
A Framework for Interprocedural Optimization in the
Presence of Dynamic Class Loading

VugranamC. Sreedhar Michael Burke Jong-Deok Choi
IBM T. J. Watson Research Center

P. O. Box 704, Yorktown Heights, NY 10598
fsreedhar,burkem,jdchoig@watson.ibm.com

ABSTRACT
Dynamic class loading during program execution in the JavaTM

Programming Language is an impediment for generating
code that is as e�cient as code generated using static whole-
program analysis and optimization. Whole-program analy-
sis and optimization is possible for languages, such as C++,
that do not allow new classes and/or methods to be loaded
during program execution. One solution for performing whole-
program analysis and avoiding incorrect execution after a
new class is loaded is to invalidate and recompile a�ected
methods. Runtime invalidation and recompilation mecha-
nisms can be expensive in both space and time, and, there-
fore, generally restrict optimization.
To address these drawbacks, we propose a new framework,
called the extant analysis framework, for interprocedural
optimization of programs that support dynamic class (or
method) loading. Given a set of classes comprising the closed
world, we perform an o�ine static analysis which partitions
references into two categories: (1) unconditionally extant

references which point only to objects whose runtime type
is guaranteed to be in the closed world; and (2) condition-

ally extant references which point to objects whose runtime
type is not guaranteed to be in the closed world. Optimiza-
tions solely dependent on the �rst category can be statically
performed, and are guaranteed to be correct even with any
future class/method loading. Optimizations dependent on
the second category are guarded by dynamic tests, called ex-

tant safety tests, for correct execution behavior. We describe
the properties for extant safety tests, and provide algorithms
for their generation and placement.

1. INTRODUCTION
Dynamic class loading during program execution in the JavaTM

Programming Language [18; 25] is an impediment for gener-
ating code that is as e�cient as code generated using static
whole-program analysis and optimization. Sophisticated
static compilers for languages such as C++ perform whole

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI 2000, Vancouver, British Columbia, Canada.
Copyright 2000 ACM 1-58113-199-2/00/0006...$5.00.

program analysis, optimization, and transformation, to gen-
erate e�cient code. Whole program analysis is possible for
them since they do not allow new classes/methods to be
loaded during program execution.1

In Java new classes can be loaded on-the-
y during program
execution [25]. Attempting to apply whole program static
analysis framework to Java can result in an incorrect pro-
gram. For instance consider a virtual call p:foo(). In C++,
using whole program analysis we can determine whether a
virtual call has only one target [3]. If so, the virtual call
can be directly converted to a static call (and the call pos-
sibly inlined). Attempting to do such devirtualization in
Java (without a runtime type check guarding the devirtual-
ization) can result in an incorrect program because, during
execution, a new class can be loaded and p:foo() can invoke
a new foo() in the newly loaded class. One solution for
avoiding incorrect execution after a new class is loaded is
to invalidate and recompile a�ected methods [5; 6; 19; 21].
Runtime invalidation and recompilation mechanisms have
several drawbacks: (1) they can be expensive in both space
and time; (2) the activation stack frame for active and inval-
idated methods may have to be rewritten [19]; and (3) they
can restrict how much optimization one is allowed to do so
that invalidation can be correctly applied during runtime [6;
19]; and (4) a complex and an expensive synchronization
mechanism may be needed to correctly invalidate methods
in a multithreaded environment [2].

To address these drawbacks, we propose a new framework,
called the extant analysis framework, for interprocedural op-
timization of programs that support dynamic class/method
loading. Given a set of classes comprising the closed world,
we perform an o�ine static interprocedural analysis as if this
set made up a whole program. In addition, the o�ine anal-
ysis performs an extant analysis which partitions references
into two categories: (1) unconditionally extant references
which point only to objects whose runtime type is guaran-
teed to be in the closed world; and (2) conditionally extant

references which point to objects whose runtime type is not
guaranteed to be in the closed world.

In this framework we perform unconditional static optimiza-
tions (such as direct inlining) for the �rst category. For
the second category we identify regions of code (methods
or parts of methods) for which it is bene�cial to optimize

1In the presence of calls to methods whose body is not
known during compile time, such as Dynamic Link Libraries
(DLLs), these static compilers usually make conservative as-
sumptions about the methods.

