12, VII.13, and VII.14 show the startup CDFs

for transfer delay resulting from the use of a modem link. Figures VII.15, VII.16, and VII.17

show the same for th T1 link. On average, 14 seconds of the required transfer delay that is

incurred during the �rst 10% (5 seconds) of program execution is eliminated for the modem

link by splitting and prefetching (200ms for the T1 link).

VII.B.2 Veri�ed Transfer

Veri�cation is commonly used to ensure expected behavior of Java programs. This

mechanism checks that the program is well-formed and type-safe, among other things. The

process must occur at runtime just prior to execution of untrusted programs. In this section

we consider the e�ect of veri�ed-execution with and without non-strict execution. We only

consider the e�ect of veri�cation for application code (not local library �les).

Five of the six benchmarks presented in the previous sections have di�erent class �le

loading characteristics when veri�cation is turned on. Figure VII.18 shows the di�erence in

transfer delay for each of these benchmarks with and without veri�cation. Veri�cation has a

signi�cant e�ect on the Jess and Soot benchmarks for which it increases transfer delay 2s, 26s,

respectively, for the T1 link and 9s, 60s, respectively, for the modem link. The others account

for increases of 100ms to 1s for the T1 link and 300ms to 3 seconds for the modem link.

Figures VII.19, VII.20, and VII.21 show the e�ect of class �le splitting and prefetching

on veri�ed-transfer delay. Again we present results for prefetching alone, splitting alone, and

prefetching and splitting together. For each of these we present both cross-input (Ref-Train) and

same-input (Ref-Ref) results. Relative to the trusted transfer results, the percent reduction

in transfer delay is very similar for veri�ed transfer results. As with trusted transfer, using

splitting and prefetching together results in the greatest reduction in transfer delay.

VII.C Summary

In this chapter, we present two techniques that use existing JVM technology to reduce

transfer delay. The �rst is a latency-hiding technique in which Java class �les are prefetched

prior to the �rst reference to the class by an application. Prefetching enables overlap of exe-

cution cycles with the transfer of class �les. However, since most of the transfer delay occurs

101

0

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Bit

0

1

2

3

4

5

6

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Compress

Figure VII.12: Program startup (Bit and Compress) using a modem link.

Each of these graphs show (one for each benchmark) the cumulative distribution of transfer

delay (over a Modem link) during program execution (as a percentage on x-axis). The top func-

tion is unoptimized transfer and execution. The lower is the e�ect of both class �le prefetching

and splitting across inputs (Ref-Train).

102

0

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Jack

0

5

10

15

20

25

30

35

40

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

JavaCup

Figure VII.13: Program startup (Jack and JavaCup) using a modem link.

Each of these graphs show (one for each benchmark) the cumulative distribution of transfer

delay (over a Modem link) during program execution (as a percentage on x-axis). The top func-

tion is unoptimized transfer and execution. The lower is the e�ect of both class �le prefetching

and splitting across inputs (Ref-Train).

103

0

20

40

60

80

100

120

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Jess

0

10

20

30

40

50

60

70

80

90

100

110

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Soot

Figure VII.14: Program startup (Jess and Soot) using a modem link.

Each of these graphs show (one for each benchmark) the cumulative distribution of transfer

delay (over a Modem link) during program execution (as a percentage on x-axis). The top func-

tion is unoptimized transfer and execution. The lower is the e�ect of both class �le prefetching

and splitting across inputs (Ref-Train).

104

0

1

2

3

4

5

6

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Bit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Compress

Figure VII.15: Program startup (Bit and Compress) using a T1 link.

Each of these graphs show (one for each benchmark) the cumulative distribution of transfer

delay (over a T1 link) during program execution (as a percentage on x-axis). The top function

is unoptimized transfer and execution. The lower is the e�ect of both class �le prefetching and

splitting across inputs (Ref-Train).

105

0

1

2

3

4

5

6

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Jack

0

0.5

1

1.5

2

2.5

3

3.5

4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

JavaCup

Figure VII.16: Program startup (Jack and JavaCup) using a T1 link.

Each of these graphs show (one for each benchmark) the cumulative distribution of transfer

delay (over a T1 link) during program execution (as a percentage on x-axis). The top function

is unoptimized transfer and execution. The lower is the e�ect of both class �le prefetching and

splitting across inputs (Ref-Train).

106

0

2

4

6

8

10

12

14

16

18

20

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Jess

0

2

4

6

8

10

12

14

16

18

20

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Execution Time

C
u

m
u

la
ti

ve
T

ra
n

sf
er

D
el

ay
in

S
ec

o
n

d
s

Soot

Figure VII.17: Program startup (Jess and Soot) using a T1 link.

Each of these graphs show (one for each benchmark) the cumulative distribution of transfer

delay (over a T1 link) during program execution (as a percentage on x-axis). The top function

is unoptimized transfer and execution. The lower is the e�ect of both class �le prefetching and

splitting across inputs (Ref-Train).

107

0

20

40

60

80

100

120

140

160

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Bandwidth

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Bit Bit-Verify

Compress Compress-Verify

Jack Jack-Verify

JavaCup JavaCup-Verify

Jess Jess-Verify

Soot Soot-Verify

Figure VII.18: Di�erence in transfer delay for trusted and veri�ed execution.

For each benchmark, there are two bars presented. The �rst of each pair is the transfer delay for

trusted transfer and the second is for veri�ed transfer. For the latter, all application class �les

(non-library) required to verify the program according to the JVM speci�cation must transfer

regardless of whether or not they are used.

in the �rst 10% of program execution, only a small amount of execution time can be over-

lapped (less than 4% which equates to 2 seconds on average). To compensate for this, we

also present an optimization to split Java class �les to reduce the size of class �les transferred

thereby avoiding transfer. On average, the total amount transferred is reduced by 36%. Neither

technique (unlike non-strict execution) requires modi�cation to the JVM. The optimizations

use compile-time analysis and heuristics with pro�les to guide selection of classes to split and

when to prefetch. Once the class �les are modi�ed, Java applications execute with improved

performance and the same semantics of the original execution without optimization.

A summary of results is presented in Figure VII.22 in terms of transfer delay (in

seconds). Seven bars are shown for each network bandwidth and the values of each bar is

an average over all benchmarks. The �rst bar (far left) is the base case transfer delay. The

remaining 3 pairs of bars show the transfer delay that results from prefetching alone, splitting

alone, and prefetching and splitting together. The �rst bar in each pair is the cross-input results

(Ref-Train) and the second bar is the same-input results (Ref-Ref). The right graph shows the

results for trusted transfer and the left graph shows the same for veri�ed transfer. Without

prefetching and splitting, transfer delay costs 53 and 65 seconds on average for trusted and

108

0

5

10

15

20

25

30

35

40

45

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Bit

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base
Pref (Ref-Train)
Pref(Ref-Ref)
Split (Ref-Train)
Split (Ref-Ref)
Pref + Split (Ref-Train)
Pref + Split (Ref-Ref)

0

2

4

6

8

10

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Compress

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

Pref (Ref-Train)

Pref(Ref-Ref)

Split (Ref-Train)

Split (Ref-Ref)

Pref + Split (Ref-Train)

Pref + Split (Ref-Ref)

Figure VII.19: Veri�ed transfer delay (Bit and Compress) using prefetching and splitting.

Each graph provides a set of bars for each network bandwidth (x-axis). From left to right, the

seven bars in a set represent the total transfer delay that results from strict execution (Base)

and from strict execution with prefetching alone (Ref-Train and Ref-Ref), with splitting alone

(Ref-Train and Ref-Ref), and prefetching and splitting combined (Ref-Train and Ref-Ref).

109

0

5

10

15

20

25

30

35

40

45

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Jack

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base
Pref (Ref-Train)
Pref(Ref-Ref)
Split (Ref-Train)
Split (Ref-Ref)
Pref + Split (Ref-Train)
Pref + Split (Ref-Ref)

0

5

10

15

20

25

30

35

40

45

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

JavaCup

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base
Pref (Ref-Train)
Pref(Ref-Ref)
Split (Ref-Train)
Split (Ref-Ref)
Pref + Split (Ref-Train)
Pref + Split (Ref-Ref)

Figure VII.20: Veri�ed transfer delay (Jack and JavaCup) using prefetching and splitting.

Each graph provides a set of bars for each network bandwidth (x-axis). From left to right, the

seven bars in a set represent the total transfer delay that results from strict execution (Base)

and from strict execution with prefetching alone (Ref-Train and Ref-Ref), with splitting alone

(Ref-Train and Ref-Ref), and prefetching and splitting combined (Ref-Train and Ref-Ref).

110

0

10

20

30

40

50

60

70

80

90

100

110

120

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Jess

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base
Pref (Ref-Train)
Pref(Ref-Ref)
Split (Ref-Train)
Split (Ref-Ref)
Pref + Split (Ref-Train)
Pref + Split (Ref-Ref)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

Soot

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base
Pref (Ref-Train)
Pref(Ref-Ref)
Split (Ref-Train)
Split (Ref-Ref)
Pref + Split (Ref-Train)
Pref + Split (Ref-Ref)

Figure VII.21: Veri�ed transfer delay (Jess and Soot) using prefetching and splitting.

Each graph provides a set of bars for each network bandwidth (x-axis). From left to right, the

seven bars in a set represent the total transfer delay that results from strict execution (Base)

and from strict execution with prefetching alone (Ref-Train and Ref-Ref), with splitting alone

(Ref-Train and Ref-Ref), and prefetching and splitting combined (Ref-Train and Ref-Ref).

111

0

10

20

30

40

50

60

70

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

Pref (Ref-Train)

Pref (Ref-Ref)

Split (Ref-Train)

Split (Ref-Ref)

Both (Ref-Train)

Both (Ref-Ref)

0

10

20

30

40

50

60

70

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) INET (0.75) T1 (1.0)

T
ra

n
sf

er
D

el
ay

in
S

ec
o

n
d

s

Base

Pref (Ref-Train)

Pref (Ref-Ref)

Split (Ref-Train)

Split (Ref-Ref)

Both (Ref-Train)

Both (Ref-Ref)

Figure VII.22: Average transfer delay using class �le prefetching and splitting.

Seven bars are shown for each network bandwidth and the values of each bar is an average over

all benchmarks. The �rst bar (far left) is the base case transfer delay. The right graph shows

the results for trusted transfer and the left graph shows the same for veri�ed transfer. The

remaining 3 pairs of bars show the transfer delay that results from prefetching alone, splitting

alone, and prefetching and splitting together. The �rst bar in each pair is the cross-input

results (Ref-Train) and the second bar is the same-input results (Ref-Ref). On average, class

�le splitting and prefetching reduce trusted-transfer delay by 20 seconds for the modem link

and 1 second for the T1 link. For veri�ed transfer, splitting and prefetching together reduce

transfer delay by 25 seconds and 300 ms.

112

veri�ed transfer, respectively, when using a modem link. Over a T1 link the cost is 8 and 12

seconds, respectively on average. Class �le prefetching and splitting together, across inputs,

reduces this cost by 20 seconds for the modem link and 1 second for the T1 link. This translates

to a reduction in startup time: 14 seconds for the modem link and 200 milliseconds for the T1

link during the �rst 10% of program execution (5 seconds). For veri�ed transfer, prefetching

and splitting reduces 25 seconds and 300ms of the transfer delay for the modem and T1 link,

respectively, on average.

The text of this chapter is in part a reprint of the material as it appears in the 1999

conference proceedings of the 14th Annual ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages, and Applications (OOPSLA). The dissertation author was

the primary researcher and author and the co-authors listed on this publication directed and

supervised the research which forms the basis for this chapter.

Chapter VIII

Transfer Delay Avoidance:

Dynamic Selection of

Compression Formats and

Selective Compression

Compression is used to reduce transfer delay by decreasing the number of bytes trans-

ferred through the use of compact �le encoding. The resulting size of compressed �les (compres-

sion ratio) is dependent upon the complexity of the encoding algorithm. Similar complexity is

also required for decompression of the �le prior to its use. That is, techniques with a high com-

pression ratio are necessarily time consuming to decompress. Alternately, techniques with fast

decompression rates are unable to achieve aggressive compression ratios and thus the transfer

times that such encodings enable.

Compression is commonly used to improve the performance of applications that trans-

fer over the Internet for remote execution, i.e. mobile programs. The overhead imposed by this

compression-based execution is similar to mobile execution without compression: it includes

the time for mobile code requests (program invocation and dynamic loading) and for transfer.

However, since compression techniques must trade o� compression ratio for decompression time,

the latter must also be considered a source of delay since it occurs on-line while the program is

executing. We refer to the combined overhead due to �le request, transfer, and decompression

as Total Delay.

To minimize total delay, a compression technique should be selected based on the

underlying resource performance (network, CPU, etc). Moreover, since such performance is

highly variable [18, 88], selection of the \best" compression algorithm should be able to change

113

114

dynamically for the same link. Such adaptive ability is important since the selection of a

non-optimal format may result in substantial total delay (25-44 seconds for some cases in the

programs studied) at startup or intermittently throughout mobile program execution. Much

prior research has shown that even a few seconds of interruption substantially e�ects the user's

perception of program performance [21].

To address this selection problem, we introduce Dynamic Compression Format

Selection (DCFS), a methodology for automatic and dynamic selection of competitive, com-

pression formats. Using DCFS, mobile programs are stored at the server in multiple compression

formats. DCFS is used to predict the compression format that will result in the least delay

given the bandwidth predicted to be available when transfer occurs. We use the Java execu-

tion environment for our DCFS implementation since it is the most common language for this

computational paradigm (remote execution). We incorporate an extension to Network Weather

Service (NWS) [88] for network performance prediction.

As a result of investigation of the problems addressed by this thesis, we discovered

that it is common for only a small subset of class �les in an application to be accessed during

execution. However, compressed archives of Internet-computing applications typically contain

all of the �les that make up the application. We exploit this characteristic to further reduce

the size of a compressed archive (and hence transfer delay) with a pro�le-directed, compiler

optimization, called Selective Compression.

Selective compression is a technique that excludes unused class �les from the archive.

Pro�les are used to ascertain which class �les are accessed during execution and to construct

a selectively compressed archive. If class �les, not included in the archive, are used, they

are transferred via existing dynamic class loading mechanisms. Selective compression enables

further reduction transfer and decompression time.

VIII.A Design and Implementation

We �rst describe the implementation of DCFS, a technique that reduces the transfer

delay that remains despite compressed transfer. Following this, we describe selective compres-

sion and provide results of the e�ect of each technique individually and collectively.

VIII.A.1 Dynamic Compression Format Selection

The compression techniques we incorporate into this study are described in the method-

ology in Chapter IV. Characteristics of each format are shown in Table IV.4 for the benchmarks

115

used in the empirical evaluation of the techniques presented in this chapter. The inherent trade-

o� made by compression techniques (compression ratio for decompression time) is exhibited in

the �nal three columns of the table. The �rst number in each column is the decompression rate

(KB/sec) for the application. The second, parenthesized number shows the compressed size (in

KB) of the application from which the compression ratio can be computed (original application

size (column 3) over compressed size). The total time for transfer and decompression for various

networks is shown in Table VIII.1.

The data in Table IV.4 shows, for example, that the PACK format requires over 2.3

seconds to decompress the applications on average (JAR and GZIP require 89% and 98% less

time, respectively), yet it enables a compressed �le size that is 81% and 74% smaller than JAR

and GZIP archives, respectively. This indicates that for slow networks PACK should be used

due to its compression ratio, and for fast links TGZ should be used since it is inexpensive to

decompress. No single utility enables the least total delay (request, transfer, decompression

time) for all network performance characteristics and applications. In addition, each format is

able to o�er substantial bene�t under certain circumstances. The choice of compression format

should therefore be made dynamically, depending upon such circumstances to enable the best

performance of mobile programs. To do this, we introduce Dynamic Compression Format

Selection (DCFS), a technique that automatically and dynamically selects the format that

results in the least total delay.

Figure VIII.1 exempli�es our DCFS model. The client-side Java Virtual Machine

(JVM) incorporates a DCFS class loader. When an executing program accesses a class �le for

the �rst time (or the program itself is invoked), the request made to the JVM is forwarded to

the DCFS class loader. Concurrently, a network performance measurement and prediction tool

(called JavaNws) monitors the network connection between the client and the server at which

the application is stored. The DCFS class loader acquires the network (as well as, possibly the

CPU) performance value from the JavaNws and forwards the value(s) with the request to the

server. With the initial server request, the DCFS class loader also includes the compression

formats for which the client machine has decompression utilities.

At the server, applications are stored in multiple compression formats. When a server

receives a request for an application or �le, it uses the information sent (predicted resource

performance value(s) and available compression formats) to calculate the potential total delay

for each format. That is, given the predicted performance of the network to and the CPU at

the client, the server determines the format that results in the least total delay. Total delay,

116

Table VIII.1: Total delay in seconds for the network bandwidths studied.

Raw data for the three wire-transfer formats is shown. Total delay is the time for transfer

and decompression given each network technology. In parentheses is included the percentage

of total delay due to decompression time.

Total Delay in Seconds

(Pct. of Delay due to Decompression)

Program Network PACK JAR TGZ

Antlr MODEM (0.03) 20.9 (17.5) 66.3 (0.5) 51.4 (0.1)

ISDN (0.128) 7.7 (47.5) 15.7 (1.9) 12.0 (0.3)

INET (0.28) 4.6 (80.0) 3.6 (8.3) 2.6 (1.3)

INET (0.50) 4.4 (83.5) 2.8 (10.7) 2.0 (1.7)

T1 (1.00) 4.1 (89.6) 2.1 (14.3) 1.4 (2.4)

Bit MODEM (0.03) 6.7 (18.6) 25.3 (0.5) 17.1 (0.2)

ISDN (0.128) 2.6 (49.0) 6.0 (2.3) 4.0 (0.8)

INET (0.28) 1.6 (78.5) 1.4 (9.5) 0.9 (3.4)

INET (0.50) 1.5 (81.2) 1.1 (11.9) 0.7 (4.3)

T1 (1.00) 1.4 (87.0) 0.8 (16.4) 0.5 (6.0)

Jasmine MODEM (0.03) 12.9 (20.9) 65.5 (0.5) 38.1 (0.1)

ISDN (0.128) 5.1 (52.8) 15.5 (2.0) 8.9 (0.4)

INET (0.28) 3.3 (82.5) 3.6 (8.8) 2.0 (1.9)

INET (0.50) 3.2 (85.3) 2.8 (11.3) 1.5 (2.4)

T1 (1.00) 2.9 (94.1) 2.0 (15.8) 1.0 (3.6)

Javac MODEM (0.03) 18.0 (18.5) 82.4 (0.4) 53.4 (0.1)

ISDN (0.128) 6.8 (49.1) 19.5 (1.7) 12.5 (0.3)

INET (0.28) 4.1 (80.8) 4.4 (7.7) 2.7 (1.2)

INET (0.50) 4.0 (84.1) 3.4 (9.9) 2.1 (1.6)

T1 (1.00) 3.7 (90.9) 2.5 (13.5) 1.5 (2.2)

Jess MODEM (0.03) 8.7 (21.0) 55.6 (0.6) 49.1 (0.1)

ISDN (0.128) 3.4 (53.0) 13.2 (2.5) 11.5 (0.3)

INET (0.28) 2.2 (81.7) 3.1 (10.8) 2.5 (1.4)

INET (0.50) 2.2 (84.3) 2.4 (13.7) 1.9 (1.8)

T1 (1.00) 2.0 (92.7) 1.8 (18.3) 1.3 (2.6)

Jlex MODEM (0.03) 5.2 (19.7) 14.4 (0.7) 11.4 (0.4)

ISDN (0.128) 2.0 (50.7) 3.4 (2.8) 2.7 (1.5)

INET (0.28) 1.3 (78.7) 0.9 (11.0) 0.7 (6.2)

INET (0.50) 1.3 (80.9) 0.7 (13.4) 0.5 (7.6)

T1 (1.00) 1.1 (95.6) 0.5 (18.8) 0.4 (9.5)

Avg MODEM (0.03) 12.1 (19.0) 51.6 (0.5) 36.7 (0.1)

ISDN (0.128) 4.6 (49.9) 12.2 (2.1) 8.6 (0.4)

INET (0.28) 2.9 (80.6) 2.8 (9.0) 1.9 (1.9)

INET (0.50) 2.7 (83.7) 2.2 (11.4) 1.5 (2.4)

T1 (1.00) 2.5 (90.9) 1.6 (16.1) 1.0 (4.6)

117

Network

List of available
wire-transfer formats
(decompression rates)

A
B

C

Applications
stored in formats

A,B, & C

CLIENT SERVER

Periodic
Polling

DCF
Selection

Center

DCFS Class Loader

JavaNWS

JVM

DCFS - Client

Figure VIII.1: The Dynamic Compression Format Selection (DCFS) Model.

