
Towards distributed, fair, deadline-driven resource allocation
for Cloudlets

Stratos Dimopoulos
stratos@cs.ucsb.edu

University of California, Santa
Barbara

Chandra Krintz
ckrintz@cs.ucsb.edu

University of California, Santa
Barbara

Rich Wolski
rich@cs.ucsb.edu

University of California, Santa
Barbara

ABSTRACT
In this paper we present our vision for a two-level, distributed re-
source allocator that preserves fairness and satisfies deadlines of
low latency workloads in a multi-cloudlet environment with of-
floading support. We analyze the opportunities and challenges that
offloading and the multi-cloud environment impose and we sug-
gest the changes required to a fair-preserving and deadline-driven
resource allocator originally designed for resource-constrained en-
vironments.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
cloudlet, offloading, deadlines, fairness, distributed scheduling
ACM Reference Format:
Stratos Dimopoulos, Chandra Krintz, and Rich Wolski. 2019. Towards dis-
tributed, fair, deadline-driven resource allocation for Cloudlets. In Proceed-
ings of ACM Conference (Conference’17). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Mobile Cloud Computing (MCC) [7] allows mobile devices such
as smart phones, tablets, and wearables to offload processing and
data storage to the cloud [14] in order to mitigate their limited
computational, storage, and power resources. However, interactive
mobile applications like real-time multimedia, gaming, augmented-
reality, and location-aware and guidance services, generate data
streams that not only demand significant computational resources
but they also require low latency processing in order to provide
acceptable user experience. Offloading such services to the remote
cloud data center would cause significant service degradation.

To provide higher computation resources with lower latency,
processing can be done closer to where the data is produced in edge
or fog computing clouds [2, 8, 18] and smaller “data-centers in-a-
box” called cloudlets [17]. Unlike remote cloud data-centers though,
resources on cloudlets are very limited. Therefore, significant re-
search is focused on addressing the problem of choosing to offload

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

between clouds and cloudlets taking into consideration the battery,
bandwidth, and computational requirements [1, 3, 6, 9, 11, 13].

To allow low-latency processing, we have designed a predictive
resource allocation mechanism based on admission control that
can also adapt to changing cloud conditions in order to satisfy ap-
plication deadlines and preserve fairness in resource-constrained
cloud environments similar to those found in cloudlets. This allo-
cator called Justice [5] is an application-agnostic framework for
processing a variety of data analytics workloads. It employs a coarse-
grained predictive mechanism that imposes very little overhead,
making it ideal for resource-limited environments. We have eval-
uated Justice with production workloads and find that it enables
fairness, deadline satisfaction, and efficient resource utilization
when resources are highly constrained.

In this work, we explore the design of a resource allocator that
is suitable for cloudlets, which can offload processing to remote
clouds or cloudlets when necessary. We suggest a two-level, dis-
tributed allocation mechanism for multi-cloudlet environments that
uses cloudlet and remote cloud coordination to improve offloading
decisions, satisfy job deadlines, and to preserve fairness both locally
(cloudlet) and globally (multi-cloudlet deployment).

It differentiates its policy across diverse application classes and
exploits application-specific characteristics such as pre-emption
and execution patterns, when/if available, to facilitate finer-grained
prediction and adaptability. Based on historical job statistics, local
and remote cloudlet workload information, the allocator determines
which jobs should run on the current cloudlet and which should
be offloaded on the remote cloud or on a neighbor cloudlet. We
plan to evaluate our mechanism with cloudlet specific-workloads
(compute intensive and latency sensitive) and a mixture of soft
and hard deadlines corresponding to the different types of latency
sensitive mobile applications.

2 BACKGROUND AND RELATEDWORK
Justice [5] is an allocator designed for the resource-constrained
settings of a cloudlet with the dual goal of preserving fairness and
satisfying job deadlines for multi-analytics batch workloads. Justice
does so by using an adaptive prediction technique based on histori-
cal job execution times to estimate the minimum number of CPUs
a job requires to meet its deadline “just-in-time”. It utilizes cloud
resources efficiently by applying admission control and proactively
denying service to jobs that cannot meet their deadlines based on
the cloud conditions.