196

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLDI 2000, Vancouver, British Columbia, Canada.
Copyright 2000 ACM 1-58113-199-2/00/0006…$5.00.
PLDI 2000,

Class A{

public static void foo(C c)
{

...

B b = goo() ; // b1
b.Bbar() ; // cs1

c.Bbar() ; // cs2
}

static B goo() { return new B(); // cs3 }

public void bar(C c1)
{

foo(c1); // cs4
}

}

class B {
public void Bbar ()

{

...
}

}

class C extends B {

}

Figure 1: An example program.

and create a specialized version of the optimized code. We
generate code called the extant safety test to be executed
during runtime for a safe invocation of the specialized code.
Within our framework we guarantee that once specialized
code is invoked, it will execute correctly and safely for that

invocation even when new classes are loaded.
We now illustrate our framework using the example of Fig-
ure 1. We use the notation C::m to mean that the method
m is de�ned in class C. Classes A, B, and C are the only
classes available for o�-line analysis. We refer to classes
available for the o�ine analysis as \extant classes," and an
object whose runtime type is an extant class as an \extant
object." With respect to the \closed-world" program of the
extant classes, \extant analysis" determines that the class of
the object pointed to by b at cs1 is guaranteed to be within
the closed world: the class (B) of the object created at cs3.
A data
ow analysis with respect to the closed-world pro-
gram determines that the method invocation b.Bbar() at
cs1 has only one target, i.e., B::Bbar(). For any invocation
of foo(C c), therefore, b.Bbar() at cs1 can be devirtualized
and inlined.
Extant analysis also determines that the object pointed to
by c at cs2 is the same as that pointed to by parameter
c at the entry of foo(C c). A::foo(C c), being a public
method, can be invoked from outside the closed world, and
the object pointed to by c at cs2 can be extant or non-
extant. A data
ow analysis with respect to the closed-world
program determines that if c at cs2 points to an extant
object, the method invocation c.Bbar() at cs2 has only
one target, B::Bbar(). Whereas b.Bbar() at cs1 can be
directly inlined, a runtime test is needed to guard the inlined
B::Bbar() invoked at cs2.
Since c does not change within A::foo(C c), we can fur-
ther specialize the entire body of foo(C c) with respect to
the assumption that the runtime type of c is extant. We
designate the specialized version of foo(C c) as foo'(C c).
This specialized version can be safely invoked by any call
site invoking the method that passes an extant object as
the parameter. Since c1 at cs4 is passed as the parame-
ter to A::foo(C c), we can place a runtime \extant safety
test" prior to cs4. At runtime, this test determines whether
c1 points to an extant object. If so, the specialized foo'(C

c) is invoked; if not, the original foo(C c) is invoked. The

transformed code at A::bar() looks like

if (c1 points to an extant object)

foo'(C c);
else

foo(C c);

Extant analysis statically determines the set of call sites
such as cs1 where the target method is guaranteed to be in
the closed world, and call sites such as cs2 where the target
method can be within or outside of the closed world. In
the extant analysis framework, we also determine program
locations (such as cs4 for call site cs2) for placing a runtime
extant safety test that can maximize optimization opportu-
nities, and determine how to generate and perform such a
test.
Detlefs and Agesen [15] introduce the concept of preexistence
in the context of a dynamic compiler. Here inlining only
takes place for those call sites for which the object pointed
to by the receiver expression has already been allocated at
the moment of invocation of the containing method. Using
their preexistence technique, the method invocation at cs1
cannot be inlined, because the object pointed to by b is not
allocated until after the invocation of foo().
Another approach to devirtualization and inlining is based
on a runtime type check of the receiver expression [20]. Us-
ing this technique, one can devirtualize and inline c.Bbar()

at cs2 as follows:

if (c instanceof B || c instance of C) {

// devirtualize and inline B::Bbar()
}

else
{

c.Bbar();

}

In contrast to the runtime type check, our extant safety test
can cover the entire specialized method. This o�ers the op-
portunity for optimizations across the multiple statements of
the specialized method. Further, the statements covered by
a single extant test can cross method or class boundaries, in
which case interprocedural optimizations can be performed
across muliple levels of method invocations.