The client requests an application from the server. It supplies the server with a list of the

compression formats for which it has a decompression utility. It also gives the server a prediction

of the bandwidth that is available between the client and the server. This prediction is obtained

by the JavaNws. The server uses this information to determine the compression format that

will result in the least total delay (request,transfer, and decompression time).

again, consists of the transfer plus decompression time. The selected format is the one in which

the application or class �le is sent to the client.

The JavaNws [51] utility at the client is an extension of the Network Weather Service

(NWS), a resource monitoring and prediction tool. The JavaNws makes periodic measure-

ments of the network performance between the client and the server which are used by a set of

forecasting techniques to make short-term predictions of bandwidth and round-trip time. The

forecasting techniques are further described in [88]. The NWS can also measure non-network

resources such as CPU and memory. As part of future work, we will incorporate this function-

ality into the JavaNws and thus into DCFS. The current implementation of the DCFS uses

network performance prediction only.

In the course of our DCFS study (presented in the previous chapter) and prior research,

we discovered that often, many class �les in an application are not used. For example, Table IV.3

shows that on average only 17 of the 104 classes are used. However, all of the class �les are

archived, compressed, and transferred to the destination for remote execution.

VIII.A.2 Selective Compression

To further reduce transfer delay we propose to combine and compress only those class

�les that are used by the application. Since we are unable (as yet) to predict the future and

118

know precisely which class �les will be used by every execution of an application, we use pro�le-

directed techniques to predict this set. This Selective Compression optimization uses pro�les

of previous executions to determine the classes used by a given input. The class usage pattern

is then used to combine and compress the used class �les. When an application is initially

invoked and requested from a server, the compressed �le of used classes is sent for execution.

When prediction is incorrect and a class is accessed that is not contained in the used set, it is

requested by the class loader and transferred alone without compression.

Selective compression mechanism is easily incorporated into the DCFS infrastructure.

Selectively compressed applications are stored at the source and selected between using DCFS.

When an application is initially requested storage site, the selectively compressed archive is

transferred for execution. If a class �le is accessed by the executing program that was not

transferred as part of the selectively compressed archive, it is transferred (uncompressed) via

dynamic class loading.

VIII.B Results: DCFS and Selective Compression

We �rst present the empirical e�ect of DCFS. Then we present results for selective

compression both with and without DCFS.

VIII.B.1 Dynamic Compression Format Selection

To evaluate DCFS, we implemented both of the DCFS modules (DCFS client and

server). However, to enable repeatability of results, we execute the modules on the same

machine and simulate di�erent networks between them. Instead of using JavaNws prediction, we

use bandwidth and round-trip time averages from network traces. This enables the presentation

of the upper-bound potential of DCFS. We provide a discussion of the impact of incorporating

prediction in the next section.

Table IV.5 shows the bandwidth and round-trip time measurements from 24-hour,

JavaNws trace data for each network used in this study. To compute total delay using this exe-

cution environment, upon client program invocation the server computes the sum of the average

round-trip time (for the request), the transfer time (the average bandwidth value multiplied by

the size of the compressed application), and the decompression time (the decompression rate

multiplied by the size of the compressed application). The decompression rate is supplied by

the client as part of the initial request. The total delay is calculated by the server for each of

119

the compression formats, TGZ, JAR, and PACK, and the minimum is selected.

To illustrate the performance potential of dynamic format selection, we �rst present

the percent reduction in total delay due to DCFS in Figures VIII.2, VIII.3, and VIII.4. The

base case is the use of PACK compression (or JAR or TGZ, respectively for each bar of data

presented) for each type of network without dynamic selection. The percent reduction is de�ned

as (TD Base� TD DCFS)=TD Base for each network, where TD Base is the total delay for

the base case and TD DCFS is the total delay using DCFS. Notice that the percent reduction

can be zero when DCFS selects the base case and the base case results in the minimum total

delay for that network. That is, when the base-case format is the optimal one, DCFS selects

it and no additional improvement can be gained. Each bar in the �gure represents a base case

(compression format: PACK, JAR, or TGZ) for each network bandwidth and indicates the

performance improvement a user would experience if DCFS were used instead of the base case.

For example, if a user that consistently invokes a jar �le for execution of the Jasmine program

instead uses DCFS, he or she will experience an 80% reduction in total delay on a modem link,

45% using an Internet connection, and 50% on a local area network. The overall bene�t from

DCFS does not simply result from using a di�erent compression utility, it results from selecting

the best compression utility given the underlying network performance. The bene�ts achieved

using DCFS are quite substantial for every benchmark and network performance rate.

We next present the total delay in seconds (log scale) in Figures VIII.5, VIII.6,

and VIII.7. For each network, the number of seconds required for request, transfer and de-

compression is shown for each compression technique (PACK, JAR, TGZ). The fourth (far

right, striped) bar of each set shows the DCFS total delay. The DCFS bar is always equivalent

to the minimum of the prior three bars since it is the \best" performing format. The bar that

is equal to the DCFS bar in each graph is the zero-valued bar in the the respective graph in

Figures VIII.2 through VIII.4. Averaged across all networks, DCFS reduces total delay 0:3 to

1:6 seconds over PACK, 2:1 to 16:1 seconds over JAR, and 1:4 to 9:7 seconds over TGZ.

A summary of the results is shown in Figure VIII.8. The format of this graph is the

same as Figures VIII.2 through VIII.4 (percent reduction) with the average reduction across all

benchmarks given instead of that for a speci�c benchmark. If PACK is used for non-MODEM

bandwidths, e.g., LAN, then DCFS reduces total delay over PACK by almost 90% (2 seconds)

on average across all benchmarks. For the LAN bandwidth, the optimal format is TGZ. However

for MODEM and INET bandwidths, DCFS provides 67% and 46% average reduction (24 and

4 seconds), respectively, over TGZ. On average across all networks, 34% (1.7 second), 52% (7.2

120

0

10

20

30

40

50

60

70

80

90

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0)

P
er

ce
n

t
R

ed
u

ct
io

n
 in

 T
o

ta
l D

el
ay

PACK

JAR

TGZ

Antlr

0

10

20

30

40

50

60

70

80

90

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0)

P
er

ce
n

t
R

ed
u

ct
io

n
 in

 T
o

ta
l D

el
ay

PACK

JAR

TGZ

Bit

Figure VIII.2: Pct. reduction in total delay due to DCFS for Antlr and Bit.

Each graph shows data for a di�erent benchmark. Each bar is a di�erent compression format

(base case) and represents the percent reduction in total delay (y-axis) when DCFS is used

instead of that format alone. The choice made by DCFS for a given network (x-axis) is rep-

resented as zero-valued (missing) bars, i.e., when the format chosen is the base case, DCFS

enables no further reduction since it has selected the optimal format given the ones available.

In every case, DCFS correctly determines and uses the format that requires the minimum total

delay and signi�cantly reduces it.

121

0

10

20

30

40

50

60

70

80

90

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0)

P
er

ce
n

t
R

ed
u

ct
io

n
 in

 T
o

ta
l D

el
ay

PACK

JAR

TGZ

Jasmine

0

10

20

30

40

50

60

70

80

90

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0)

P
er

ce
n

t
R

ed
u

ct
io

n
 in

 T
o

ta
l D

el
ay

PACK

JAR

TGZ

Javac

Figure VIII.3: Pct. reduction in total delay due to DCFS for Jasmine and Javac.

Each graph shows data for a di�erent benchmark. Each bar is a di�erent compression format

(base case) and represents the percent reduction in total delay (y-axis) when DCFS is used

instead of that format alone. The choice made by DCFS for a given network (x-axis) is rep-

resented as zero-valued (missing) bars, i.e., when the format chosen is the base case, DCFS

enables no further reduction since it has selected the optimal format given the ones available.

In every case, DCFS correctly determines and uses the format that requires the minimum total

delay and signi�cantly reduces it.

122

0

10

20

30

40

50

60

70

80

90

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0)

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Jess

0

10

20

30

40

50

60

70

80

90

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0)

P
er

ce
n

t
R

ed
u

ct
io

n
 in

 T
o

ta
l D

el
ay

PACK

JAR

TGZ

JLex

Figure VIII.4: Pct. reduction in total delay due to DCFS for Jess and Jlex.

Each graph shows data for a di�erent benchmark. Each bar is a di�erent compression format

(base case) and represents the percent reduction in total delay (y-axis) when DCFS is used

instead of that format alone. The choice made by DCFS for a given network (x-axis) is rep-

resented as zero-valued (missing) bars, i.e., when the format chosen is the base case, DCFS

enables no further reduction since it has selected the optimal format given the ones available.

In every case, DCFS correctly determines and uses the format that requires the minimum total

delay and signi�cantly reduces it.

123

0

1

10

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

T
o

ta
l D

el
ay

 in
 S

ec
o

n
d

s
PACK

JAR

TGZ

DCFS

Antlr

0

1

10

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

T
o

ta
l D

el
ay

 in
 S

ec
o

n
d

s

PACK

JAR

TGZ

DCFS

Bit

Figure VIII.5: Total delay in (log) seconds using DCFS for Antlr and Bit.

This set of graphs shows (for each benchmark) the total number seconds required for request,

transfer, and decompression using each compression technique (bar), PACK, JAR, TGZ. The

fourth (striped) bar of each set is the total delay when using DCFS. DCFS selects the format

that results in the minimum total delay.

124

0

1

10

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

T
o

ta
l D

el
ay

 in
 S

ec
o

n
d

s
PACK

JAR

TGZ

DCFS

Jasmine

0

1

10

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

T
o

ta
l D

el
ay

 in
 S

ec
o

n
d

s

PACK

JAR

TGZ

DCFS

Javac

Figure VIII.6: Total delay in (log) seconds using DCFS for Jasmine and Javac.

This set of graphs shows (for each benchmark) the total number seconds required for request,

transfer, and decompression using each compression technique (bar), PACK, JAR, TGZ. The

fourth (striped) bar of each set is the total delay when using DCFS. DCFS selects the format

that results in the minimum total delay.

125

0

1

10

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

T
o

ta
l D

el
ay

 in
 S

ec
o

n
d

s

PACK

JAR

TGZ

DCFS

Jess

0

1

10

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

T
o

ta
l D

el
ay

 in
 S

ec
o

n
d

s

PACK

JAR

TGZ

DCFS

JLex

Figure VIII.7: Total delay in (log) seconds using DCFS for Jess and Jlex.

This set of graphs shows (for each benchmark) the total number seconds required for request,

transfer, and decompression using each compression technique (bar), PACK, JAR, TGZ. The

fourth (striped) bar of each set is the total delay when using DCFS. DCFS selects the format

that results in the minimum total delay.

126

0 0

35

47

88

34

77

62

35 34

53 52

67

47

2 0 0

23

0

10

20

30

40

50

60

70

80

90

100

Modem
(0.03)

ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
 in

 T
o

ta
l D

el
ay

PACK

JAR

TGZ

Average
Over All Benchmarks

** * *

*DCFS selects base format for across all benchmarks for this network

Figure VIII.8: Average reduction in transfer delay enabled by DCFS.

Each bar shows the average percent reduction in total delay across all benchmarks for each of

the three compression formats. Bars with zero values indicate that the base case was the format

selected by DCFS, i.e., the base case was optimal and no additional bene�ts are possible. In

every case, DCFS correctly determines and uses the format that requires the minimum total

delay and signi�cantly reduces it. The average reduction in total delay over all network types

is shown by the rightmost three bars.

127

seconds), and 23% (2.3 seconds) of the delay can be eliminated over PACK, JAR, and TGZ,

respectively, if selection of the compression format is made dynamically.

Interestingly, JAR is never selected by DCFS (there are no zero-valued JAR bars in

Figures VIII.2 through VIII.4) using the bandwidths examined. This implies that using DCFS

with only two compression formats can improve (substantially, in many cases) the performance

of programs compressed using jar, given any network technology. This also implies that only

two formats need to be stored at the server for application download, given current compression

technology, to achieve the substantial reductions in total delay presented here. As compression

utilities change, however, providing additional DCFS choices enables additional opportunity

for improved performance. On average, across all benchmarks and bandwidths, DCFS reduces

total delay imposed by jar compression, the most commonly used Java application compression

technique, by more than half.

VIII.B.2 Selective Compression

We next presents results for selective compression. To evaluate the e�ectiveness of

selective compression, we present results (without DCFS) in terms of the percent reduction in

total delay. The graphs in Figures VIII.9 through VIII.14 show the percent reduction using

the PACK, JAR, and TGZ formats; for each benchmark we show a pair (row) of graphs. The

x-axis is network bandwidth and the y-axis is the percent reduction in total delay (transfer plus

decompression) for each compression format due to selective compression. The top graph of

each pair shows the test result: the train input is used for both pro�le and result generation;

the bottom graph shows the cross-input, test results. On average, reduction in total delay for

all compression formats is 14% with perfect information and 10% across inputs.

In Figures VIII.13 and VIII.14 there are two cross-input (bottom) graphs with negative

bars. For these benchmarks, BIT and Jess, selective compression degrades performance. For

these benchmarks, misprediction degrades performance. Misprediction occurs when class �les

are used that were not predicted as used and thus were not included in the selectively compressed

archive. A small number of mispredicted class �les does not increase transfer delay in most

cases, however it is possible for selective compression to degrade performance when the class

usage patterns across inputs di�er greatly.

To combat this, we modi�ed DCFS to check the di�erence in the sizes of the completely

compressed and the selectively compressed application. For some programs, there is little

di�erence between the transfer time required for an entire application (compressed) and the

128

0

10

20

30

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK
JAR
TGZ

Antlr (Ref-Ref)

0

10

20

30

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK
JAR
TGZ

Antlr (Ref-Train)

Figure VIII.9: Pct. reduction in total delay due to selective compression (Antlr).

The top graph is data collected by using the same (test) input for both pro�ling and result

gathering (Ref-Ref); the bottom uses a training input to generate the pro�le (Ref-Train). The

y-axis shows the percent reduction in total delay. The average reduction in total delay is shown

in the rightmost three bars.

129

0

10

20

30

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Javac (Ref-Ref)

0

10

20

30

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Javac (Ref-Train)

Figure VIII.10: Pct. reduction in total delay due to selective compression (Javac).

The top graph is data collected by using the same (test) input for both pro�ling and result

gathering (Ref-Ref); the bottom uses a training input to generate the pro�le (Ref-Train). The

y-axis shows the percent reduction in total delay. The average reduction in total delay is shown

in the rightmost three bars.

130

0

10

20

30

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Jlex (Train)

0

10

20

30

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Jlex (Ref-Train)

Figure VIII.11: Pct. reduction in total delay due to selective compression (Jlex).

The top graph is data collected by using the same (test) input for both pro�ling and result

gathering (Ref-Ref); the bottom uses a training input to generate the pro�le (Ref-Train). The

y-axis shows the percent reduction in total delay. The average reduction in total delay is shown

in the rightmost three bars.

131

0

10

20

30

40

50

60

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Jasmine (Ref-Ref)

0

10

20

30

40

50

60

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Jasmine (Ref-Train)

Figure VIII.12: Pct. reduction in total delay due to selective compression (Jasmine).

The top graph is data collected by using the same (test) input for both pro�ling and result

gathering (Ref-Ref); the bottom uses a training input to generate the pro�le (Ref-Train). The

y-axis shows the percent reduction in total delay. The average reduction in total delay is shown

in the rightmost three bars.

132

0

10

20

30

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Bit (Ref-Ref)

-10

0

10

20

30

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) AverageP
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Bit (Ref-Train)

Figure VIII.13: Pct. reduction in total delay due to selective compression (Bit).

The top graph is data collected by using the same (test) input for both pro�ling and result

gathering (Ref-Ref); the bottom uses a training input to generate the pro�le (Ref-Train). The

y-axis shows the percent reduction in total delay. The average reduction in total delay is shown

in the rightmost three bars. Degradation in performance for cross-input (bottom graph) results,

this is corrected by incorporating selective compression into DCFS.

133

0

10

20

30

40

50

60

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Jess (Ref-Ref)

-10

0

10

20

30

40

50

60

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Jess (Ref-Train)

Figure VIII.14: Pct. reduction in total delay due to selective compression (Jess)

. The top graph is data collected by using the same (test) input for both pro�ling and result

gathering (Ref-Ref); the bottom uses a training input to generate the pro�le (Ref-Train). The

y-axis shows the percent reduction in total delay. The average reduction in total delay is shown

in the rightmost three bars. Degradation in performance for cross-input (bottom graph) results,

this is corrected by incorporating selective compression into DCFS.

134

Table VIII.2: Pct. di�erence in sizes of complete and selective compression.

The table includes the sizes of completely compressed applications and selectively compressed

versions of each benchmark that di�ers across inputs. Data for both inputs (train and test)

are shown for each compression technique. We use this information to determine when it is

feasible to use selective compression. If the size of the selectively compressed application is

more than 5% greater than that of the complete application, then we use selective compression.

We request the complete application for BIT using PACK and TGZ and for Jess using PACK

since this size criteria is not met.

Percent Di�erence in Size

Of Entire Compressed Application

and Selectively Compressed Application

PACK JAR TGZ

Program Train Test Train Test Train Test

Bit 4.9 4.8 10.9 9.4 5.0 4.9

Jasmine 12.8 12.7 18.4 17.8 18.0 17.5

Jess 2.8 3.2 5.5 5.8 51.7 52.1

selectively compressed version, given various network speeds. This occurs if the sizes of the

two versions are very similar. When class �les are used during execution, which have not been

transferred as part of the selectively compressed archive, they transfer alone, on-demand. When

the delay incurred by this additional transfer is larger than the reduction of total delay due

to selective compression, performance is degraded. Therefore we use the di�erence between

the completely compressed and the selectively compressed �les. If the potential transfer delay

reduced by this di�erence is less than the transfer delay required for transfer of an additional

class �le, then the complete application is requested in its compressed format. We use the

average class �le size in each application for this computation.

Table VIII.2 shows the percent di�erence between the size of each compressed applica-

tion and the size of the selectively compressed version for three benchmarks that have di�erent

class usage patterns across inputs. When the size of the selectively compressed application

is within 5% of the entirely compressed application, the bene�t from selective compression is

small and the risk of performance degradation due to incorrect prediction increases. To ensure

that selective compression does not degrade performance, we use a size heuristic performed on

the server when selectively compressed �les are created. If the selectively compressed size is

within 5%, selective compression is not used. In this case, the compressed �le on the server

will contain all of the class �les. Figures VIII.15 and VIII.16 show the e�ect of this DCFS

modi�cation to incorporate selective compression.

Figures VIII.17, VIII.18, and VIII.19 show the potential improvement when selective

135

0

10

20

30

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Bit (Ref-Train) Using DCFS

Figure VIII.15: Pct. reduction in total delay (across inputs) for the Bit benchmark.

The graph shows the e�ect of selective compression across inputs for the Bit benchmark when

selective compression is incorporated into DCFS in which the decision whether or not to request

the selectively compressed application is made dynamically.

0

10

20

30

40

50

60

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
in

T
o

ta
lD

el
ay

PACK

JAR

TGZ

Jess (Ref-Train) Using DCFS

Figure VIII.16: Pct. reduction in total delay (across inputs) for the Jess benchmark.

The graph shows the e�ect of selective compression across inputs for the Jess benchmark when

selective compression is incorporated into DCFS in which the decision whether or not to request

the selectively compressed application is made dynamically.