Figure 1 depicts the three concurrent operations of Justice. To es-
timate the resources required to satisfy job deadlines (used to guide
both admission control and resource allocation), Justice employs
an online statistical model from the job tracking operation. This

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Stratos Dimopoulos, Chandra Krintz, and Rich Wolski

Figure 1: Justice’s predictive resource allocation and admis-
sion control with error correction based on online job track-
ing and a Kalman filtering feedback loop.

operation then feeds its estimation error to a Kalman filter and uses
the filter’s output to further correct future allocation predictions.

There are many aspects of the Justice design that make it suitable
for resource allocation in cloudlets. First, Justice is able to utilize
scarce resources more efficiently than other fair-share allocators. It
achieves this in two ways. Firstly, it does not waste cloud resources
to infeasible jobs and it does not over-provision resources to jobs
with relaxed deadlines. Secondly, it incorporates coarse-grained
prediction techniques that do not impose additional overheads to
the cloud unlike offline simulations, sampling, or extensive online
monitoring.

Next, Justice requires minimal information for the job (deadline
and input size), doesn’t increase scheduling latency, and its memory
scales linearly to the points used for the desired history window
specified. This window can be adapted depending on the predic-
tion accuracy requirements and the scheduling latency overhead
a cloudlet can tolerate. Finally, Justice’s prediction mechanism is
framework-agnostic. This means that it does not depend on the
internal structure or API of any specific processing engine and
therefore it can be part of cloudlets that might be running differ-
ent processing frameworks to potentially optimize for a specific
application type.

Much past work has focused on the problem of load balancing
between edge data centers [12, 15] and offloading work to remote
clouds from cloudlets [3, 9, 11, 16]. Cardelini et al. [3] is using a
game-theory approach to optimize the offloading decision, while
Gelenbe et al. [9] formulates the choice between a local and a re-
mote cloud as an optimization problem, taking into consideration
energy and performance of servers. In [6], authors optimize offload-
ing decisions and the allocation of computing resources, transmit
power, and radio bandwidth focusing on user fairness and max-
imum tolerable delay. Other research determines the offloading
decision based on the battery and bandwidth consumption [1] or
volume of data need to be transferred and the computational re-
sources required [13]. Authors in [16] want to decrease energy
consumption and execution latency in a multi-cloudlet scenario
by selecting the most appropriate neighboring cloudlet for each
application type and also load balancing between cloudlets.

In our work, we focus in making the best decision after a job has
already reached the cloudlet, in order to satisfy workloads in terms
of their latency and allocate resources fairly between them.Wewant
to use the limited resources of the cloudlet only for the workloads
that absolutely need them in order to satisfy their latency require-
ments and send the workloads with more relaxed constraints to
run on the virtually unlimited resources of a remote cloud or to less
loaded neighboring cloudlets. We suggest a distributed scheduling
scheme to coordinate resource allocation across cloudlets, inspired

Figure 2: Distributed Justice in a multi-cloudlet environ-
ment

by two-level resource allocators for big data analytics like Apache
Mesos [10] but specialized to overcome framework interference
and fairness violation issues as these systems were not designed
with resource-scarcity in mind [4]. Our work is also inspired by
application specific cloudlets and multi-cloud environments [16], as
this can be an extra incentive for collaboration between cloudlets.

3 DISTRIBUTING JUSTICE FOR
MULTI-CLOUDLET ENVIRONMENTS

The ability to offload workloads from a cloudlet to a remote cloud
and the potential for cooperation between multi-cloudlets, together
create multiple scheduling and resource allocation opportunities
for Justice. To exploit these opportunities, we augment the existing
allocation mechanisms with support for offloading decisions to
remote clouds and to neighboring cloudlets. Justice manages to
keep cloudlet resources minimally utilized and proactively available
for future workloads by predicting job resource requirements and
allocating only the necessary resources so they can complete just
before their deadlines.

Offloadingworkloads to remote clouds or other, less-busy cloudlets,
adds extra parameters to Justice’s allocation mechanism. We ex-
pand Justice’s scope, from being specific just to the local cloudlet,
to also consider statistical information from job executions that
have been offloaded elsewhere (in the remote cloud, and to neigh-
boring cloudlets) and utilization information of other cloudlets and
remote-clouds.