136

0

10

20

30

40

50

60

70

80

90

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
 in

 T
o

ta
l D

el
ay

DCFS SC (Test)
SC (Train) Combined (Test)
Combined (Train)

V/S PACK

Figure VIII.17: Summary of results using PACK compression as base case.

A series of bars is shown for each network bandwidth. From left to right, the �ve bars represent

the percent reduction in total delay due to DCFS alone, selective compression alone (Ref-Train

and Ref-Ref), and DCFS and selective compression combined (Ref-Train and Ref-Ref). The

average across the range of network bandwidth is given by the �nal set of �ve bars.

137

0

10

20

30

40

50

60

70

80

90

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
 in

 T
o

ta
l D

el
ay

DCFS SC (Test)
SC (Train) Combined (Test)
Combined (Train)

V/S JAR

Figure VIII.18: Summary of results using JAR compression as base case.

A series of bars is shown for each network bandwidth. From left to right, the �ve bars represent

the percent reduction in total delay due to DCFS alone, selective compression alone (Ref-Train

and Ref-Ref), and DCFS and selective compression combined (Ref-Train and Ref-Ref). The

average across the range of network bandwidth is given by the �nal set of �ve bars.

138

0

10

20

30

40

50

60

70

80

90

100

Modem (0.03) ISDN (0.128) INET (0.28) INET (0.50) T1 (1.0) Average

P
er

ce
n

t
R

ed
u

ct
io

n
 in

 T
o

ta
l D

el
ay

DCFS SC (Test)
SC (Train) Combined (Test)
Combined (Train)

V/S TGZ

Figure VIII.19: Summary of results using TGZ compression as base case.

A series of bars is shown for each network bandwidth. From left to right, the �ve bars represent

the percent reduction in total delay due to DCFS alone, selective compression alone (Ref-Train

and Ref-Ref), and DCFS and selective compression combined (Ref-Train and Ref-Ref). The

average across the range of network bandwidth is given by the �nal set of �ve bars.

139

compression is combined with DCFS. The graphs present the results as percent reduction in

transfer delay. A separate graph is shown each for a di�erent base case, PACK (Figure VIII.17),

JAR (Figure VIII.18), and TGZ (Figure VIII.19). The graphs indicate the improvement in total

time (request, transfer, and decompress) an application would experience if DCFS were used

over always using Pack, JAR, or TGZ compression. A set of �ve bars are included for each

of the network bandwidths which show the average performance across benchmarks. The �rst

bar in the set are the results due to DCFS alone as presented previously. The second and third

bars indicate the performance bene�t from selective compression using di�erent pro�le inputs

(Ref-Train, Ref-Ref). The �nal two bars show the combined e�ect of selective compression and

DCFS using the di�erent inputs (for selective compression) for pro�le and result generation

(Ref-Train), and using the same input, respectively. The cross-input (Ref-Train) results show

that on average across all benchmarks, selective compression alone reduces transfer delay 8%

for the modem link (1.0 seconds) and 8% for the T1 link (0.2 seconds) over always using

the PACK utility. When combined with DCFS, for dynamic selection as well as selective

compression, delay is reduced 10% for the modem (1.2 seconds) and 90% for the T1 link (2.2

seconds). Average improvements over always using JAR compression are 10% for the modem

(5.2 seconds) and 16% for T1 (0.1 seconds) using selective compression alone and 80% for the

modem (41.3 seconds) and 61% for T1 (0.4 seconds) when combined with DCFS. Improvements

over TGZ are, on average, 18% for the modem (6.6 seconds) and 18% for T1 (0.1 seconds) using

selective compression alone and 71% for the modem (26.1 seconds) and 19% for T1 (0.1 seconds)

with DCFS.

VIII.C Discussion

In the previous sections, we articulated the DCFS design and reported results to

indicate the potential of dynamic selection of compression formats to improve mobile program

performance. Our results use average performance values from real network traces. In this

section, we discuss practical implementations of DCFS and the implications of incorporating

predictions of future network bandwidth.

Our results showed that below a certain bandwidth value (0:19Mb/s in our study),

the PACK utility is always selected. For networks for which bandwidth is always less than

a given threshold, e.g. 0:03Mb/s (MODEM), we propose that DCFS be used to calibrate

the JVM to request applications in the most commonly selected format, if available. This

140

calibration can be performed at JVM installation or when compression utilities are added and

removed, eliminating any application startup overhead introduced by the DCFS. The DCFS

can be used in this setting until the underlying network changes. For connections capable of

bandwidth values above this threshold (the Internet), no single compression format enables

the best performance for all bandwidths. Thus, dynamic selection of compression techniques is

needed for networks with variable performance to reduce delay.

VIII.C.1 DCFS for Variable Bandwidth Connections

The results in the previous section show that DCFS is able to select the appropriate

compression format that results in the minimum delay. For example, for modem links, DCFS

commonly chooses PACK; similarly for LAN, DCFS chooses TGZ. However, the a�ect of vari-

ance is not represented by these results since we use a single network bandwidth value (the

trace average). Such network variance can cause DCFS to change the selection for a single link.

For example, Figure VIII.20 shows the bandwidth for two Internet connections. The �rst row

of graphs is the data trace from which the INET bandwidth average was obtained. The sec-

ond row provides data for a di�erent Internet connection between the University of Tennessee

and the University of California, San Diego. The left graph of each pair is the raw bandwidth

measurement taken; the right is the cumulative distribution function (CDF) over all bandwidth

values. Measurements were taken at just under one minute intervals over a 24 hour period that

began at approximately 8PM.

In the right, CDF graphs, we have incorporated a vertical and horizontal line. The

vertical line indicates the average bandwidth value 0:32 Mb/s at which the DCFS selection

changes from PACK to TGZ over all of the benchmarks studied. For less than 42% of the

values, PACK is chosen by DCFS for the link represented by the top pair of graphs; the

remainder of time TGZ is chosen. For the link represented by the bottom pair, over 50% of

the values on average, causes DCFS to select PACK. These results show that it is unclear as to

which compression technique to use for this network. Hence, dynamic selection should be used

to achieve the least total delay.

VIII.C.2 Prediction of Network Characteristics

In the real-world implementation of DCFS, the future performance of the network

(at the time the compressed �le transfers) is unknown. We must predict this value to deter-

mine which compression technique results in the least total delay. The results in the previous

1
4
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0
500

1000

T
im

e

Bandwidth (Mb/s)

H
o

u
r 1

H
o

u
r 12

H
o

u
r 24

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

B
an

d
w

id
th

 in
 M

b
/s (C

D
F

)

Pct. Of All Bandwidth Measurements

P
A

C
K

T
G

Z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0
500

1000
1500

2000

T
im

e

Bandwidth (Mb/s)

H
o

u
r 1

H
o

u
r 12

H
o

u
r 24

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

B
an

d
w

id
th

 in
 M

b
/s (C

D
F

)

Pct. Of All Bandwidth Measurements

P
A

C
K

T
G

Z

F
ig
u
re

V
III.2

0
:
R
a
w
d
a
ta

(left)
a
n
d
cu
m
u
la
tiv

e
d
istrib

u
tio

n
fu
n
ctio

n
s
(C
D
F
)
(rig

h
t).

T
h
e
to
p
p
a
ir
is
d
a
ta

fro
m

th
e
IN
E
T
tra

ce
u
sed

th
ro
u
g
h
o
u
t
th
is
stu

d
y.

T
h
e
b
o
tto

m
p
a
ir
in

a
lso

In
tern

et
d
a
ta
,
h
o
w
ev
er,

b
etw

een
tw
o
d
i�
eren

t
h
o
sts.

In
th
e
left

g
ra
p
h
s,
th
e
y
-a
x
is
is
b
a
n
d
w
id
th
,

a
n
d
th
e
x
-a
x
is
is
tim

e.
B
o
th

tra
ces

a
re
o
f
a
sin

g
le
2
4
-h
o
u
r
p
erio

d
sta

rtin
g
a
p
p
ro
x
im
a
tely

a
t
8
P
M

a
t
n
ig
h
t.
T
h
e
d
a
ta
in
d
ica

tes
th
a
t
th
ese

co
n
n
ectio

n
s
a
re
h
ig
h
ly
va
ria

b
le
a
n
d
h
en
ce

d
i�
eren

t
D
C
F
S

ch
o
ices

ca
n
b
e
m
a
d
e
fo
r
a
sin

g
le
lin
k
.
T
h
e
rig

h
t
g
ra
p
h
s
in
d
ica

te
(g
iv
en

th
e
a
v
era

g
e
b
a
n
d
w
id
th

va
lu
e,
0
:3
2
M
b
/
s
in
d
ica

ted
b
y
th
e
v
ertica

l
lin
e,
a
t
w
h
ich

D
C
F
S
ch
o
se

a
d
i�
eren

t
fo
rm

a
t
o
v
er

a
ll

b
en
ch
m
a
rk
s
stu

d
ied

)
th
a
t
in

th
e
to
p
p
a
ir,

P
A
C
K

is
ch
o
sen

less
th
a
n
1
9
%

o
f
th
e
tim

e.
In

th
e

b
o
tto

m
p
a
ir,

th
e
n
u
m
b
er

o
f
tim

es
P
A
C
K
is
ch
o
sen

b
y
D
C
F
S
is
a
b
o
u
t
th
e
sa
m
e
n
u
m
b
er

a
s
th
a
t

fo
r
T
G
Z
.

142

section use a known bandwidth value to compute the total delay; this is the performance (band-

width) that the application experiences during the transfer. Thus, the results indicate the best

performance achievable by the DCFS for that value.

For the use of DCFS to be practical, we must show that this performance potential is

not substantially degraded by the use of prediction; which may occur if the predictions made are

inaccurate. To determine the accuracy of a predicted value, it is common to examine the error

value: the di�erence between the predicted value and the actual value when it occurs. DCFS

incorporates prediction using known techniques and previously implemented tools. Performance

prediction is a well studied area beyond the scope of this thesis and is not a contribution made

by the techniques we present. We refer the reader to [58, 88, 30, 18] for chapter from a small

subset of this research area. The contribution of DCFS is to extend the use existing forecasting

techniques for bandwidth prediction to the prediction of total delay and dynamic compression

format selection.

To determine the accuracy of predicted values, it is common to examine the error

value: the di�erence between the predicted value and the actual value when it occurs. Pre-

diction errors impact the performance of DCFS only when they cause non-optimal format

selection. In the remainder of this section, we empirically evaluate the e�ect of prediction on

the DCFS performance potential. We consider two techniques for bandwidth prediction: last

bandwidth prediction via probes for simplicity and network weather service (NWS) prediction

for its dynamic choice between multiple predictive algorithms.

Last Bandwidth Prediction Via Probes

One way to predict the bandwidth when a transfer occurs, is to probe the bandwidth

immediately prior to transfer. Using this approach, we predict that the bandwidth at a transfer

time in the near future, will be equal to the current bandwidth. This is called last bandwidth

prediction. Last bandwidth prediction can be incorporated for DCFS bandwidth prediction

using any network probe utility available, e.g., ping, netperf [43], TTCP [76], JavaNws [51],

etc. In addition, simple probing socket routines can easily be written from scratch.

The accuracy of last bandwidth prediction is demonstrated by its error values. For

example, in the Internet connection data in Figure VIII.20 in the top pair of graphs, the

average error using last bandwidth prediction is 11:3KB/s. This value is obtained by taking

the bandwidth values and subtracting them from the previous value in the trace, and taking

the average of this di�erence over all measurements. On average, the di�erence between the

143

last bandwidth value and the bandwidth when the application transfers is 11:3KB/s. However,

since DCFS is making a binary decision (1 for PACK and 0 for TGZ in this case) based on

whether the prediction is above or below a given threshold, this error will only e�ect predictions

that are + � 11:3KB/s of this threshold. To determine the extent to which this error limits

the overall improvement by DCFS, we selected 100 random bandwidth values from both sets of

INET trace data presented in the �gure and computed the total delay required by each of the

wire-transfer formats, as well as by DCFS. We found total delay reduction from DCFS using

last bandwidth prediction to be within 4% of that from DCFS using the actual trace values,

i.e. perfect information.

NWS Prediction

An alternate approach to last bandwidth prediction is to use the Java implementation

of the Network Weather Service [88] prediction utilities in the JavaNws. This tool treats

measurement values from network probes as time series. It applies a set of very fast1, adaptive,

statistical forecasting techniques to these time series to produce accurate, short-term predictions

of available network performance [88].

The average JavaNws prediction error from the top Internet connection data in Fig-

ure VIII.20 is 7:5KB/s (for an average bandwidth value of 0.5 (INET), this is 111ms). Smaller

average error improves the potential for correct selection (and improved performance) by the

DCFS. Since one of the forecasters used by JavaNws is a last bandwidth predictor, JavaNws

will always enables equal or better accuracy than a last bandwidth predictor alone. Using 100

randomly selected bandwidth values from both sets of INET trace data presented in the �gure,

we achieve total delay reduction from DCFS using JavaNws prediction within 2% of that from

DCFS using the actual trace values . For these links, DCFS with JavaNws prediction enables

an additional 2% reduction in total delay than last bandwidth prediction alone.

VIII.D DCFS Extensions

An alternative to requiring that the server store applications in a number of di�erent

wire-transfer formats, we consider simply storing class �les. Then, when a request is made to

a server for application download, the server is instructed to compress the application prior to

transfer. The format is chosen by DCFS and is sent to the server upon application request.

1The JavaNws forecasting techniques require approximately 0:25ms to produce a single prediction, on the

processor used in this study.

144

In this section, we articulate some preliminary results of future work in which we include the

compression process with class �le load time.

In addition to decompression rates (Kb/s) and compression ratios, wire-transfer for-

mat plug-ins to the DCFS will include compression rates. Despite not being optimized for

compression time, existing compression techniques can still be incorporated into DCFS to give

insight into feasibility of including compression with dynamic format selection at class load

time. As utilities change, improve, or are optimized for compression rates, the DCFS can in-

corporate and select them; those for which compression times prove impractical will not be

selected. Total delay, when on-demand compression is performed, consists of time to request

a class, to compress the collection of �les, to transfer the collection, and to decompress the

required class. Our results are shown in Table VIII.3. Using DCFS with compression reduces

total delay by 50% over using jar �les without compression (using the wire-transfer formats

and networks from this study). That is, it is faster to compress, transfer, and decompress

applications using dynamically selected wire-transfer formats than it is to simply transfer and

decompress jar �les.

VIII.E Summary

Despite bene�ts provided by compression, transfer time continues to impede the per-

formance of mobile programs. With this work we exploit the trade-o� that is made by com-

pression techniques (compression ratio for decompression time). Since no one technique is best

(in terms of transfer and decompression time) for every level of network performance (and such

performance is highly variable for a single link), we introduce Dynamic Compression Format

Selection (DCFS). By dynamically selecting the compression technique based on the under-

lying, available resource performance, we ensure that for any network bandwidth, the format

resulting in the least total delay is used. We show that DCFS reduces total delay on average

across the networks and benchmarks studied: 52% (7s) over jar compression, the most com-

monly used format for mobile Java programs. DCFS reduces total delay for fast links (T1) 90%

(2s) over PACK compression on average for the benchmarks studied. For slow links (modem)

it can reduce total delay on average 67% (24s) over TGZ (tar and gzip) compression.

We also introduce a technique called selective compression in which only those class

�les predicted as used during execution are included in the compressed archive. We use o�-line

pro�ling to determine which class �les to exclude. When combined with the dynamic selection

145

Table VIII.3: Compression-on-demand with DCFS.

Data is presented for the range of network bandwidths for each benchmark. The �rst column

of data shows the cumulative time for request, decompression, and transfer for jar �le remote

execution. Jar �les are the most common transfer format for Java applications. The second

column of data shows the cumulative time for DCFS compression-on-demand (request, com-

pression, transfer, and decompression). The �nal column shows the percent time reduction

enabled by DCFS compression-on-demand. The �nal set of data shows the average over all

benchmarks for each network bandwidth.

Total Delay In Seconds

JAR Transfer and DCFS Compression,

Decompression Transfer, and Decompression

Program Network Time ONLY Time % Rdctn

Antlr MODEM (0.03) 66.3 37.4 43.6

ISDN (0.128) 15.7 12.3 21.3

INET (0.28) 3.6 2.9 17.9

INET (0.50) 2.8 2.3 16.6

T1 (1.00) 0.7 0.7 3.2

Bit MODEM (0.03) 25.3 13.1 48.3

ISDN (0.128) 6.0 4.1 31.4

INET (0.28) 1.4 1.0 27.3

INET (0.50) 1.1 0.9 25.6

T1 (1.00) 0.3 0.3 15.6

Jasmine MODEM (0.03) 65.5 21.6 67.1

ISDN (0.128) 15.5 9.2 40.6

INET (0.28) 3.6 2.3 36.8

INET (0.50) 2.8 1.8 35.3

T1 (1.00) 0.7 0.6 22.5

Javac MODEM (0.03) 82.4 33.0 60.0

ISDN (0.128) 19.5 12.9 34.0

INET (0.28) 4.4 3.1 30.1

INET (0.50) 3.4 2.5 28.6

T1 (1.00) 0.9 0.8 13.5

Jess MODEM (0.03) 55.6 14.9 73.0

ISDN (0.128) 13.2 4.4 66.4

INET (0.28) 3.1 1.1 63.9

INET (0.50) 2.4 0.9 62.7

T1 (1.00) 0.7 0.2 60.5

Jlex MODEM (0.03) 14.4 11.1 22.3

ISDN (0.128) 3.4 2.8 19.6

INET (0.28) 0.9 0.7 15.6

INET (0.50) 0.7 0.6 14.1

T1 (1.00) 0.2 0.2 5.8

Avg MODEM (0.03) 51.6 21.8 52.4

ISDN (0.128) 12.2 7.6 35.6

INET (0.28) 2.8 1.8 31.9

INET (0.50) 2.2 1.5 30.5

T1 (1.00) 0.6 0.5 20.2

146

of DCFS, we are able to reduce delay, on average, 90% (2s), 61% (400ms), and 19% (100ms)

over always using either PACK, JAR, or TGZ over a network link with 1Mb/s bandwidth. For

a modem link (0.03Mb/s), we reduce delay 10% (1s), 80% (41s), and 71% (26s) over PACK,

JAR, and TGZ on average.

To reduce total delay, the DCFS implementation requires that applications be stored

in various formats at the server and that the server compute minimum load delay. Currently,

servers supply users with mirror sites to improve download times. In addition, companies that

manage servers are motivated by competition and continuously improve sites to ensure the

satisfaction of customers/users. We believe that our results motivate the need for compression

format selection and as such, storage of applications in additional formats is a reasonable

tradeo�.

The text of this chapter is in part a reprint of the material that has been submitted

to the 2001 10th IEEE International Symposium on High-Performance Distributed Computing

(HPDC). The dissertation author was the primary researcher and author and the co-authors

listed on this publication directed and supervised the research which forms the basis for this

chapter.

Chapter IX

General Overview on Reducing

Compilation Delay

The execution model for remotely executed, Java programs once at the destination, is

one of either interpretation or dynamic compilation. With interpretation, bytecodes (the format

of Java programs) are executed instruction-by-instruction. It is a very simple mechanism and

enables immediate progress to be made by the application since this translation of an individual

instruction is very fast. However, interpretation imposes severe performance limitations on

mobile program execution. Since the process only considers a single bytecode instruction at

a time, the quality of the resulting native code is very poor. In addition, traditionally, there

is no reuse of interpreted code, i.e. multiple executions of the same instruction are repeatedly

interpreted.

In an e�ort to overcome the performance limitations of interpretation the next gen-

eration of Java execution systems [79, 3, 65, 34] employ dynamic, or just-in-time, compilation.

These new JVMs dynamically compile the bytecode stream (on a method-by-method basis)

into machine code before executing it. The resulting execution performance is substantially

higher than for interpreted bytecodes, but execution must pause each time a method is initially

invoked so that it may be compiled. We refer to this intermittent, pause time as compilation

delay.

Compilation also exposes optimization opportunities unavailable to interpretation.

Optimization can theoretically reduce execution time of mobile program to near that of a

similar C program. Dynamic compilation o�ers the potential for better performance than can

be achieved by static compilation since runtime information can be exploited for optimization

and specialization. Several dynamic, optimizing compiler systems have been built in industry

147

148

and academia [3, 8, 29, 34, 44, 45, 56, 79]. Despite its potential bene�ts, optimization increases

compilation delay since it is performed while the program executes.

Most systems attempt to reduce compilation delay introduced by the optimization in

one of two ways: they incorporate multiple compilers [12, 16, 84], or they use an interpreter

in coordination with an optimizing compiler [34, 68]. The dual-compiler systems use one very

fast, non-optimizing compiler and one slow, optimizing compiler. Typically, both system types

use the fast compiler or interpreter when methods execute for the �rst time. Then, on-line

measurements are made (using instrumented execution), to determine when program execution

characteristics warrant optimization. When a threshold for a method is met, the optimizing

compiler re-compiles it using various levels of optimization (or just a single level in some sys-

tems). Such systems are called adaptive compilation systems since they use optimization to

enable program performance to adapt as program execution behavior changes.

In the following two chapters, we present techniques that propose alternate uses of

two adaptive compilation systems to reduce compilation delay. We use the general techniques

of overlap and avoidance as in the previous chapters on the reduction of transfer delay. We

�rst consider the Jalape~no virtual machine from IBM T. J. Watson Research Center [3] in

Chapter X. In this chapter, we �rst empirically evaluate the e�ectiveness of method-level, or

lazy, compilation in contrast to class-level, or eager, compilation. We then present Background

Compilation, in which o�-line execution pro�le information is used to selectively optimize the

program (thereby avoiding unnecessary optimization). In addition, we use a background pro-

cessor to perform all optimization so that it is overlapped with useful work.

In Chapter XI, we present Annotation-guided Compilation using the Open Runtime

Platform (ORP) [16] from Intel Corporation. For this study, we perform as much analysis as

possible o�-line and communicate the results in the bytecode stream of the application. At run-

time, the results (annotations) are used by the compilation system to \shortcut" optimization

decisions and reduce compilation time. In addition, the information we annotate also includes

pro�le information. This enables the compilation system to avoid optimization as guided by

the pro�le data to further reduce compilation delay.

The results and measurements made in these two chapters cannot be compared due

to the di�erence in architectures upon which the available execution environments ran at the

time these studies were performed. The Jalape~no Virtual Machine executes on a PowerPC (a

166Mhz dual processor machine was used). ORP is an x86 based tool which we ran on 300Mhz

single processor hardware. The techniques we present are general, however; in fact, annotation-

149

guided compilation extends the techniques and results presented for background compilation.

All of the techniques substantially reduce compilation overhead to improve the performance of

mobile programs.

Chapter X

Compilation Delay Avoidance

and Overlap: Background

Compilation

The execution model for mobile programs consists of code and data �rst being trans-

ferred to a remote destination and then executed. Typically, an architecture-independent pro-

gram representation (e.g., bytecodes for the Java language) is shipped to the execution site

and interpreted by a virtual machine. However, to overcome the performance limitations inter-

pretation usually imposes, these systems now employ just-in-time compilation [79, 3, 65, 34].

These new virtual machines dynamically compile the bytecode stream (on a method-by-method

basis) into machine code before executing it. The resulting execution time is lower than for

interpreted bytecodes, but execution must pause each time a method is initially invoked so that

it may be compiled. The tradeo� imposed by dynamic compilation for the improved execution

time is compilation overhead. Since compilation and optimization occurs at runtime, execution

must stall until compilation completes.

The goal of this chapter is to develop techniques that reduce the e�ect of compilation

delay while maintaining optimized execution performance. To better understand dynamic com-

pilation overhead, we �rst evaluate and quantitatively compare the tradeo�s between eager, or

class{level, and lazy, or method{level, compilation. Lazy compilation is used in all existing JIT

compilation environments but there is no study, to our knowledge, that empirically evaluates

the di�erences between lazy and eager compilation. Since more optimization can be performed

across methods within a class �le, an aggressive optimizing compiler using eager compilation

may be able to produce more e�cient code than one which only optimizes at the method-level

(lazily). However, such optimization may too costly to perform dynamically; lazy compilation

150

151

guarantees that only those methods executed are optimized. Our studies using a speci�c lazy

and eager compilation implementation show that lazy compilation outperforms eager. We detail

our experiences with this implementation and empirical evaluation.

We then use the remainder of the chapter to introduce Background Compilation. Back-

ground compilation is a technique in which a dedicated processor on an SMP machine is used

for optimization. This enables overlap with compilation with application execution so that

optimization overhead is masked. In addition, we use pro�les to guide the selection of meth-

ods to optimize thereby avoiding unnecessary optimization. Our results show that background

compilation achieves optimized execution time with very little optimization overhead.

The infrastructure used to perform our measurements of compilation delay is Jalape~no,

a new JVM (Java Virtual Machine) built at the IBM T. J. Watson Research Center. Jalape~no [3]

is a multiple{compiler, compile{only JVM (no interpreter is used). Therefore, it is important

to consider compilation delay in the overall performance of the applications executed. Prior

to the work reported in this chapter, the default compilation mode in Jalape~no was eager

compilation. After the results reported in this chapter were obtained, the default compilation

mode for Jalape~no was changed to lazy compilation.

X.A Design And Implementation

Dynamic class loading in Java loads class �les as they are required by the execution

on demand. Using Just-In-Time (JIT) compilation, each method is compiled upon initial

invocation. We refer to this method-level approach as Lazy Compilation. Lazy compilation

is used in most dynamic compilation systems [34, 45, 52, 81].

An alternative approach is Eager Compilation. Instead of compiling a single method at

a time, an entire class �le is compiled when it is �rst accessed. Prior to this study, the Jalape~no

virtual machine only used eager compilation. In this section, we describe our experiences with,

and the implementation of, lazy compilation in Jalape~no. As a result of this work, both eager

and lazy compilation were made available in Jalape~no; lazy compilation has become the default.

More importantly, with this study we empirically quantify the performance di�erences between

eager and lazy compilation.

We implemented eager compilation in Jalape~no for its reduced complexity and po-

tential bene�ts. First, eager compilation reduces the overhead caused by switching between

execution and compilation. Switching may decrease application memory performance by pol-

luting the cache during compiler operation. If all of the methods in a class �le are used during

152

execution, eager compilation results in compilation of the same methods and substantially less

switching overhead. Second, eager compilation can also potentially improve execution perfor-

mance since it simpli�es interprocedural analysis and optimization by ensuring that all methods

of a class are analyzed before any of them are compiled.

However, eager compilation increases the time required by class �le loading since the

entire class �le is compiled before execution continues. This delay is experienced the �rst time

each class is referenced. In some cases, it may take seconds to compile a class if high optimization

levels are used, a�ecting a user's perception of the application performance. In addition, for

some applications, many methods may be compiled and optimized but never invoked, leading

to unnecessary compilation time and code bloat. It is unclear whether lazy or eager compilation

results in the best overall performance. This study empirically determines the answer. To our

knowledge, no such study has yet been performed.

X.A.1 Lazy Compilation

As part of loading a class �le in Jalape~no, entries for each method declared by the

class are created in the class' virtual function table and/or a static method table. These

entries are the code addresses that should be jumped to when one of the methods is invoked.

In eager compilation, these addresses are simply the �rst instruction of the machine code

produced by compiling each method. To implement lazy compilation, we instead initialize all

virtual function table and static method table entries for the class to refer to a single, globally

shared stub1. When invoked, the stub will identify the method the caller is actually trying to

invoke, initiate compilation of the target method as necessary2, update the table through which

the stub was invoked to refer to the real compiled method, and �nally, resume execution by

invoking the target method. Our implementation of lazy compilation is somewhat similar to

the backpatching done by the Jalape~no baseline compiler to implement dynamic linking [4] and

shares some of the same low-level implementation mechanisms (notably, special compilation of

\dynamic bridge" methods to ensure that both volatile and non-volatile registers are saved by

the callee). After the stub method execution completes, all future invocations of the same class

1Note that using a single globally shared stub complicates the implementation of the \method test" used

by the optimizing compiler to perform guarded inlinings of non-�nal virtual methods. This test relies on the

invariant that pointer equality of target instructions implies that the source-level target methods are equal.

Therefore, when the method test is being used for guarded inlining, the virtual function tables are initialized

with unique trampolines that jump to the globally shared stub.
2Because we lazily update virtual function tables on a per-class basis, it is possible that the target method

has already been compiled but that some virtual function tables have not yet been updated to remove the stub

method.

153

and method pair will jump directly to the actual, compiled method.

X.A.2 The E�ect of Lazy Compilation

To gather our results using this lazy approach, we time the compilation using internal

Jalape~no performance timers. Whenever a compiler is invoked, the timer is started; the timer

is stopped once compilation completes. To measure the execution time of the program, we use

the time reported by a wrapper program called SpecApplication.class distributed with the Spec

JVM98 programs [77]. Programs are executed repeatedly (10 times) in succession, and timings

of the execution are made separately.

To analyze the e�ectiveness of lazy compilation we �rst compare the total number of

methods compiled with and without lazy compilation. Figure X.1 depicts the percent reduction

in the number of methods compiled using the Ref input. The numbers are very similar for the

Train input since the total number of methods used is similar in both inputs. Above each bar

is the number of methods compiled lazily, shown to the left of the slash, and eagerly, shown

to the right of slash. On average, lazy compilation compiles 57% fewer methods than eager

compilation.

To understand the impact of lazy compilation in terms of reduction in compilation

overhead, we measured compilation time in Jalape~no with and without lazy compilation. Fig-

ure X.2 shows the percent reduction in compilation time due to lazy compilation in relationship

to eager compilation for both the optimizing compiler, shown in the top graph, and baseline

compiler, shown in the bottom graph, for the Ref input. The data shows that lazy compilation

substantially reduces compilation time for either compiler. On average, for the optimizing com-

piler, 29% of the compilation overhead is eliminated. Using the baseline compiler, on average

50% is eliminated. Since methods require varying amounts of time for optimization (depend-

ing upon method size and complexity), the relationship between the reduction in number of

methods compiled and compilation time is not proportional.

Table X.1 provides the raw execution and compilation times with and without lazy

compilation using the optimizing compiler for both inputs. The data in this table includes

compilation times used in Figure X.2 as well as execution times. Data for the baseline compiler

is not shown because compilation overhead is a very small percentage of total execution time,

and thus the 50% reduction in compilation time only results in a 1% reduction in total time.

Columns 2 through 6 are for the Train input and 7 through 11 are for the Ref input. The sixth

and eleventh columns, labeled \Ideal" contain the execution time alone for batch{compiled

154

Compress DB Jack Javac Jess Mpeg Average
0

20

40

60

80

100

P
er

ce
nt

 R
ed

uc
ti

on
 in

 N
um

be
r

of
 M

et
ho

ds
 C

om
pi

le
d Method Count Reduction

Optimizing compiler (Ref)

(132/279)(127/268)
(267/525)

(806/1266)
(521/859)

(266/501)
(353/616)

Figure X.1: Percent reduction in methods compiled.

This graph shows the reduction in compiled methods when lazy compilation is used over eager.

Above the bars, we include the the number of methods compiled over the total number of

methods. We only include data for the Ref input since the number of used methods is similar

across inputs for the Spec JVM98 benchmarks. In addition these numbers are typical regardless

of which compiler,optimizing or baseline, is used.

155

Compress DB Jack Javac Jess Mpeg Average
0

20

40

60

80

100

P
er

ce
nt

 R
ed

uc
ti

on
 in

 E
ag

er
 C

om
pi

le
 T

im
e Compile Time Reduction

Optimizing compiler (Ref)

33
39

26

16

45

27 29

Compress DB Jack Javac Jess Mpeg Average
0

20

40

60

80

100

P
er

ce
nt

 R
ed

uc
ti

on
 in

 E
ag

er
 C

om
pi

le
 T

im
e Compile Time Reduction

Baseline compiler (Ref)

10

70

45

33
27

40

50

Figure X.2: Reduction in compilation time due to lazy compilation.

The percent reduction in compilation delay is given above each bar explicitly. The top graph

shows the reduction in compilation time over eager compilation for the optimizing compiler

and the bottom graph shows the reduction for the baseline compiler. Since the results are the

same for both inputs so we include only the data data for the Ref input.

156

Table X.1: Raw execution time data.

This table shows the execution (ET) and compile (CT) times (in seconds) with and without

lazy compilation using the optimizing compiler. The sixth and eleventh columns contains the

benchmark execution time when the application is batch compiled o�-line. Batch compilation

(Ideal) eliminates dynamic linking code from the compiled application and enables more e�ec-

tive inlining. Columns 2 through 6 are execution and compile times for the Train input and

columns 7 through 11 are for the Ref input. For each input, times for both the eager and lazy

approaches are given.

Train (in seconds) Ref (in seconds)

Eager Lazy Ideal Eager Lazy Ideal

Benchmark ET CT ET CT ET ET CT ET CT ET

Compress 7.4 8.2 5.3 5.4 5.3 84.0 8.1 58.3 5.4 58.3

DB 1.9 8.2 1.9 5.0 1.7 102.7 8.0 98.8 4.9 98.8

Jack 9.9 16.0 9.4 11.6 9.1 84.3 16.0 80.1 11.8 77.6

Javac 2.0 38.6 2.0 31.2 1.9 66.3 38.5 68.1 32.3 62.6

Jess 2.5 27.2 1.8 14.7 1.8 45.2 27.6 38.4 15.1 37.9

Mpeg 7.3 15.9 6.7 11.7 5.4 71.3 15.9 61.7 11.6 51.3

Avg 5.2 19.0 4.5 13.3 4.2 75.6 19.0 67.6 13.5 64.4

applications. Batch Compilation is o�{line compilation of applications in their entirety. We

include this number as a reference to a lower{bound on the execution time of programs given

the current implementation of the Jalape~no optimizing compiler. Batch compilation is not

restricted by the semantics of dynamic class �le loading; information about the entire program

can be exploited at compile time. In particular all methods are available for inlining and all

o�sets are known at compile time.

Columns 2 and 3, and 7 and 8, are the respective execution and compile times for eager

compilation. Columns 4 and 5, and 9 and 10, show the same for the lazy approach. In addi-

tion to reducing compilation overhead, the data shows that lazy compilation also signi�cantly

reduces execution time when compared to eager compilation. This reduction in execution time

was caused by the direct and indirect costs of dynamic linking. In the following section, we

provide background on dynamic linking and explain the unexpected improvement in optimized

execution time enabled by lazy compilation.

The Impact of Dynamic Linking

Generating the compiled code sequences for certain Java bytecodes, e.g., put-�eld or

invokevirtual, requires that certain key constants, such as the o�set of a method in the virtual

function table or the o�set of a �eld in an object, be available at compile time. However, due to

157

dynamic class loading, these constants may be unknown at compile time: this occurs when the

method being compiled refers to a method or �eld of a class that has not yet been loaded. When

this happens, the compiler is forced to emit code that when executed, performs any necessary

class loading thus making the needed o�sets available, and then performs the desired method

invocation or �eld access. Furthermore, if a call site is dynamically linked because the callee

method belongs to an unloaded class, optimizations such as inlining cannot be performed. In

some cases, this indirect cost of missed optimization opportunities can be quite substantial.

Dynamic linking can also directly impact program performance. A well-known ap-

proach for dynamic linking [9, 19] is to introduce a level of indirection by using lookup tables

to maintain o�set information. This table-based approach is used by the Jalape~no optimizing

compiler. When it compiles a dynamically linked site, the optimizing compiler emits a code

sequence that, when executed, loads the missing o�set from a table maintained by the Jalape~no

class loader.3 The loaded o�set is checked for validity; if it is valid it can be used to index

into the virtual function table or object to complete the desired operation. If the o�set is

invalid, then a runtime system routine is invoked to perform the required class loading updat-

ing the o�set table in the process, and execution resumes at the beginning of the dynamically

linked site by re-loading the o�set value from the table. The original compiled code is never

modi�ed. This scheme is very simple and, perhaps more importantly, avoids the need for self-

modifying code that entails complex and expensive synchronization sequences on SMPs with

relaxed memory models such as the PowerPC machine used in our experiments. The tradeo�

of simplicity is the cost of validity checking: subsequent executions of dynamically linked sites

incur a four-instruction overhead. 4

If dynamically linked sites are expected to be very frequently executed, then this

per-execution overhead may be unacceptable. Therefore, an alternative approach based on

backpatching, or self-modifying code, can be used [4]. In this scheme, the compiler emits a code

sequence that when executed invokes a runtime system routine that performs any necessary

class loading, overwrites the dynamically linked sites with the machine code the compiler would

have originally emitted if the o�sets had been available, and resumes execution with the �rst

instruction of the backpatched, or overwritten, code. With backpatching, there is an extremely

high cost (aggravated by the synchronization and memory barriers required on the PowerPC)

the �rst time each dynamically linked site is executed, but the second and all subsequent

executions of the site incur no overhead.

3All entries in the table are initialized to 0, since in Jalape~no all valid o�sets will be non-zero
4The four additional instructions executed are two dependent loads, a compare, and a branch.

158

The Jalape~no optimizing compiler used in this chapter uses the table-based approach.

This design decision was mainly driven by the need to support type-accurate garbage collection

(GC). As in other systems that support type-accurate GC, compilers must produce mapping

information at each GC-safe point detailing which registers and stack-frame o�sets contain

pointers. By de�nition, all program points at which an allocation may occur, either directly or

indirectly, must be GC-safe points, since the allocation may trigger a GC. Because allocation

will occur during class loading, all dynamically linked sites must also be GC-safe points. If the

optimizing compiler used backpatching, it would actually need to generate two GC-maps for

each dynamically linked site: one that described the initial code sequence and one that described

the backpatched code. Although the two maps would contain very similar information, both are

needed since the GC-safe point in the initial and backpatched code sequences are at di�erent

o�sets in the machine code array. In practice, it turned out to be burdensome to modify

the optimizing compiler's GC-map generation module to produce multiple maps for a single

intermediate language instruction, so the issue was avoided by using the table-based approach

which only requires one GC-map for a dynamically linked site.

Since class �les are not changed once loaded, we are able to increase the probability

that an accessed class will be resolved at the time the referring method is compiled with the

delayed compilation of the lazy approach. Table X.2 shows the number of times dynamically

linked sites are executed with eager and lazy compilation. On average, code compiled lazily

executes through dynamically linked sites 92% fewer times than eager compilation for the Train

input and 99% fewer times for the Ref input. Although the reduction in direct dynamic linking

overhead can be quite substantial, e.g. roughly 25 million executed instructions on compress

with the Ref input, the missed inlining opportunities are even more important. For example,

more than 99% of the executed dynamically linked sites in the eager version of compress are

calls to very small methods that are inlined in the lazy version. Thus, the bulk of the 25 second

reduction in compress execution time as shown in Table X.1 is due to the direct and indirect

bene�ts of inlining, and not only to the elimination of the direct dynamic linking overhead.

Similar inlining bene�ts also occur in mpegaudio.

The e�ect of lazy compilation on total time is summarized in Figure X.3. The graph

shows the relative e�ect by lazy compilation both on execution time as well as compilation time

using the optimizing compiler. The top graph is for the Train input and the bottom graph is

for the Ref input. The top, dark-colored portion of each bar represents compilation time, the

bottom light-colored portion represents execution time. A pair of bi-colored bars is given for

159

Table X.2: Dynamic execution count of dynamically linked sites.

Columns 2{4 are for the Train input and 5{7 are for the Ref input. Columns 2 and 5 give

the counts in 100,000's of executed sites that were dynamically linked using the optimizing

compiler. Columns 3 and 6 are the counts when lazy compilation is used and Columns 4 and

7 show the percent reduction.

Train Ref

x 100,000 Percent x 100,000 Percent

Benchmark Eager Lazy Reduced Eager Lazy Reduced

Compress 492 3 99 6202 3 100

DB 12 3 75 455 4 99

Jack 32 28 13 71 51 28

Javac 27 17 37 480 33 93

Jess 64 7 89 790 8 99

Mpeg 133 5 96 1547 6 100

Avg 127 11 92 1591 18 99

each benchmark. The �rst bar of the pair results from using the eager approach; the second

bar from lazy compilation. Lazy compilation reduces both compilation and execution time

signi�cantly when compared to eager compilation. On average, lazy compilation reduces total

time by 26% for the Train input and 14% for the Ref input. Execution time alone is reduced

by 13% and 11% on average for each input, respectively, since lazy compilation greatly reduces

both indirect and direct costs of dynamic linking.