We classify jobs based on their preemption characteristics and
deadline types, as these aspects constrain our offloading and admis-
sion control decisions respectively. In particular, for jobs supporting
pre-emption we can have more scheduling flexibility as we can of-
fload them outside the cloudlet even after they have started running.
Similarly, Justice can accept jobs with soft deadlines (i.e., the utility
function of the job does not drop to zero after its deadline is ex-
ceeded), even when the confidence level of its prediction regarding
meeting its deadline is lower.

To realize these new features, we expand the centralized archi-
tecture suitable for one cloudlet, to a distributed scheduling scheme
capable of allocating resources in a group of neighboring cloudlets.
Justice is ideal for that due to its simplicity and minimal computing
requirements. Figure 2 shows a two-tier distributed architecture.

Towards distributed, fair, deadline-driven resource allocation for Cloudlets Conference’17, July 2017, Washington, DC, USA

Justice instances run in both cloudlets and instances with in-
creased responsibilities running in remote clouds (e.g., Amazon
AWS, Microsoft Azure, Google Cloud etc). Justice instances run-
ning in remote clouds have a dual goal. Like all other instances,
they are able to run to completion workloads offloaded to them.
They are also able to act as brokers, responsible for communicating
cloudlet utilization, historical runtime statistics, and coordination
information across participating cloudlets (other Justice instances).

In addition to distributing Justice, so that we can provide fairness
and satisfy latency requirements in multi-cloudlet environments,
there are other aspects of such deployments that generate oppor-
tunities worth exploring. For scenarios in which each cloudlet is
optimized to support only a specific type of application [16], we
can quantify the runtime prediction improvement Justice achieves
versus to its application-agnostic performance.

Justice is designed to accommodate for a variety of workloads.
It achieves this by calculating globally applicable but also coarse-
grained statistical information to predict job run times under chang-
ing cloudlet conditions. However, this can lead to prediction inaccu-
racies for some types of workloads. By considering workloads with
similar characteristics, we can reduce this error. Justice achieves
this by characterizing and exploiting job repetition and depen-
dency information to improve its allocation decisions. Doing so
is not efficient for cloudlets supporting generic workloads, as it
requires expensive machine learning (i.e., clustering) to classify the
workloads according to their runtime and resource requirement
characteristics. However, it may be possible for application-specific,
multi-cloudlet deployments. In such deployments, for example, one
cloudlet might be optimized for augmented reality applications,
while other cloudlets might be more suitable for mobile games,
mobile health applications, numerical operations, file operations
(searching, sorting) and so on. We expect that workloads of the
similar applications share runtime and repetition characteristics
that will allow Justice’s mechanism to be more accurate.

Along with the many opportunities for allocation improvement,
a distributed scheme with multiple coordinating Justice instances,
generates new research challenges in terms of preserving fairness,
satisfying deadlines, and keeping scheduling latency low. Fairness
can no longer been seen in one-dimension. Each instance of Justice
running on a cloudlet has sufficient information to enforce fairness
for its cloudlet. However, there is a second dimension of fairness;
the one preserved across all collaborating cloudlets in a multi-cloud
environment. To achieve this, Justice instances must collaborate
to create a global fairness “snapshot” based on partial local knowl-
edge. We must also consider the tradeoff between the amount of
statistical information from remote clouds and cloudlets that each
cloudlet stores locally versus the amount of information exchanged
between the distributed Justice instances. Lastly, we must expand
Justice to consider placement constrains (e.g., GPU versus CPU
or specific operating system requirements) and preserve fairness
across different job priorities to evaluate its performance in more
realistic situations corresponding to diverse MCC workloads and
mobile user service levels. For example, workloads belonging to a
higher service level should be executed in the least utilized cloudlet
(between two cloudlets with the same proximity to the mobile
user) and this is a decision that can be augmented by utilization
information we keep on the remote cloud.

4 CONCLUSIONS
We present our vision for a distributed two-level scheduler based
on Justice [5] suitable for multi-cloudlet environments with re-
source offloading to remote public clouds. We discuss our moti-
vation and analyze the new feature set that Justice must support
to preserve fairness and satisfy job latency requirements in the
context of a multi-cloudlet and public-cloud hybrid environments
and MCC workloads.