X.A.3 Background Compilation

In this section, we describe background compilation, a technique that reduces compila-

tion delay by overlapping compilation with computation. With lazy compilation, each method

is compiled upon initial invocation. However, the execution characteristics of the method may

not warrant its, possibly expensive, optimization. In addition, this on{demand compilation in

an interactive environment may lead to ine�ciency. In environments characterized by user inter-

action, the CPU often remains idle waiting for user input. Furthermore, the future availability

of systems built using single-chip SMPs makes it even more likely that idle CPU cycles will

intermittently be available. The goal of background compilation is to extend lazy compilation

to further mask compilation delay by using idle cycles to perform optimization.

Background compilation consists of two parts. The �rst occurs during application

execution: when a method is �rst invoked, it is lazily compiled using a fast, non{optimizing

compiler or the method is interpreted. This allows the method to begin executing as soon as

160

Compress DB Jack Javac Jess Mpeg Average
0

10

20

30

40

50

 T
ot

al
 T

im
e

In
 S

ec
on

ds

Total Time (Train)
Eager Compilation Time
Eager Execution Time
Lazy Compilation Time
Lazy Execution Time

11

 7

21

33

16
18 18

16

10

26

41

30

23 24

Compress DB Jack Javac Jess Mpeg Average
0

50

100

150

 T
ot

al
 T

im
e

In
 S

ec
on

ds

Total Time (Ref)
Eager Compilation Time
Eager Execution Time
Lazy Compilation Time
Lazy Execution Time

64

104
92

100

54

73
81

92

111
100 105

73

87
95

Figure X.3: Overall impact of lazy compilation application performance.

The top graph is for the Train input and the bottom graph is for the Ref input. The left bar

of each pair results from using eager compilation, the right bar lazy. The top, dark colored,

portion of each bar is compilation time, the bottom, light-colored execution. The number above

each bar is the total time in seconds required for both execution and compilation time. Lazy

compilation reduces both execution time as well as compilation time.

161

possible. However, since this type of compilation can result in poor execution performance,

methods which are vital to overall application performance should be optimized as soon as

possible.

This is achieved with the second part of the background compilation by using an

Optimizing Compiler Thread (OCT). At startup we initiate a system thread that is used solely

for optimizing methods. The OCT is presented with a list of methods that are predicted to be

the most important methods to optimize. The OCT processes one method at a time, checking

whether or not the class in which it is de�ned has been loaded. If it has, then the method is

optimized. Once compiled, the code returned from the optimizing compiler is used to replace

the baseline compiled code or the lazy compilation stub if the method has not yet been baseline

compiled. Future invocations of this method will then use the optimized version. If existing

stack frames reference previously compiled code, then this code will be used until the referenced

invocation returns.

To predict which methods should be optimized by the OCT, we use pro�les of the

execution time spent in a method. To generate these pro�les for our experimental results, we

execute the application o�-line and accumulate measurements of the amount of time spent in

a method, each time it is executed. We gather this timing data for executions using two inputs

as described in Chapter IV.

At JVM startup, the pro�led list of methods and the time spent in each is read

into memory and processed. Each method is assigned a global priority ranking with respect

to all other methods executed by the application. We then record the global priorities with

the methods in each class. As each class is loaded, any methods of the class that have been

prioritized are inserted into the OCTs priority queue for eventual optimization. If the priority

queue becomes empty, the OCT sleeps until class loading causes new methods to be added.

This model extends to a dynamic, mobile environment in which class �les may be

uploaded into the Jalape~no server from di�erent sources. At each source, pro�les are generated

and methods within each class are prioritized prior to transfer, as described above. Often,

execution of an application accesses library �les that are not transferred as part of the ap-

plication but are dynamically loaded from the machine on which the program is executed.

Information about high priority methods in these classes, are sent to the destination with the

application in the form of annotations. Annotation is a mechanism for including additional

information in a class �le. For background compilation, each application method contains an

annotation consisting of its priority as well as the name and priority of any library, or other

162

non-transferred methods. When a class is loaded by a Jalape~no server, the annotated priority

for important methods guides insertion into the global priority queue of the OCT. Bytecode

annotations of method priorities are inserted into the bytecode as method attributes using a

bytecode re-writing tool.

We currently use a single OCT that synchronously compiles prioritized methods.

When uncompiled methods are invoked, they are compiled using the baseline compiler. We

may be able to gain additional performance bene�ts through the use of multiple OCTs once

the Jalape~no optimizing compiler is made re-entrant. In this case, the baseline compiler will still

be used to compile newly-invoked methods so that optimization decisions are made solely by

the OCT system. We estimate that having multiple OCTs will provide additional performance

bene�ts in certain cases. For example, currently the OCT uses one processor separate from

the one used by the application thread. If there are additional processors or idle cycles, more

compilation can be performed using multiple OCTs. The system should be adaptive however,

so that the application is not starved for resources. That is, when the application is in need

of processing cycles, the OCT activity should be reduced so as to maintain acceptable applica-

tion performance while continuing to compile high-priority methods, even if it must scale back

to a single thread. This implementation and the associated analysis to achieve a bene�cial

performance balance is part of future work.

X.B Results: Lazy and Background Compilation

In this section total time refers to the combination of compilation, execution, and all

other overheads. The total time associated with background compilation includes:

� Baseline, or fast, compilation time of executed methods

� Execution time from methods with baseline-compiled code

� Execution time from methods invoked following code replacement by the optimizing back-

ground thread, and

� Thread management overhead

The examples in Figure X.4 illustrate the components that must be measured as part

of total time for a di�erent scenarios involving a method, Method1. In the �rst scenario,

Method1 is invoked, baseline compiled, and executed. Following its initial execution the OCT

encounters Method1 in its list and optimizes it. By the time it is able to replace Method1's

baseline compiled code, Method1 has executed a second time. For the third invocation, however,

163

the OCT has replaced the baseline compiled code and Method1 executes using optimized code.

Total time for this scenario includes baseline compilation time of Method1 and execution time

for two Method1 invocations using baseline compiled code and one using optimized code.

In the second scenario, the OCT encounters, optimizes, and replaces Method1 before

it is �rst invoked. This implies that the class containing Method1 has been loaded prior to

OCT optimization of Method1. The OCT replaces a stub that is in place for Method1 with

the optimized code. When this occurs the use of background compilation can also reduce the

memory footprint of the Jalape~no VM and the executing program since baseline code is not

kept in memory. All executions of Method1 use the optimized code. Total time for this scenario

includes only the execution time for three invocations of Method1 using optimized code.

To measure the e�ectiveness of background compilation, we provide results for the

total time required for execution and compilation using this approach. Figures X.5 and X.6

compare total time with background compilation to total time for the eager, lazy, and ideal

con�gurations results from Table X.1 (Ref and Train, respectively). Four bars (with absolute

total time in seconds above each bar) represent the total time required for each approach for

a given benchmark. The �rst bar shows results from eager and the second bar from the lazy

approach. The third bar is the total time using background compilation and the fourth bar is

\ideal" execution time alone. Ideal execution time results from a batch-compiled application

(complete information about the application enables more e�ective optimization and removes

all dynamic linking, and there is no compilation cost).

The summary �gures show that background compilation eliminates the e�ect of almost

all of the compilation delay that remains when using the lazy approach. On average, background

compilation provides an additional 71% average reduction in total time over lazy compilation for

the Train input (14% for the Ref input). On average there are 151 fewer methods optimized by

the OCT over lazy compilation. In comparison with eager compilation, background compilation

reduces the total time (execution plus compilation) by 79% and 26% for the Train and Ref input,

respectively. The percentage of total time due to compilation is 79% and 20%; hence background

compilation reduces total time by more than just the compilation delay. This occurs since

background compilation extends lazy compilation and thereby enables additional optimization

and avoids the dynamic linking e�ects (as discussed in the lazy compilation section). That is,

when the OCT optimizes each method, most required symbols are resolved.

Most importantly, however, are the similarities between background and \ideal" exe-

cution time. Total time using the background approach is within 21% and 8% (on average for

164

Background
Thread

Application
Thread

Time

Execute
Method1

BG-Opt
Compile
Method1

BG-Replace
Method1

(A)

(B)

Initially Invoke
and Baseline

Compile
Method1

Background
Thread

Application
Thread

Time

Execute
Method1

BG-Opt
Compile
Method1

BG-Replace
Method1

(B)

Initially
Invoke

Method1

Figure X.4: Example scenarios of background compilation.

In the �rst scenario, upon initial invocation of Method1, execution suspends and Method1

is baseline-compiled. \(A)" in each �gure represents the time required for baseline compila-

tion. When Method1 is executed the code invoked is the baseline-compiled version. This is

represented in all �gures by the dotted arrow. Next, in the background, as indicated below

each timeline, the optimizing compilation thread (OCT) optimizes Method1. \(B)" in each

�gure represents the time required for optimization. Due to the time required for Method1

optimization, Method1 is invoked and executed a second time with the baseline-compiled code

before the OCT replaces the baseline-compiled code with the optimized version. Once replaced,

Method1 executes using the optimized version of the code. This is represented by a solid line

in the �gure. In the second scenario, the OCT is able to compile and replace Method1 before

any invocations of Method1 occur; therefore, all executions use the optimized code.

165

Compress DB Jack Javac Jess Mpeg Average
0

10

20

30

40

50
 T

ot
al

 T
im

e
In

 S
ec

on
ds

Total Time (Train)Eager Total Time
Lazy Total Time
Background Total Time
Ideal Execution Time

16

10

26

41

30

23 24

11

 7

21

33

16
18 18

 5
 2

10

 3 2

 8
 5 5

 2

 9

 2 2
 5 4

Figure X.5: Summary of total time (in seconds) for the Train input.

Times for all of the presented approaches including background compilation are shown for the

Train input. Total time includes both compilation and execution time. Four bars are given for

each input. The �rst three bars show total time using eager compilation, lazy compilation, and

background compilation, respectively. The fourth bar shows \ideal" execution time alone (from

execution of o�-line compiled benchmarks). Absolute total time in seconds appears above each

bar.

Compress DB Jack Javac Jess Mpeg Average
0

50

100

150

 T
ot

al
 T

im
e

In
 S

ec
on

ds

Total Time (Ref)Eager Total Time
Lazy Total Time
Background Total Time
Ideal Execution Time

92

111

100
105

73

87
95

64

104

92
100

54

73
81

58

99

83
74

42

63
70

58

99

78

63

38

51

64

Figure X.6: Summary of total time (in seconds) for the Ref input.

Times for all approaches including background compilation are shown for the Ref input. Total

time includes both compilation and execution time. Four bars are given for each input. The

�rst three bars show total time using eager compilation, lazy compilation, and background

compilation, respectively. The fourth bar shows \ideal" execution time alone (from execution

of o�-line compiled benchmarks). Absolute total time in seconds appears above each bar.

166

the Train and Ref inputs, respectively) of the ideal execution time. Our background compila-

tion approach therefore, correctly identi�es performance-critical methods and achieves highly

optimized execution times while masking almost all compilation delay.

X.C Summary

The infrastructure we use to examine the impact of our compilation strategies intro-

duced in this chapter is the Jalape~no Virtual Machine, a compile{only execution environment

being developed at IBM T. J. Watson Research Center. Currently in Jalape~no, two compilers

are used, the fast baseline compiler that produces code with execution speeds of interpreted

versions, and the optimizing compiler, a slow but highly optimizing compiler that produces

code with execution speeds two to eight times faster than the code produced by the baseline

compiler. Our goal was to design and implement optimizations that enable compilation times

of the baseline compiler and execution speeds of optimized code.

We �rst empirically quantify the e�ect of lazy compilation on both compilation time

and execution time. We show that lazy compilation requires 57% fewer methods be compiled

on average than eager compilation for each input of the benchmarks studied. In terms of com-

pilation time, this equates to approximately 30% reduction on average for either input, since

the number of methods used between inputs is relatively the same. In addition to reducing

compilation delay, lazy compilation also improves execution time by greatly reducing the num-

ber of dynamically linked sites, thus avoiding both the direct costs of dynamic linking and

the indirect costs of missed optimization opportunities. Lazy compilation reduces optimized

execution time 13% and 10% on average for the Train and Ref input, respectively. In terms of

total time, lazy compilation enables a 26% and 14% reduction over eager compilation using the

optimizing compiler. Jalape~no, as a result of this work, uses lazy compilation by default.

We also present a compilation approach that extends lazy compilation. Background

compilation masks the delay incurred by compilation by overlapping it with useful work. With

this optimization, we use the Jalape~no optimizing compiler on a background thread to compile

only those methods we predict as important for optimization. On the primary thread(s) of

execution, the Jalape~no baseline compiler is used so that methods can begin executing much

earlier than if they are optimized. The background thread then replaces the baseline compiled

method with an optimized version so that future invocations of the method call the optimized

version. Our results show that background compilation achieves execution times of optimized

167

code with compilation delay of baseline compilation. On average, background compilation

e�ectively reduces total time by 79% and 26% for the Train and Ref input, respectively. When

compared to lazy compilation, the background optimization reduces total time of 71% for the

Train input and 14% for the Ref input. We also show that background compilation achieves

the runtime performance of applications that are batch compiled, i.e. o�{line optimization of

the entire application at once.

The text of this chapter is in part a reprint of the material as it appears in the Journal

of Software: Practice and Experience, Software: Practice and Experience, Volume 31, Issue 8,

pp. 717-738, Dec. 2000. The dissertation author was the primary researcher and author and

the co-authors listed on this publication directed and supervised the research which forms the

basis for this chapter.

Chapter XI

Compilation Delay Avoidance

and Overlap: Annotation-guided

Compilation

As articulated in the previous two chapters, dynamic optimization of a program can

cause signi�cant delays during execution. Most systems attempt to reduce this delay by incor-

porating multiple compilers [12, 16] or a compiler and interpreter [34, 68] into a single execution

environment. Using such systems, a program is compiled �rst with the fast compiler, and then

frequently executed methods are compiled later with the optimizing compiler based on dy-

namic information gathered during execution. This ensures that compile time is expended on

frequently executed, or \hot", methods only and compilation overhead is reduced.

In the previous chapter, extend one such dual-compiler system called the Jalape~no

virtual machine [3]. We introduce a technique called background compilation which uses o�-line

pro�le information to guide hot method selection. This eliminates the need for on-line pro�ling

and instrumentation. However, we provide no automatic mechanism for the communication

of this information to compilation system. In this chapter, we present such a mechanism that

introduces annotation into the bytecode stream to communicate compilation analysis as well

as o�-line pro�le information. The goal of our research is to minimize the overhead introduced

by dynamic compilation while achieving optimized execution speeds.

Existing annotation-based techniques annotate Java bytecode with analysis informa-

tion that is time-consuming to collect to guide dynamic compilation [6, 42, 69, 29]. The goal

of this prior work was to make costly optimizations feasible in dynamic compilation settings.

In this chapter, we extend annotation-based compilation and optimization (1) to provide a

general annotation representation to guide dynamic compilation, (2) to examine the e�ects

168

169

of using annotations to reduce the startup delay and intermittent interruption caused by dy-

namic optimization, (3) to examine new pro�le-based annotations to guide optimization, and

(4) to generate annotations that do not increase the application transfer size. The latter is

very important if annotated-execution is to be used in a mobile environment. If the size of the

annotations are not very small, they can introduce signi�cant transfer delay which can negate

any bene�t achieved through the use of the annotations. Since we intend for our annotation

optimizations to be used in a mobile environment, we ensure that they not only improve per-

formance at runtime but do not introduce transfer overhead. A primary contribution of this

work is the implementation of annotations that increase the size of annotated applications by

less than 0:05% on average.

Another contribution the work in this chapter makes is the reduction in program

startup time. We have found that, like transfer delay, most of the dynamic compilation for

Java programs occurs at program startup. In the programs studied, 77% of of the compilation

overhead occurs in the �rst 4 seconds (initial 10%) of program execution on average. The

application of our techniques reduces startup delay by more than 2 seconds in many cases

which enables signi�cantly more progress to be made by the programs. Startup delay has been

the focus of much past research since it substantially e�ects a user's productivity and perception

of program performance [21, 78]. Using annotations extends and compliments these and many

other e�orts [74, 53] to substantially reduce the startup time of mobile programs.

XI.A Design and Implementation

A compiler annotation is additional information attached to program code and data to

help guide optimization. Annotations have been widely used on program source code in various

languages to exploit parallelization and optimization opportunities in parallel and distributed

codes. More recently, annotation-based techniques have focused on communicating information

that aids optimization, but is too time-consuming to collect on-line [6, 42, 69, 29]. The goal of

these e�orts has been to make costly optimizations feasible in dynamic compilation settings.

We extend annotation-based compilation and optimization to provide a general an-

notation representation that minimizes the number of bytes used to represent the annotation.

To this end, we incorporate compression into our framework and ensure that all annotations

implemented impose very little space overhead in the program bytecode stream. In addition,

we examine using new static and pro�le-based optimization techniques to guide dynamic com-

pilation.

170

For this research, we use an open-source, dual-compiler system called the Open Run-

time Platform (ORP), which was recently released by the Intel Corporation [65]. The �rst

compiler (O1) provides very fast translation of Java programs [1] and incorporates a few very

basic bytecode optimizations that improve execution performance. The second (O3) compiler

performs a small number of commonly used optimizations on bytecode and an intermediate form

to produce improved code quality and execution time. O3 optimization algorithms were imple-

mented with compilation overhead in mind, hence only very e�cient algorithms are used [16].

The execution and compilation times for a number of benchmarks compiled using the ORP

compilers is shown in Table IV.7 in the methodology chapter (Chapter IV). For comparison,

O3 execution time is 8% faster than O1 execution time on average and the compilation time of

the O3 compiler is 89% slower than that for O1 on average for the programs studied.

We next consider where ORP optimization time is spent in the O3 compiler. Fig-

ure XI.1 gives a breakdown of where time is spent during the di�erent O3 compilation phases.

We use these results along with the speedups resulting from the di�erent optimizations and

their combinations in order to determine which optimizations might bene�t from the use of

annotation-guided optimization. The y-axis is time in seconds; the average O3 compile time

for the benchmarks is approximately 2:7 seconds. The bar for each application is broken down

into eight pieces. Other denotes memory allocation of data structures and any other code

transformation costing less that 100 milliseconds. Const-prop is constant and copy propaga-

tion. Global-reg is global register allocation, i.e., the time to allocate physical registers to the

local variables of a method. Build-ir is the intermediate form translation time; the bytecode

of each method is converted to a lower-level form for further optimization. DCE is dead code

elimination. Local-reg is local register allocation, i.e., the time to allocate physical registers to

temporary variables required by the translation. Fg-create is the time for ow-graph construc-

tion, and loop-opts is the time for loop optimization.

XI.A.1 Framework

Our framework incorporates a bytecode rewriting tool called BIT [55] with which

we insert annotations into a Java program. Annotations are included in class �les and are

transferred as part of the bytecode stream when remotely executed. Annotations are stored in a

bytecode data structure called an attribute as de�ned in the Java language speci�cation [28]. An

attribute data structure is de�ned for class �les as well as for the methods and �elds contained

in the class. For example, a Code attribute is de�ned in the Java language speci�cation as

171

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Jack JavaCup Jess JSrc Mpeg Soot Avg

C
o

m
p

ile
 T

im
e

in
 S

ec
o

n
d

s

other
const-prop
global-reg
build-ir
dce
local-reg
fg-create
loop-opts

Figure XI.1: ORP O3 (Optimizing) Compilation Time Breakdown.

The y-axis is time in seconds. Other denotes memory allocation of data structures and any

other code transformation costing less that 100 milliseconds. Const-prop is constant and copy

propagation. Global-reg is global register allocation, i.e., the time to allocate physical registers

to the local variables of a method. Build-ir is the intermediate form translation time; the

bytecode of each method is converted to a lower-level form for further optimization. DCE is

dead code elimination. Local-reg is local register allocation, i.e., the time to allocate physical

registers to temporary variables required by the translation. Fg-create is the time for ow-graph

construction, and loop-opts is the time for loop optimization.