ACKNOWLEDGMENTS
This work is funded in part by NSF (CNS-1703560, CCF-1539586,
ACI-1541215)

REFERENCES
[1] Marco V Barbera, Sokol Kosta, Alessandro Mei, and Julinda Stefa. 2013. To offload

or not to offload? the bandwidth and energy costs of mobile cloud computing. In
2013 Proceedings Ieee Infocom. IEEE, 1285–1293.

[2] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
computing and its role in the internet of things. In Proceedings of the first edition
of the MCC workshop on Mobile cloud computing. ACM, 13–16.

[3] Valeria Cardellini, Vittoria De Nitto Personé, Valerio Di Valerio, Francisco
Facchinei, Vincenzo Grassi, Francesco Lo Presti, and Veronica Piccialli. 2016.
A game-theoretic approach to computation offloading in mobile cloud comput-
ing. Mathematical Programming 157, 2 (2016), 421–449.

[4] Stratos Dimopoulos, Chandra Krintz, and RichWolski. 2016. Big Data Framework
Interference In Restricted Private Cloud Settings. In IEEE International Conference
on Big Data. IEEE.

[5] Stratos Dimopoulos, Chandra Krintz, and Rich Wolski. 2017. Justice: A Deadline-
aware, Fair-share Resource Allocator for Implementing Multi-analytics. In Cluster
Computing (CLUSTER), 2017 IEEE International Conference on. IEEE, 233–244.

[6] Jianbo Du, Liqiang Zhao, Jie Feng, and Xiaoli Chu. 2018. Computation offloading
and resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee. IEEE Transactions on Communications 66, 4 (2018), 1594–1608.

[7] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. 2013. Mobile cloud
computing: A survey. Future generation computer systems 29, 1 (2013), 84–106.

[8] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. 2016. Computing with
nearby mobile devices: a work sharing algorithm for mobile edge-clouds. IEEE
Transactions on Cloud Computing (2016).

[9] Erol Gelenbe, Ricardo Lent, and Markos Douratsos. 2012. Choosing a local
or remote cloud. In 2012 Second Symposium on Network Cloud Computing and
Applications. IEEE, 25–30.

[10] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform
for Fine-Grained Resource Sharing in the Data Center.. In NSDI. 22–22.

[11] Mike Jia, Jiannong Cao, and Weifa Liang. 2015. Optimal cloudlet placement
and user to cloudlet allocation in wireless metropolitan area networks. IEEE
Transactions on Cloud Computing 5, 4 (2015), 725–737.

[12] Mike Jia, Weifa Liang, Zichuan Xu, and Meitian Huang. 2016. Cloudlet load
balancing in wireless metropolitan area networks. In IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on Computer Communications. IEEE,
1–9.

[13] Yanchen Liu, Myung J Lee, and Yanyan Zheng. 2015. Adaptive multi-resource
allocation for cloudlet-based mobile cloud computing system. IEEE Transactions
on Mobile Computing 15, 10 (2015), 2398–2410.

[14] Pavel Mach and Zdenek Becvar. 2017. Mobile edge computing: A survey on ar-
chitecture and computation offloading. IEEE Communications Surveys & Tutorials
19, 3 (2017), 1628–1656.

[15] Deepak Puthal, Mohammad SObaidat, Priyadarsi Nanda, Mukesh Prasad, Saraju P
Mohanty, and Albert Y Zomaya. 2018. Secure and sustainable load balancing of
edge data centers in fog computing. IEEE Communications Magazine 56, 5 (2018),
60–65.

[16] Deepsubhra Guha Roy, Debashis De, Anwesha Mukherjee, and Rajkumar Buyya.
2017. Application-aware cloudlet selection for computation offloading in multi-
cloudlet environment. The Journal of Supercomputing 73, 4 (2017), 1672–1690.

[17] Mahadev Satyanarayanan, Victor Bahl, Ramón Caceres, and Nigel Davies. 2009.
The case for vm-based cloudlets in mobile computing. IEEE pervasive Computing
(2009).

[18] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE Internet of Things Journal 3, 5 (2016),
637–646.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Distributing Justice for Multi-Cloudlet Environments
	4 Conclusions
	Acknowledgments
	References