172

a method-level attribute and contains the actual bytecode. The name of each attribute at

any level (class, method, �eld), is included in the constant pool of the class �le and is used

to distinguish, parse, and make use of the attribute. When a virtual machine encounters an

unde�ned attribute it is required to ignore it. This makes attributes ideal for the storage of

annotations since it allows annotated class �les to remain compatible with all JVMs that are

not annotation-aware.

In this work, we add a single, user-de�ned, class attribute for annotations. We combine

multiple annotations into the same attribute and use a single character of Unicode [28] to

represent the name of the attribute in the constant pool. These two design decisions minimize

the size increase of a class �le required for annotations. To further reduce annotation size,

annotations within each attribute are compressed using gzip compression. Gzip is a standard

compression utility, commonly used on UNIX operating system platforms. These decisions also

distinguish our framework from prior research in this area (see section III).

In our design, annotations of variable length appear sequentially in a given attribute.

The encoding we chose for our annotation language is very similar to an instruction set archi-

tecture (ISA) format for a variable length ISA. The general format of an annotation attribute

is a series of triples of the form: < opcode; size; data >. The opcode tells the compiler how to

parse and make use of the annotation. In addition, since there are possibly many annotations in

a single attribute, the compiler must be able to determine where one starts and the next begins.

This is done by including the size of the attribute after the opcode. The annotation data then

appears right after the opcode and size. The elements of each annotation are summarized as:

� opcode: (2 bytes) The identi�er of this annotation that tells the compilation system how

to parse and make use of the following annotation. The end of the attribute section, and

thus all annotations, is indicated by a 0 opcode.

� size: (2 bytes) The number of bytes for the annotation data that follows. The maximum

size of an annotation is 64KB.

� data: (variable number of bytes) The annotated information.

To incorporate the annotations, the compiler decompresses the annotations contained

in the attribute (using the gzip compression library) and reads the opcode and size elements

of the �rst triple (6 bytes total). It then looks up the opcode to determine the use of the

annotation. The annotation is parsed and placed in the appropriate data structure in memory

or processed directly. For annotations that are speci�c to a method within the class, the �rst

two bytes of data contain a method identi�er. Annotations can also be used across all methods

in a class �le; for these no method identi�er is needed. This parsing procedure is repeated for

173

the next annotation until the end of the attribute is reached. We use a 1-byte opcode of 0 to

delimit the end of an annotation stream.

XI.A.2 Annotation Optimizations

A goal of this research is to reduce compilation overhead while maintaining optimized

execution time. The annotations we describe next are meant to achieve this goal for the ORP

compiler. As shown previously in Figure XI.1, the dynamic optimization time in ORP is spread

across multiple operations. To reduce time spent overall, we consider annotations that e�ect

those phases that are the largest contributors to total compilation overhead.

We examine using annotations of both static and pro�le-based analysis to enable

e�cient, dynamic optimization of methods. Static information is structural and syntactic

information explicitly available in Java bytecode and class �les. Pro�le-based information

consists of runtime program characteristics and is collected by instrumenting and executing

the programs o�-line. We present four types of annotations and describe an implementation of

each: those that provide static analysis information, those that enable optimization reuse, those

that enable selective optimization, and those that enable optimization �ltering. The name of

each speci�c annotation we will provide results for is shown in parentheses at the start of each

paragraph describing the annotation.

Provision of Static Analysis Information

All compilers collect static information about the code they are compiling to perform

translation, transformations, and optimization. For example, information about local variables,

control ow, exception handling, etc., may be collected for an optimization by scanning the

code. If the collection of data analysis can be performed independent of its use, the analysis

and acquisition of it can be performed o�-line. We �rst present annotations that communicate

such analysis information to the compilation system in an e�cient format. Since the analysis

is performed o�-line, dynamic compilation overhead is reduced.

Global Register Allocation Annotation (global-reg). The Java bytecode format is base

upon a stack architecture and hence, it is di�cult to achieve acceptable performance of Java

programs on register-based architectures without complex analysis and algorithms for register

allocation. Many commonly used allocation routines prioritize variables in order to apply more

advanced algorithms for the assignment of registers, e.g., prioritized graph-coloring. In ORP,

174

priorities are determined by static counts of local variable uses in the bytecode. Counting is

performed by walking through each method. To avoid this bytecode scan, we use annotations

to indicate the priorities. In addition, more advanced prioritization (via pro�ling or static

heuristics) can be used to improve register allocation in ORP, but this is left for future work.

For this global register allocation annotation, we make static counts of local variable

usage just like those made in ORP and communicate this information via the annotation. The

data element of the annotation triple consists of two bytes to indicate the method and one byte

for each local variable. The bytes are arranged in the same order as are the local variables in

the local variable array [28]. In the programs studied, the maximum number of local variables

used by a single program is 1719 (JSrc); the maximum for any single method is 31 (Mpeg).

The average number of locals per method is 2.5. These numbers include methods in the system

class libraries also. For non-local class �les, the maximum number of local variables used by a

program is 1247 (JSrc) with an average method use of 2.6 variables.

Flow Graph Generation Annotation (fg-create). A ow graph is a data structure com-

monly used by compilers to identify changes in program control ow for e�ective and correct

optimization. Most Java compilers generate a ow graph for every method to �nd basic block

boundaries and other pertinent control ow information [12, 16, 44]. This construction requires

multiple passes of the Java bytecode. To reduce the time required for such passes we imple-

mented a ow graph generation annotation using our framework. We characterize the control

ow structure of each method and use an annotation to present it to the compiler for single

pass ow graph construction.

We construct this annotation for each method to enable automatic generation of the

ow graph without the prepass operation. As with all other optimizations, fg-create is imple-

mented with a single annotation per method (using a single opcode). The annotation is a list

of the basic blocks in the method. The annotation begins with a two-byte method identi�er

(id) followed by the count of the total number of basic blocks that follow. Each basic block

representation includes the block id, its (annotation) size, id numbers of the predecessor and

successor blocks, start and ending bytecode indices, and other special information (loop header

ag, exception handling block, etc), if any. The annotation enables construction of an ORP

ow graph for a method with a single scan of the annotation. Across all benchmarks studied

there are just under 14000 basic blocks and each method requires 4.2 blocks on average.

175

Optimization Memory Reuse

The goal behind the implementation of this next annotation is to enable reuse of anal-

ysis information required for multiple optimizations during execution. Most dynamic compilers

regenerate information about a method compilation instead of storing it for possible reuse.

Since a compiler is unable to predict which analysis information will be reused by future phases

of optimization, it must store all of the information or repeatedly regenerate it. Regeneration

is performed since storage of the analysis information can substantially increase the size of the

memory footprint of the execution. Some compiler stages may also modify analysis information

requiring additional copies to be stored for reuse. Annotations can be used to indicate which

data it is cost e�ective for the compiler to store for reuse. The annotation optimization we

implement is for the reuse of inlining information in ORP.

Inlining (inlining) Annotation. Inlining is a common optimization used by all compilers

to reduce method or function call overhead. By inlining a method call, the call and return

are removed, the inlined method code becomes part of the method which contained the call,

and that code is optimized along with the rest of the code in the method during optimization.

Commonly in dynamic compilation systems [12, 16], when a method is inlined into another, its

(control) ow graph is generated, processed, and possibly optimized prior to insertion into the

method it is inlined into. If this method is later inlined into a di�erent method, the process

of ow graph creation and optimization is repeated. For methods that are inlined many times,

much redundant work is performed by the compiler. It is not desirable to keep all ow graphs

in memory in case of reuse, since it can dramatically increase the size of the memory footprint

unnecessarily. We therefore, analyzed o�-line pro�les to determine which executed methods

might be inlined multiple times.

For this optimization, we include one annotation per method, the annotation contains

the method identi�er and a single bit of information as the data element. When this bit is

set, it indicates to the compiler that the optimized ow graph should be stored in memory for

reuse. When unset, the bit indicates that the ow graph should not be stored but generated

each time.

Selective Optimization

We next present selective optimization annotations that determines if a function

should be optimized or not, or selects among the existing optimizing compilers available on

176

a system. In ORP, the O1 fast compiler or the O3 optimizing compiler can be used. For this

type of annotation we identify the most important methods to optimize and indicate to the

compilation system that all other can be fast-compiled. This annotation can potentially reduce

compilation overhead since methods that are fast-compiled are more prevalent. It also enables

methods that are most frequently executed (and hence, important for the overall execution

performance) to be optimized.

Method Priority Annotation (top25%). For this annotation, we use o�-line pro�le data

to predict the methods that should be optimized. This is similar to the function of an adaptive

compilation system in which methods are �rst compiled with a very fast, non-optimizing com-

piler, then optimized when deemed hot. Hot-ness is identi�ed using analysis of on-line pro�les

enabled by method instrumentation. With this annotation, we indicate whether a method is hot

using o�-line pro�les obviating the need for on-line instrumentation and pro�ling. The annota-

tion indicates whether a method should be compiled using the fast O1 compiler or optimized.

To determine the percentage of methods that are important to optimize we gathered execution

times for the histogram shown in Figure XI.2. The graph shows the total time (execution plus

compilation). For each benchmark, each bar (within a set of nine) indicates the total time given

optimization of some percentage of the most frequently executed methods. For example the

0% bar (left-most in each set) shows the total time when 0% of the methods are O3-compiled

(optimized) and 100% of the methods are O1-compiled (fast). The 100% bar (right-most of

each set) shows the total time when 100% of the methods are O3-compiled (optimized) and 0%

of the methods are O1-compiled (fast). The remaining bars represent the total time for various

percentages between 0 and 100.

When 0% of the of the methods are O3-compiled (all of the methods are O1-compiled),

the total time (compilation plus execution) is dominated by the execution time. O1-compilation

time is very small (0.3 seconds for the entire application on average) but since no optimizations

are performed, execution time is slow (38 seconds on average). At the far right of the spectrum

(right-hand bars of each set) in which all methods are O3-compiled, compilation time is very

high (2.6 seconds on average) and optimization enables improved execution time (33.8 seconds

on average). We generated this histogram to discover the balance between these two extremes;

the point at which both execution and compilation time are at their minimum.

The �gure shows that the top 25% of frequently executed methods should be optimized

to achieve the minimum compilation time as well as execution time. We used pro�le data to

177

0

5

10

15

20

25

30

35

40

45

50

Jack JavaCup Jess JSrc Mpeg Soot Avg

T
o

ta
l T

im
e

in
 S

ec
o

n
d

s

0%
5%
10%
15%
20%
25%
30%
40%
100%

Figure XI.2: The histogram used to �nd the \Hot" methods important for optimization.

Each bar shows the total time (compilation plus execution) for the program when di�erent

percentages of the most frequently executed methods are optimized. The remaining methods

are compiled with the O1 compiler. The top 25% of most frequently executed methods should

be optimized on average for the best performance.

determine which methods were contained in the top 25% in terms of invocation frequency. The

annotation for selective optimization is similar to that for the reuse optimization: it contains

a one-byte method id and sets a single bit for each method in the top 25% most frequently

executed methods. The bit indicates to the compiler that the method should be optimized.

Annotations for Optimization Filtering

The �nal type of annotation we describe is used for optimization �ltering. Currently

an optimizing compiler performs all available optimizations on a method. To reduce compilation

overhead, it may be bene�cial to perform a subset of the optimizations when static or pro�le-

based analysis of the method indicates that it is pro�table to do so.

We construct an annotation for each method that consists of a two-byte method

identi�er and a 1-byte bit mask as part of the annotation data for each method that maps to

a list of expensive optimizations. For example, the �rst bit might map to inlining, the second

to register allocation, the third to constant propagation, and so on. Each bit that is set in

the mask indicates to the compiler that the associated optimization should not be performed

for that method. This annotation has the potential for reducing compilation overhead by

�ltering time-consuming optimizations that do not result in substantially improved execution

performance on a per method level. We are able to determine which optimizations improve

178

performance of methods using pro�ling.

Constant Propagation Filtering (const-prop). In Figure XI.1, the ORP O3 compiler

spends a substantial amount of time performing constant propagation. For some methods, the

reduction in runtime performance after applying this optimization is not enough to warrant the

use of the optimization. For those methods, we use the bit mask of this annotation to indicate

that the copy propagation optimization should be excluded.

We gathered total times (execution plus compilation) for the benchmarks for which

constant propagation was used on various percentages of the most frequently executed methods.

We created a histogram of these values like we did for the selective optimization annotation

and discovered that 70% of the methods bene�t from using constant propagation on average.

For all other methods, it is not cost e�ective in terms of execution time to warrant using

constant propagation. For each of these latter methods, we include an optimization �ltering

annotation that has the constant propagation bit set. This indicates to the compilation system

that constant propagation should be bypassed during optimization of the method.

XI.A.3 Security of Annotations

An important issue that must be addressed by annotation-based systems for mobile-

computing environments is security. Annotations must be veri�ed or guaranteed that their use

will not corrupt the JVM or machine on which they are used. Use of most existing bytecode

annotation systems poses serious security risks since the annotations implemented using these

systems a�ect program semantics and no veri�cation mechanism is provided. If the bytecode

stream is intercepted and modi�ed by an untrusted party, illegal and possibly destructive

program behavior can result.

The annotations we present here with the exception of the ow-graph generation

optimization, if modi�ed with harmful intent, can only e�ect program performance. As part

of the empirical evaluation of our techniques, we measure the e�ect of the optimizations in

a mobile environment for which only remote (non-library) classes are annotated. We do not

include the ow-graph optimization in that part of the study (Section XI.B.2) to guarantee

that untrusted execution using our annotations are safe. Bene�ts from our secure annotations

are two-fold: their modi�cation does not e�ect program semantics and they do not require the

additional runtime overhead of veri�cation. The latter is signi�cant for our work, since our goal

is to eliminate (not introduce) as much runtime overhead as possible.

179

XI.B Results: Annotation-guided Compilation

Three of the optimizations we present (const prop, inlining, and top25%) require

pro�le information for annotation construction as described in the previous section. Since

compilation overhead (method use) is dependent upon program inputs, we gather execution

pro�les using two di�erent inputs, called Ref and Train, as described in the methodology

chapter (Chapter IV). Ref is used to generate all of the results in this section as well as the

compilation time statistics shown in the methodology chapter in Table IV.7.

The overhead associated with annotations consists of class �le size increase and the

execution overhead needed to process and make use of the annotations. We detail the former

in Section XI.B.3. Any execution overhead imposed by annotations is included in the overall

results. We �rst present results in terms of the reduction in compilation time resulting from

the use of our annotations. The number of seconds of compilation time reduced is shown

in Figure XI.3. Each bar shows the reduction due to each of the individual optimizations.

The two, right-most bars of each group is the number of seconds reduced using all of the

annotations we examine in this chapter. Const prop, Inlining, and top25 use pro�le information

to guide the optimization. We therefore show two bars of each of these optimizations (as well

as for the combined results). The �rst bar of each pair (Ref-Train) shows the cross-input

results (di�erent inputs were used to generate the pro�le and the results). The second bar of

each pair (Ref-Ref) shows the e�ect of using the same input for pro�le and result generation.

On average, our annotation optimizations reduce compilation overhead by 1.9 seconds using

imperfect information and over 2 seconds using perfect information (this equates to a 78:1%

reduction for cross-input and a 79% reduction for same-input results).

Figure XI.4 shows the total compilation time required for optimized compilation (O3),

annotated compilation (Annot), and unoptimized compilation (O1) for same-input and cross-

input con�gurations. Annot results show the combined e�ect from all of the annotation op-

timizations we describe in this chapter. These results are the same as shown in Figure XI.3,

however, they are in terms of resulting compile time instead of the number of seconds reduced

and include O1-compilation for comparison. On average, annotated compilation time is approx-

imately 250 milliseconds slower than O1 compile time and 2 seconds faster than O3 compile

time.

The results in Figure XI.3 show that the majority of compile time reduction is due

to two optimizations, inlining and top25%. This indicates that using these two optimizations

alone is enough to achieve substantial performance bene�t. As such, we also have collected

180

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Jack JavaCup Jess JSrc Mpeg Soot Avg

C
o

m
p

ile
T

im
e

R
ed

u
ce

d
-

In
S

ec
o

n
d

s

fg-create glob-reg const-prop (Ref-Ref)

inlining (Ref-Ref) top25 (Ref-Ref) combined (Ref-Ref)

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Jack JavaCup Jess JSrc Mpeg Soot Avg

C
o

m
p

ile
T

im
e

R
ed

u
ce

d
-

In
S

ec
o

n
d

s

const-prop (Ref-Train) const-prop (Ref-Ref) inlining (Ref-Train)
inlining (Ref-Ref) top25 (Ref-Train) top25 (Ref-Ref)
combined (Ref-Train) combined (Ref-Ref)

(b)

Figure XI.3: Seconds of compilation delay reduced.

Results are broken down by optimization. The two, right-most bars of each group is the number

of seconds reduced using all of the annotations we examine in this chapter. Const prop, Inlining,

and top25 use pro�le information to guide the optimization. Graph (a) shows the Ref-Ref

results in which the same input is used for both pro�le and result generation. These results are

repeated in graph (b) and the cross-input results (Ref-Train) are added for comparison.

181

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Jack JavaCup Jess JSrc Mpeg Soot Avg

C
o

m
p

ile
T

im
e

in
S

ec
o

n
d

s

O3 Annot (Ref-Train) Annot (Ref-Ref) O1

Figure XI.4: Total compilation time for O3, O1, & annotated compilation.

All of the annotation-guided optimizations presented in this chapter are included in the latter

denoted by Annot.

results for the combination of these two optimizations alone. This data is shown by the Annot-

Inlining top25 results in the following graphs. We next present the e�ect of our annotation

optimizations on total time: compilation and execution time combined.

Figure XI.5 shows the speedup achieved through the use of annotation over O3 total

time for both of our annotation schemes, Annot and Annot-Inlining top25. The former are

the results for all of the annotations and the latter are when only the inlining and selective

optimization annotations are used. Results are shown for both input con�gurations (Ref-

Ref and Ref-Train). The cross-input (Ref-Train) results are very similar to having perfect

information (Ref-Ref results). The overall e�ect on total time is more dramatic the shorter the

execution time, as expected. Our annotation optimizations achieve 2% to 23% speedup over

O3 total time for the programs studied. However, a more important result from annotated-

compilation is in its e�ect on startup time.

XI.B.1 The E�ect on Startup Time

A signi�cant contribution of this work is the reduction in startup time that is achieved.

Startup time is arguably more important to an end user over a few percent speedup in execution

time. Our studies revealed that almost all compilation in Java programs occurs at startup: In

the programs studied, 77% of the compilation overhead occurs in the �rst 4 seconds (initial

182

0%

5%

10%

15%

20%

25%

Jack JavaCup Jess JSrc Mpeg Soot Avg

P
er

ce
n

t
S

p
ee

d
u

p
O

ve
r

O
3-

T
o

ta
lT

im
e

Annot (Ref-Train) Annot (Ref-Ref)

Annot-Inlining_top25 (Ref-Train) Annot-Inlining_top25 (Ref-Ref)

Figure XI.5: Speedup over optimized (ORP O3) total time due to annotated execution.

Annot-Inlining top25 denotes results that use the inlining and top 25% annotations alone to

guide dynamic compilation.

10%) of program execution on average. By reducing compilation overhead, annotated execution

should substantially reduce this startup cost. Figures XI.6 through XI.8 con�rm this with

graphs of the cumulative distribution of compile time over program lifetime (in seconds on the

y-axis). We show the cumulative time in seconds on the x-axis as opposed to the percentages

commonly shown for a cumulative distribution function. The compilation overhead in seconds

that has occurred since the start of the program's execution is expressed in this �gure. The

overhead for the O3 compiler is shown by the top (dark) line on each graph.

The bottom two lines in each graph indicate the e�ect of our two best-performing

annotation optimizations (inlining and top25%). The results show that startup overhead is

substantially reduced for every program. For example, for Mpeg, all compilation completes in

3 seconds. Using annotated-execution this point is reached in approximately one second. On

average, 77% of the compilation overhead occurs in the �rst 4 seconds (10%) of program total

time, e.g., for Jack, almost all of the 2:8 seconds of compilation overhead occur in the �rst 6

seconds. For all programs, startup compilation completes more than 2 seconds earlier using

annotation.

Another interesting detail shown by these graphs is the compilation overhead that

occurs at the end of execution for JavaCup and JSrc. The methods compiled during this period

are those for I/O and clean up. We plan to use this characteristic to guide future annotation

183

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Program Execution Time in Seconds

C
u

m
u

la
ti

ve
C

o
m

p
ila

ti
o

n
T

im
e

(s
ec

s)
O3
Annot-Inlining_top25 (Ref-Ref)
Annot-Inlining_top25 (Ref-Train)

Jack

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Program Execution Time in Seconds

C
u

m
u

la
ti

ve
C

o
m

p
ila

ti
o

n
T

im
e

(s
ec

s)

O3
Annot-Inlining_top25 (Ref-Ref)
Annot-Inlining_top25 (Ref-Train)

JavaCup

Figure XI.6: The e�ect of annotated execution on startup time (for Jack and JavaCup).

Cumulative compilation time in seconds is shown over the the lifetime of each program (y-axis

in seconds). These graphs show, throughout program execution, the number of seconds of

compilation overhead that have occurred (x-axis) since the start of the program. The overhead

for the O3 compiler is shown by the top dark line on each graph; the bottom lines indicate the

e�ect of annotation using our inlining and top25% optimizations.

184

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Program Execution Time in Seconds

C
u

m
u

la
ti

ve
C

o
m

p
ila

ti
o

n
T

im
e

(s
ec

s)

O3
Annot-Inlining_top25 (Ref-Ref)
Annot-Inlining_top25 (Ref-Train)

Jess

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Program Execution Time in Seconds

C
u

m
u

la
ti

ve
C

o
m

p
ila

ti
o

n
T

im
e

(s
ec

s)

O3
Annot-Inlining_top25 (Ref-Ref)
Annot-Inlining_top25 (Ref-Train)

Jsrc

Figure XI.7: The e�ect of annotated execution on startup time (for Jess and Jsrc).

Cumulative compilation time in seconds is shown over the the lifetime of each program (y-axis

in seconds). These graphs show, throughout program execution, the number of seconds of

compilation overhead that have occurred (x-axis) since the start of the program. The overhead

for the O3 compiler is shown by the top dark line on each graph; the bottom lines indicate the

e�ect of annotation using our inlining and top25% optimizations.

185

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Program Execution Time in Seconds

C
u

m
u

la
ti

ve
C

o
m

p
ila

ti
o

n
T

im
e

(s
ec

s)

O3
Annot-Inlining_top25 (Ref-Ref)
Annot-Inlining_top25 (Ref-Train)

Mpeg

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

0 1 2 3 4 5 6 7

Program Execution Time in Seconds

C
u

m
u

la
ti

ve
C

o
m

p
ila

ti
o

n
T

im
e

(s
ec

s)

O3
Annot-Inlining_top25 (Ref-Ref)
Annot-Inlining_top25 (Ref-Train)

O3
Annot-Inlining_top25 (Ref-Ref)
Annot-Inlining_top25 (Ref-Train)

Soot

Figure XI.8: The e�ect of annotated execution on startup time (for Mpeg and Soot).

Cumulative compilation time in seconds is shown over the the lifetime of each program (y-axis

in seconds). These graphs show, throughout program execution, the number of seconds of

compilation overhead that have occurred (x-axis) since the start of the program. The overhead

for the O3 compiler is shown by the top dark line on each graph; the bottom lines indicate the

e�ect of annotation using our inlining and top25% optimizations.

186

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Jack JavaCup Jess JSrc Mpeg Soot Avg

C
o

m
p

ile
T

im
e

in
S

ec
o

n
d

s

O3 Remote-Annot-Inlining_top25 (Ref-Train)
Remote-Annot-Inlining_top25 (Ref-Ref) Annot-Inlining_top25 (Ref-Train)
Annot-Inlining_top25 (Ref-Ref) O1

Figure XI.9: Total compilation overhead for O3, O1, and annotated compilation.

Results are shown both for all class �les and for remote class �les only. Annot-Inlining top25

denotes results that use the inlining and top 25% annotations alone to guide dynamic compi-

lation. \Remote" indicates that only non-local class �les use annotation-guided optimization.

For this con�guration, all other class �les are compiled using the O1 compiler.

implementation. For example, optimization of such methods for an interactive program can be

avoided since they are only used at the end of the program.

XI.B.2 Local v/s Remote Execution

Mobile Java programs are commonly transferred over a network for remote execution

either through the use of dynamic class �le loading of individual class �les or by archiving and

compressing the application as a single �le, e.g. Java archive (jar). In addition, these programs

commonly use Java class libraries during execution that are not part of the application itself,

but are shared by all such programs. These library classes are not transferred for remote

execution but are located at the destination for use by remotely executed Java programs. To

this point, we have assumed that we are able to annotate both the application as well as the

libraries it uses. However, this is not always the case and as such, we present results on the

e�ect of annotating only non-local, or application, class �les. Most of the prior work [6, 42] on

bytecode annotations does not address the e�ect of limiting optimization to remote class �les

yet it is vital to the empirical evaluation of annotation-based techniques.

Figure XI.9 shows the reduction in compile time due to annotated-execution of only

non-local class �les. Class �les that are non-local (or remote) include non-library �les used

187

0%

5%

10%

15%

20%

25%

Jack JavaCup Jess JSrc Mpeg Soot Avg

P
er

ce
n

t
S

p
ee

d
u

p
O

ve
r

O
3-

T
o

ta
lT

im
e

Remote-Annot-Inlining_top25 (Ref-Train)

Remote-Annot-Inlining_top25 (Ref-Ref)

Figure XI.10: Speedup over optimized (ORP O3) total time (Remote classes only).

This graph shows the speedup in O3 total time due to annotated execution of remote classes

only. For these results, only the inlining and top25% annotations are used.

during execution of each program. Local (library) �les are compiled using the O1 compiler

(no-optimization). Realistically, library �les should be optimized but the overhead associated

with their compilation should not degrade startup or cause intermittent interruption. Because

of this we collected results for O1-compilation of these �les. Some execution environments store

optimized versions of library �les on disk and dynamically load them [3]. As part of future work

we will incorporate such functionality into ORP.

The graph in this �gure is the same as the one presented earlier in Figure XI.4 with

two additional bars: one for cross-input remote-only compile time (second bar) and one for

same-input remote-only (third bar) results. These results are achieved by using only the two

best-performing annotations inlining and selective optimization (top25%). The two input con-

�gurations included (Ref-Ref and Ref-Train) again indicate that imperfect information has little

e�ect on the overall performance of these annotations. Over 80% of the compilation delay is

reduced by using annotation-guided optimization for non-local class �les and O1-compiling all

others. Figure XI.10 shows the percent speedup over O3-compilation due to annotations on

non-local class �les. Our inlining and top25% annotation optimizations on remote class �les

alone achieve 1% to 21% speedup over O3 total time for the programs studied. The average

speedup across benchmarks is 6:1% and 5:6% for the same-input and cross-input con�gurations,

respectively.

188

Table XI.1: The added size in kilobytes due to annotations.

Columns 2 through 5 contain the added size from each the ow graph creation, register allo-

cation, constant propagation, reuse optimization for inlining, and selective optimization using

the top 25% of frequently executed methods, respectively. Remote class �le annotation alone is

shown �rst in each column. In parenthesis, we show the annotation size across all class �les in

an application. The results show the percent increase in application size due to the annotation

(in that column) on average across all benchmarks.

Size of Annotation in KBytes for Non-Local

Classes - Total for All Classes in Parens.

Program FG-Create Regalloc Const-prop Inlining SelOpt

Jack 12.55 (16.41) 0.74 (1.25) 0.28 (0.50) 0.04 (0.06) 0.04 (0.06)

JavaCup 7.02 (13.61) 0.47 (1.37) 0.20 (0.54) 0.03 (0.07) 0.03 (0.07)

Jess 9.74 (14.62) 1.02 (1.61) 0.39 (0.64) 0.05 (0.08) 0.05 (0.08)

JSrc 12.29 (15.39) 1.22 (1.68) 0.41 (0.62) 0.05 (0.08) 0.05 (0.08)

Mpeg 5.15 (8.35) 0.71 (1.17) 0.22 (0.40) 0.03 (0.05) 0.03 (0.05)

Soot 6.44 (9.66) 0.60 (1.09) 0.33 (0.54) 0.04 (0.07) 0.04 (0.07)

Avg 8.87 (13.01) 0.79 (1.36) 0.28 (0.54) 0.04 (0.07) 0.04 (0.07)

Incr 3.6% (5.2%) 0.3% (0.5%) 0.1% (0.3%) 0.0% (0.0%) 0.0% (0.0%)

As part of future work we will consider the e�ect of providing general annotations

for local (library) class �les that can be used to improve performance regardless of the invok-

ing program. For example, it has been shown for C and Fortran that execution behavior of

commonly used Unix libraries is similar across di�erent programs and that this information

can be used to guide optimization [13]. This implies that pro�le-based techniques for a subset

of programs can potentially be used to optimize shared libraries. We are investigating such

techniques as part of future work.

XI.B.3 Annotation Size

Since annotations are added to class �les that transfer for remote execution, we must

ensure that our framework and annotation implementations increase class �le size minimally.

Since it is this size that dictates the transfer time on a particular network, we present overhead

as the number of kilobytes added for annotation. Table XI.1 shows this data for the di�erent

annotations implemented across all non-local class �les. In parentheses is shown the number of

kilobytes added for annotations in both the non-local and local class �les combined. On average,

the annotations add less than 0:05% to 3:4% to applications alone. By only incorporating

the two best performing annotations (inlining and top25%) we increase application size by

less than 0:05%. This is compared to the 7% to 97% increase in size by existing annotation

189

implementations for a single annotation optimization [36, 42, 69]

XI.C Summary

We have presented an annotation framework for Java programs that substantially re-

duces compilation overhead in the ORP dynamic optimizing compiler. The annotation language

is highly extensible and represents an instruction set with opcode, size, and annotation data,

and requires only one bytecode attribute for multiple annotations. The framework enables in-

corporation of highly-compressed, static and pro�le-based information into the Java bytecode

stream for use in dynamic optimization. These annotations enable reduction in compilation

overhead of 75% on average, while increasing class �le size (and hence transfer delay) by less

than 0:05%.

Compilation overhead in execution environments for mobile code is expensive since op-

timization, resulting in improved execution time, uses time-consuming analysis and processing

even for very simple optimizations. However, the potential for execution speedup is large since

runtime information can be used for program optimization and specialization. The annotation

optimizations we present perform analysis o�-line and communicate it to the optimizing com-

piler to obviate the need for its collection at runtime. In addition, we pass dynamic information

from o�-line pro�les via annotations to the compilation system so that methods, predicted to

be most important, are selectively optimized.

Annotation-guided optimization also reduces startup time. In the programs studied,

77% of of the compilation overhead occurs in the �rst 4 seconds (initial 10%) of program

execution on average. Using our annotation-guided optimizations startup delay is reduced by

more than two seconds on average, enabling substantial improvement in the initial progress

made by program execution.

The text of this chapter is in part a reprint of the material as it is to appear in the 2001

conference proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI). The dissertation author was the primary researcher and author

and the co-authors listed on this publication directed and supervised the research which forms

the basis for this chapter.

Chapter XII

Conclusions

Recently, there has been increased interest in the use of the Internet as a computational

entity. A fundamental di�culty with such use is how to make e�cient and e�ective use of the

diverse resources that are made available by the connectivity of the Internet. One methodology

that has been developed to solve this problem is remote execution in which programs �rst

transfer over the Internet to a destination machine and then execute.

Inherently, remote execution imposes two, potentially signi�cant, performance-limiting

constraints: Transfer time must now be considered as part of total execution time, and the same

program must be able to execute e�ciently on a multitude of heterogeneous resources. Due

to the widening gap between network and processing power and the large variation in network

performance across the Internet, program transfer time using existing technology can be long

and highly variable. In addition, programs that are remotely executed are commonly trans-

ferred in an architecture-independent format and an interpreter or compiler at the target sites

converts it to native code. Like transfer, this translation time must be considered as part of

overall program performance since it occurs while the program is executing. Also like for trans-

fer delay, the compilation time required to enable e�cient execution of these mobile programs

can be substantial.

The Java programming language uses remote execution (via the Java applet execution

model) to enable Internet-computing. Due to its wide acceptance and use, we use Java as our

experimental language infrastructure in this dissertation. Both transfer and compilation delay

severely restrict mobile Java program performance. Java attempts to reduce the e�ect of

transfer delay through dynamic class �le loading in which program �les, called class �les, are

190

191

transferred as needed by the executing program as opposed to all at once at program startup.

However, the transfer time continues to impose substantial delay: For an average benchmark

over a modem link (0.03Mb/s), transfer delay costs over 50 seconds (2 seconds using a T1 link

(1Mb/s)). Our empirical measurements show that the performance of a cross-country Internet

connection uctuates between these values (0.03Mb/s and 1Mb/s) for Java programs.

Once at the destination, a class �le (in the Java architecture-independent format called

bytecode), must be converted to the native code format of the machine on which the program

it is to be executed. As alluded to above, this process is commonly performed using compila-

tion, a method-by-method translation of bytecode to native code. Compilation is used (over

interpretation) since it enables more e�cient code generation and it exposes opportunity for

optimization. However, the optimization required for e�cient code generation can be substan-

tial and execution must again stall until compilation completes each time a method is initially

invoked. We refer to the cumulative stall time required for transfer and compilation as \load

delay".

In this thesis, we describe the execution model we assume for Internet computing,

identify and detail the sources of load delay and articulate the degree to which load delay de-

grades program performance. We then present numerous compiler and runtime techniques that

reduce the e�ect of load delay through overlap of delay with useful work and delay avoidance.

We exemplify the e�ect of our optimizations with two graphs. In both, we summarize the

results for three of our most e�ective optimizations for the reduction of load delay: Non-strict

execution, class �le splitting, and annotation-guided compilation (referred to in the graphs as

annotated-execution).

Figure XII.1 depicts load delay (both transfer and compilation overhead) as a func-

tion of network bandwidth with and without our optimizations. This is the same graph as that

presented in Figure I.1 in the introduction of this dissertation. Three additional functions have

been added, however, which represent the e�ect of non-strict execution, class �le splitting, and

annotated-execution on load delay. Load delay measurements consist of the time for transmis-

sion of the (non-library) code and data, the time to request program �les required for execution

(for all but non-strict execution since for this optimization the request model is eliminated),

and the time for optimization of executed methods. The average Java program accesses 70

non-local classes, totaling 178 transferred, and compiles 238 methods (totaling 2.6 seconds)

using the Open Runtime Platform (ORP) [15] as the Java execution environment. The total

delay for an average program is 55.8 seconds (transfer delay accounts for 53.2 seconds).

192

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bandwidth

L
o

ad
D

el
ay

in
S

ec
o

n
d

s

Modem Link

T1 Link

Load Delay as a Function of Network Bandwidth
Average Benchmark

70 Classes Requested
178 KB Transferred

238 Methods Compiled

Class file Splitting

Annotated-Execution
Baseline

Figure XII.1: Summary of the e�ect of our optimizations on load delay.

The �gure shows load delay in seconds (x-axis) for an average benchmark as a function of

network bandwidth (y-axis) without optimization, with annotated-execution, with class �le

splitting, and with non-strict execution. Compilation delay (before optimization) accounts for

3 seconds of total load delay in this graph. The remainder is due to transfer delay (request and

transmission of the program). Annotated-compilation reduces 77% of the compilation delay;

this results in a 2 second decrease in load delay (regardless of the network bandwidth). Class

�le splitting reduces load delay by over 16 seconds for the modem link (0.03Mb/s) and 200

milliseconds for the T1 link. Non-strict execution reduces load delay by over 33 seconds for the

modem link (0.03Mb/s) and 8 seconds for the T1 link.

193

0

10

20

30

40

50

60

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent of Execution Time

A
ve

ra
g

e
C

u
m

u
la

ti
ve

T
ra

n
sf

er
D

el
ay

(S
ec

s)

Transfer Delay - with non-strict execution
(global data and method reordering)

Transfer Delay - with class file prefetching and splitting

Baseline Transfer Delay

Transfer Delay - Modem Link (0.03Mb/s)

0

1

2

3

4

5

6

7

8

9

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent of Execution Time

A
ve

ra
g

e
C

u
m

u
la

ti
ve

T
ra

n
sf

er
D

el
ay

(S
ec

s)

Transfer Delay - with class file prefetching and splitting

Baseline Transfer Delay

Transfer Delay - with non-strict execution
(global data and method reordering)

Transfer Delay - T1 Link (1Mb/s)

Figure XII.2: Summary of the e�ect of our transfer delay optimizations on startup time.

The graphs show the average cumulative transfer delay (y-axis) that is experienced during

program execution. The x-axis is the percent of execution time completed by the average

program The average execution time for the programs used for this �gure is 49 seconds. The top

is for a modem link (0.03Mb/s bandwidth) and the bottom is for a T1 link (1Mb/s bandwidth).

Transfer delay consists of time for request and transmission of class �les from the source to

the destination machine. Each graph is read by taking an (x,y) position on the function; y

seconds of delay (transfer or compilation) occurs during the �rst x% of program execution.

The baseline functions are shown in each graph. The graphs also include the results due to

non-strict execution, and the combined e�ect of class �le prefetching and splitting.

194

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent of Average Program Execution Time

A
ve

ra
g

e
C

u
m

u
la

ti
ve

C
o

m
p

ila
ti

o
n

D
el

ay
(S

ec
s)

Baseline Compilation Delay

Compilation Delay - with annotation-guided compilation

Compliation Delay

Figure XII.3: Summary of the e�ect of our compilation optimization on startup time.

The graph shows the average cumulative compilation delay (y-axis) that is experienced dur-

ing program execution. The x-axis is the percent of execution time completed by the average

program The average execution time for the programs used for this �gure is 49 seconds. Com-

pilation delay is the time spent compiling and optimizing the programs. Each graph is read

by taking an (x,y) position on the function; y seconds of delay (transfer or compilation) occurs

during the �rst x% of program execution. The baseline functions are shown in each graph as

well as the results due to our annotation-guided optimizations.

195

Non-strict execution is a technique in which JVM modi�cation is used to enable

method-level transfer, method-level execution, and overlap of execution with transfer. In ad-

dition, non-strict execution obviates the need for use of the request model as currently imple-

mented by dynamic class �le loading. Instead, a transfer schedule is pushed from source to

destination in the order the code and data is predicted to be used during execution at the

destination. Non-strict execution using method-level execution with method reordering across

class �les eliminates 13 seconds of transfer delay imposed by transfer over a modem link (8 sec-

onds for the T1 link). Global data reordering reduces this same delay (modem) by 28 seconds

(8 seconds for the T1 link).

Class �le splitting and prefetching reduces transfer delay by 32%. It does this using

existing JVM technology. Class �les are modi�ed to contain only the code and data that will be

used during execution. Like non-strict execution, o�-line pro�les from instrumented execution

are used to guide the splitting. Unused methods and data are split out into \cold" classes that

if used are transferred using the existing class �le loading mechanism. If unused, signi�cant

savings in transfer time are achieved. In addition to splitting, prefetching is performed using

a background thread that prematurely accesses a class �le causing it to transfer. Upon �rst-

use by the executing program, the class is partially transferred since the delay was masked by

execution. Class �le splitting and prefetching together reduce 20 seconds of transfer delay for

a modem link and 1 second for a T1 link.

Annotation-guided compilation avoids compilation overhead by performing program

analysis required for optimization o�-line. In addition, pro�le information is communicated to

the compilation system so that optimization can be applied selectively to parts of the program

for which it is most cost e�ective. Both types of information (static analysis and pro�le) are

passed to the compilation system via compact bytecode annotations. Since we are interested in

keeping load delay small, compact encoding of annotations is essential to minimize any increase

in application size. On average, our annotations increase this size by less than 0.05% yet

avoid 77% of the compilation overhead and enable speedups of 6% over optimized total time

(compilation plus execution). In terms of load delay, annotated-execution reduces it by over 2

seconds.

Figures XII.2 and XII.3 depict the e�ect of our key techniques on program startup

time. The graphs show the average cumulative delay (y-axis) that is experienced during pro-

gram execution. The x-axis is the percent of execution time completed by the average program

(no transfer or compilation delay is included in this value). The average execution time for the

196

programs used for this �gure is 49 seconds. The �rst two graphs (Figure XII.2) are for transfer

delay: the top is for a modem link (0.03Mb/s bandwidth) and the bottom is for a T1 link

(1Mb/s bandwidth). This data assumes that a request for each class costs 100ms, a common

(based on empirical data) cross-country round-trip time value. The graph in Figure XII.3 shows

the average cumulative compilation delay, the second source of load delay. Each graph is read

by taking an (x,y) position on the function; y seconds of delay (transfer or compilation) occurs

during the �rst x% of program execution.

The startup time function for the modem link indicates that 39 of the 56 seconds of

transfer delay occur in the �rst 10% (5 seconds) of execution time and 90% of all transfer delay

(50 seconds) occurs in the �rst 40% (44 seconds) of program execution. Similarly for the T1

link, 5 of the 8 seconds of transfer delay is incurred during the �rst 10% of program execution

and 90% (7 seconds) of the transfer delay occurs in the �rst 30% of program execution (14

seconds). Compilation overhead is also incurred at program startup as shown by Figure XII.3.

This function indicates that 1.8 seconds of the 2.6 seconds (69%) of compilation delay occur

during the �rst 10% of execution and 90% of it occurs in the �rst 30% of program execution.

Almost 70% of all load delay occurs in the �rst 10% of program execution.

By reducing the e�ect of load delay, we improve the progress made at program startup

as well as throughout overall execution. The functions denoted as non-strict execution and

class �le splitting on the graphs show the e�ect of our optimizations on startup delay caused

by transfer. On average across inputs, non-strict execution using method and global data

reordering eliminates 21 seconds of transfer delay in the �rst 10% of program execution for the

modem link and 5 seconds for the T1 link. Class �le splitting and prefetching reduces startup

transfer delay (delay incurred during the �rst 10% of program execution (5 seconds)) by 14

seconds for the modem link and by 200 milliseconds for the T1 link. Annotated-execution results

are included on the compilation delay graph and indicate a reduction in startup delay of almost

2 seconds. All of these techniques reduce startup time signi�cantly (as well as overall execution

time) and enable greater execution progress during the initial seconds of program execution.

Faster program startup, response, and overall execution time achieved by our techniques can

potentially improve user perception of program performance and productivity.

In this dissertation, we de�ne load delay as the cumulative overhead imposed by

transfer and compilation on remotely executed Java programs. We detail the limitations of the

existing mobile Java execution model that cause load delay and then present a body of work in

which we suggest changes to as well as techniques for the exploitation of mobile execution envi-

197

ronments. Our solutions are general and enable overlap of load delay with execution as well as

load delay avoidance, regardless of its source (transfer or compilation), to substantially improve

mobile program startup time as well as overall performance. Such performance improvements

are vital to acceptance and wide-spread use of the Internet as a computational engine for the

vast number and diversity of resources it connects.

Chapter XIII

Future Directions

As high-performance network connectivity becomes omnipresent, end-users have come,

and will continue, to expect delivered application performance in an Internet-computing en-

vironment. Current trends indicate that the future of Internet computing will evolve into

a combination of peer-to-peer (PTP) and Computational Grid computing to enable substan-

tially improved program performance. PTP systems attempt to harness unused but ubiquitous

computer capacity via the expanding internetwork of high-performance connectivity by aggre-

gating the computing power and storage capacity available throughout the Internet. Similarly,

the Computational Grid is a computing paradigm for the development of software systems

that enable dynamic acquisition of resources from a heterogeneous and non-dedicated resource

pool. These paradigms require that applications adapt to the dynamically changing systems on

which they are executed as well as to variable resource performance. In addition, such systems

require mechanisms that restrict access to resources and prohibit unauthorized and destructive

behavior by programs as required by administrators. This decentralized approach to Inter-

net computing motivates the need for mechanisms and optimizations that improve application

performance while ensuring secure behavior of untrusted programs.

Our future work will focus on the design and implementation of compilation systems

with optimization and specialization techniques that take advantage of this decentralized com-

putational model to enable secure, yet high performance, application execution that is vital for

widespread user acceptance of such computing paradigms. Three categories of optimization we

plan to consider are:

� Adaptive Optimization guided by Real-time Resource Performance.

198

199

In future Internet-computing paradigms (such as PTP computing), programs will likely

be transferred in a portable intermediate format, e.g., bytecode, .Net, or others. Such

formats enable the e�cient \write once, run anywhere" paradigm. These formats must

be converted into instructions that are executable by the underlying architecture dynam-

ically by a compiler. E�cient dynamic optimization and re-optimization are needed to

facilitate high-performance execution of such programs. We plan to develop program

specialization techniques and compilation strategies that aggressively target di�erent ar-

chitectures to produce high-performance executables from the most common intermediate

program formats. In addition, we plan to use resource performance prediction tools to

guide initial and adaptive compiler optimization. Using forecasts of dynamic resource

performance and availability for the peer CPUs as well as for the network between them,

we will automate cost function computation for use in guiding (re-)optimization decisions.

� Embedded Systems.

Currently embedded systems and the Internet have been thought of as mutually exclusive

execution environments. Current trends indicate that the distinction between the two is

fading, however. As this continues, it will be important to have applications that can run

anywhere e.g., on a cell phone, laptop, co�ee pot, etc., using the same code (intermediate

form). Dynamic compilation techniques can be used to enable such execution in resource-

limited environments and enable high-performance (and possibly migrating), transparent

execution of the same programs on very di�erent devices. We will develop techniques

that enable performance of this class of application in such execution environments in the

future.

� Compiler-guided Security.

Secure, yet e�cient and scalable, execution is a challenging and open question in Internet-

computing research. We plan to consider compilation techniques that enable multiple

levels of security to be implemented, e.g., trusted, semi-trusted, and untrusted. In each

case, it is desirable for the code to run as e�ciently as possible and for static and run-

time checks to implement necessary security levels while imposing minimal performance

overhead. A compilation system can be used to adaptively optimize for and enable dynam-

ically changing security requirements. We will research compiler-aided security systems

for PTP systems as part of future work.

Bibliography

[1] A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. Parikh, and J. Stichnoth. Fast,E�ective Code

Generation in a Just-In-Time Java Compiler. In Proceedings of the ACM SIGPLAN '98

Conference on Programming Language Design and Implementation, October 2000.

[2] B. Alpern, C. Attanasio, J. Barton, A. Cocchi, S. Hummel, D. Lieber, T. Ngo, M. Mergen,

J. Shepherd, and S. Smith. Implementing Jalape~no in Java. In ACM SIGPLAN Confer-

ence on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),

November 1999.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi, A. Cocchi,

S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen,

T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C.

Sreedhar, H. Srinivasan, and J. Whaley. The Jalape~no virtual machine. IBM Systems

Journal, 39(1), 2000.

[4] B. Alpern, M. Charney, J. Choi, A. Cocchi, and D. Lieber. Dynamic linking on a shared-

memory multiprocessor. In International Conference on Parallel Architectures and Com-

pilation Techniques (PACT), October 1999.

[5] A. Appel and E. Felten. Secure Internet Programming.

http://www.cs.princeton.edu/sip/index.php3.

[6] A. Azevedo, A. Nicolau, and J. Hummel. Java Annotation-Aware Just-In-Time Compila-

tion System. In ACM Java Grande Conference, June 1999.

[7] J. Baer and G. Sager. Dynamic improvement of locality in virtual memory systems. IEEE

Transactions on Software Engineering, SE-2(1):54{62, March 1976.

[8] V. Bala, E. Duesterwald, and S. Banerjia. Transparent dynamic optimization: The design

and implementation of Dynamo. Technical Report Technical Report HPL-1999-78, HP

Laboratories, 1999.

[9] J.L. Bash, E.G. Benja�eld, and M.L. Gandy. The Multics operating system { an overview of

Multics as it is being developed. Technical report, Massechusettes Institute of Technology,

1967. Project MAC, MIT, Cambridge, Mass.

[10] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in

Cryptology - Crypto 93 Proceedings, Lecture Notes in Co mputer Science, 1994.

[11] Blackdown. Java Linux. http://www.blackdown.org/.

200

201

[12] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. Serrano, V. Shreedhar,

H. Srinivasan, and J. Whaley. The Jalape~no dynamically optimizing compiler for Java. In

ACM Java Grande Conference, June 1999.

[13] B. Calder, D. Grunwald, and A. Srivastava. The Predictability of Branches in Libraries.

In 28th International Symposium on Microarchitecture, November 1995.

[14] T. Chilimbi, B. Davidson, and J. Larus. Cache-conscious structure/class �eld reorganiza-

tion techniques for c and Java. In Proceedings of the ACM SIGPLAN '99 Conference on

Programming Language Design and Implementation, May 1999.

[15] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing JUDO: Java under dynamic optimiza-

tions. In Proceedings of the ACM SIGPLAN '00 Conference on Programming Language

Design and Implementation, June 2000.

[16] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing JUDO: Java Under Dynamic Optimiza-

tions. In Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language

Design and Implementation, October 2000.

[17] Intel Corporation. Intel Corporation. http://www.intel.com.

[18] M. Crovella and A. Bestavros. Self-similarity in world wide web tra�c: Evidence and

possible causes. In Proceedings of the 1996 ACM Sigmetrics Conference on Measurement

and Modeling of Computer Systems, 1996.

[19] R.C. Daley and J.B. Dennis. Virtual memory, processes, and sharing in MULTICS. Com-

munications of the ACM, 11(5):306{312, 1968.

[20] P. Denning. Working sets past and present. IEEE Transactions on Software Engineering,

SE-6(1):64{84, January 1980.

[21] W. Doherty and R. Kelisky. Managing VM/CMS systems for user e�ectiveness. IBM

Systems Journal, pages 143{163, 1979.

[22] B. Eckle. Thinking in C++, Second Edition Volume One: Introduction to Standard C++.

Prentice Hall, 2000.

[23] J. Ernst, W. Evans, C. Fraser, S. Lucco, and T. Proebsting. Code compression. In

Proceedings of the SIGPLAN'97 Conference on Programming Language Design and Imple-

mentation, pages 358{365, Las Vegas, NV, June 1997.

[24] M. Franz and T. Kistler. Slim binaries. Communications of the ACM, 40(12):87{103,

December 1997.

[25] C. Fraser and T. Proebsting. Custom instruction sets for code compression.

http://www.cs.arizona.edu/people/todd/papers/pldi2.ps, October 1995.

[26] N. Gloy, T. Blockwell, M. Smith, and B. Calder. Procedure placement using temporal

ordering information. In 30th International Symposium on Microarchitecture, December

1997.

[27] J. Gosling and McGilton H. The Java Language Environment: A white paper. In Sun

Microsystems, Inc., White Paper, May 1995.

[28] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Addison-Wesley, 1996.

202

[29] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Eggers. Dyc: An expressive

annotation{directed dynamic compiler for c. Technical Report Tech Report UW-CSE-97-

03-03, University of Washington, 2000.

[30] N. Groschwitz and G. Polyzos. A time series model of long-term tra�c on the nsfnet back-

bone. In Proceedings of the IEEE International Conference on Communications (ICC'94),

May 1994.

[31] A. Hashemi, D. Kaeli, and B. Calder. E�cient procedure mapping using cache line coloring.

In Proceedings of the SIGPLAN'97 Conference on Programming Language Design and

Implementation, pages 171{182, Las Vegas, NV, June 1997.

[32] D. Hat�eld. Experiments on page size, program access patterns, and virtual memory

performance. IBM Journal of Research and Development, pages 58{66, January 1972.

[33] U. H�olzle and D. Ungar. A third{generation self implementation: Reconciling responsive-

ness with performance. In ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA), October 1994.

[34] The Java Hotspot performance engine architecture.

[35] D. Hovemeyer and B. Pugh. More e�cient network class loading through bundling. In

Proceedings of the USENIX JVM'01 Conference, April 2001.

[36] J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau. Annotating the Java Bytecodes in

Support of Optimization. In Journal Concurrency:Practice and Experience, Vol. 9(11),

November 1997.

[37] W. Hwu and P. Chang. Achieving high instruction cache performance with an optimiz-

ing compiler. Proceedings of the16th International Symposium on Computer Architecture,

pages 242{251, June 1989.

[38] Hypertext transfer protocol. http://www.w3.org/Protocols/.

[39] Ice Inc. the tar archive utiltity in Java (public domain).

http://www.gjt.org/javadoc/com/ice/tar/package-summary.html.

[40] Microsoft Inc. Microsoft Explorer. http://www.microsoft.com/net/.

[41] Microsoft Inc. Microsoft Explorer. http://www.microsoft.com/windows/ie/.

[42] J. Jones and S. Kamin. Annotating Java Bytecodes in Support of Optimization. In To

appear in the Journal of Concurrency: Practice and Experience, 2000.

[43] R. Jones. http://www.cup.hp.com/netperf/netperfpage.html. Netperf: a network

performance monitoring tool.

[44] Ka�e { An opensource Java virtual machine.

[45] A. Krall and R. Gra. Cacao - a 64 bit JavaVM just-in-time compiler. In Concurrency:

Practice and Experience, volume 9 (11), pages 1017{1030, November 1997.

[46] C. Krintz and B. Calder. Using Annotation to Reduce Dynamic Optimization Time. In

Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design

and Implementation, October 1998.

203

[47] C. Krintz and B. Calder. Reducing Transfer Delay with Dyanamic Selection of Wire-

Transfer Formats. Technical Report UCSD CS00-650, University of California, San Diego,

April 2000.

[48] C. Krintz, B. Calder, and U. H�olzle. Reducing Transfer Delay Using Java Class File Split-

ting and Prefetching. In ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA), November 1999.

[49] C. Krintz, B. Calder, H. Lee, and B. Zorn. Overlapping Execution with Transfer Using

Non-Strict Execution for Mobile Programs. In Eigth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, October 1998.

[50] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the Overhead of Dynamic

Compilation. Software|Practice and Experience, 31(8):717{738, 2001.

[51] C. Krintz and R. Wolski. JavaNws: The network weather service for the desktop. In ACM

JavaGrande 2000, June 2000.

[52] Latte: A fast and e�cient Java vm just-in-time compiler.

[53] D. Lee, J. Baer, B. Bershad, and T. Anderson. Reducing startup latency in web and

desktop applications. In Windows NT Symposium, July 1999.

[54] H. Lee. BIT: Bytecode instrumenting tool. Master's thesis, University of Colorado, Boul-

der, Department of Computer Science, University of Colorado, Boulder, CO, June 1997.

[55] H. Lee and B. Zorn. BIT: A tool for instrumenting Java bytecodes. In Proceedings of the

1997 USENIX Symposium on Internet Technologies and Systems (USITS97), pages 73{82,

Monterey, CA, December 1997. USENIX Association.

[56] Peter Lee and Mark Leone. Optimizing ML with run-time code generation. In Proceedings

of the ACM SIGPLAN '96 Conference on Programming Language Design and Implemen-

tation, pages 137{148, May 1996.

[57] C. Lefurgy, P. Bird, I. Chen, and T. Mudge. Improving code density using compression

techniques. In 30th International Symposium on Microarchitecture, Research Triangle

Park, NC, December 1997.

[58] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature of ethernet

tra�c. IEEE/ACM Transactions on Networking, February 1994.

[59] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation. Addison-Wesley, 1997.

[60] S. McFarling. Procedure merging with instruction caches. Proceedings of the ACM SIG-

PLAN '91 Conference on Programming Language Design and Implementation, 26(6):71{

79, June 1991.

[61] Sun Microsystems. Java Appletviewer. http://java.sun.com/products/jdk/1.1/

docs/tooldocs/win32/appletviewer.html.

[62] R. Morelli. Java Java Java - Object-Oriented Problem Solving. Prentice Hall, 2000.

[63] Netscape. Netscape. http://www.netscape.com.

[64] Scott Oaks. Java Security. O'Reilly and Associates, Inc., Sebastopol, CA, 1998.

204

[65] Open Runtime Platform (orp) from Intel Corporation.

http://intel.com/research/mrl/orp.

[66] K. Pettis and R. Hansen. Pro�le guided code positioning. Proceedings of the ACM SIG-

PLAN '90 Conference on Programming Language Design and Implementation, 25(6):16{

27, June 1990.

[67] Pkware inc. http://www.pkware.com/. PKZip format discription:

ftp://ftp.pkware.com/appnote.zip.

[68] M. Plezbert and R. Cytron. Does just in time = better late than never? In Proceedings

of the SIGPLAN'97 Conference on Programming Language Design and Implementation,

January 1997.

[69] P. Pominville, F. Qian, R. Vallee-Rai, L. Hendren, and C. Verbrugge. A Framework for

Optimizing Java Using Attributes. In Sable Technical Report No. 2000-2, 2000.

[70] T. Proebsting, G. Townsend, P. Bridges, J. Hartman, T. Newsham, and S. Watterson.

Toba: Java for applications a way ahead of time (wat) compiler. In Proceedings of the

Third Conference on Object{Oriented Technologies and Systems, 1997.

[71] W. Pugh. Compressing Java class �les. In Proceedings of the SIGPLAN'99 Conference on

Programming Language Design and Implementation, May 1999.

[72] W. Savitch. Java - An Introduction to Computer Science and Programming. Prentice Hall,

2001.

[73] Mauricio Serrano, Rajesh Bordawekar, Sam Midki�, and Manish Gupta. Quasi-static

Compilation in Java. In ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA), October 2000.

[74] E. Sirer, A. Gregory, and B. Bershad. A practical approach for improving startup latency

in Java applications. In Workshop on Compiler Support for Systems Software, May 1999.

[75] D. Smith. The Concepts of Object-Oriented Programming. McGraw-Hill, 1991.

[76] Chesapeake Network Solutions. Test TCP (TTCP).

http://www.ccci.com/product/network_mon/tnm31/ttcp.htm.

[77] Spec jvm98 benchmarks.

[78] A. Srivastava. From communication on reducing startup delay in Microsoft Applications.

[79] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Ko-

matsu, and T. Nakatani. Overview of the IBM Java Just-in-Time Compiler. IBM Systems

Journal, 39(1), 2000.

[80] Sun Microsystems JIT Compiler.

[81] The Symantec Just{In{Time Compiler.

[82] F. Tip, C. La�ra, P. Sweeney, and D. Streeter. Practical experience with an application ex-

tractor for java. In ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA), November 1999.

205

[83] J. Torrellas, C. Xia, and R. Daigle. Optimizing instruction cache performance for operating

system intensive workloads. In Proceedings of the First International Symposium on High-

Performance Computer Architecture, pages 360{369, January 1995.

[84] D. Ungar and R. Smith. Self: The Power of Simplicity. In Proceedings OOPSLA '87, pages

227{242, December 1987.

[85] J. Vitek and C. Jensen, editors. Secure Internet Programming: Security Issues for Mobile

and Distributed Objects. Number 1603 in Lecture Notes in Computer Science. Springer-

Verlag, Berlin Germany, 1999.

[86] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. E�cient software-based fault isola-

tion. In Barbara Liskov, editor, Proceedings of the 14th Symposium on Operating Systems

Principles, pages 203{216, New York, NY, USA, December 1993. ACM Press.

[87] A. Wolfe and A. Chanin. Executing compressed programs on an embedded RISC archi-

tecture. In 25th International Symposium on Microarchitecture, pages 81{91, 1992.

[88] R. Wolski. Dynamically forecasting network performance using the net-

work weather service. Cluster Computing, 1998. also available from

http://www.cs.ucsd.edu/users/rich/publications.html.

[89] R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed resource

performance forecasting service for metacomputing. Future Generation Computer Systems,

1999. available from http://www.cs.utk.edu/~rich/publications/ nws-arch.ps.gz.