197

In this paper we do not address the Java features of reloading
and the Java Native Interface.2

We implemented the framework using the Jalape~no Vir-
tual Machine [1] and experimented on a set of SPECjvm98
benchmark programs and on portBob [4]. We present our
preliminary experimental result in Section 6.
The main contributions in this paper are as follows:

� We introduce a framework for interprocedural opti-
mization that does not require invalidation during ex-
ecution when a new class is loaded.

� We introduce an analysis technique, called extant anal-
ysis, to identify code regions that can be specialized
and to identify points in the program that can be af-
fected by dynamic class loading.

� We use parametric data
ow analysis as a basis for
performing optimizations on the specialized code re-
gions.

� We introduce an extant safety test that can be per-
formed during execution to safely invoke the special-
ized code regions. We show how to generate and per-
form such tests. We also formalize the safety proper-
ties of an extant safety test.

� We experimented with our framework using Jalape~no
Virtual Machine. We present both static and dynamic
results to evaluate our framework.

The rest of the paper is organized as follows: Section 2 de-
scribes the relationship between Java dynamic class loading
and the framework for o�ine analysis/ optimization used in
this paper. Section 3 describes extant analysis. Section 4
describes our techniques for identifying candidate code re-
gions for specialization and generating specialized code re-
gions. Section 5 describes the placement and generation of
extant safety tests. Section 6 describes our implementation
and experimental results. Section 7 discusses related work,
and Section 8 gives our conclusion.

2. DYNAMIC CLASS LOADING AND THE
CLOSED WORLD

In Java there are several ways in which a new class can be
loaded. According to the Java speci�cation, during execu-
tion a new class should be loaded if there is a reference to
an element (such �elds or methods) of the new class [18;
26]. There are two other ways of loading a new class in
Java: (1) via Class.forName() constructs and (2) via user
de�ned class loaders [25].3

When Java is implemented in a static environment, such
as JAX, IBM HPCJ, NaturalBridge, or Marmot, the static
compiler expects the whole program to be present during
the analysis [22; 17; 28; 33] HPCJ, for instance, searches
all methods and classes that are reachable from the main()

2These Java features could potentially modify code on-the-

y and so could a�ect our assumptions about the closed
world.
3Class loaders allow the same fully quali�ed classes to have
di�erent runtime types during execution. A runtime type of
an object is a pair hL;Ci, where L the de�ning class loader
for C. The o�ine analysis phase must be aware of class
loaders to ensure type safety of the program [25; 31].

method in the main application class. But when it encoun-
ters a Class.forName() or user de�ned class loaders, it relies
on the user to provide all possible classes that can be loaded
at such points. If a user fails to provide all classes that can
be dynamically loaded at such points, then HPCJ would
potentially generate incorrect code.
In our framework we also rely on the user to provide methods
and classes that can participate in the o�ine analysis and
optimization phase. But unlike a static Java environment,
our framework guarantees correctness even if the user does
not provide all of the dynamically loadable classes. We call
the set of classes and methods that participate in o�ine
analysis and optimization, the closed-world program. There
are several ways to construct the closed-world program: (1)
use the same strategy as that of a static Java compiler, such
as HPCJ, except that the user need not specify all possible
classes that can be loaded at Class.forName() points or by
user-de�ned class loaders; (2) use pro�ling information and
include only hot methods and classes; and (3) the user can
specify the set of all classes and methods that participate in
the closed world.

3. EXTANT ANALYSIS
In this section we describe extant analysis. First we de�ne
certain useful terms.
Class inheritance relationships in Java can be represented
using a Class Inheritance Graph (CIG) G = (N;E; r) where
N is a set of nodes representing either a class or an inter-
face, E is a set of edges representing inheritance relation,
and r is a distinguished root node representing the class
java.lang.Object. We will sometimes use the term type to
mean either a class or an interface, sub-type to mean sub-
class or sub-interface. An edge (x; y) 2 E represents that
x is an immediate super-type (also called the parent type)
of y, and y is an immediate sub-type (also called the child
type) of x. If there is a path from a type x to another type y
in G, then x is called the ancestor type of y, and y is called
the descendent type of x.
Given a declaration of the form \T p", T is called the declared
type of the reference variable p. During program execution
the type R of the object that p points to can be any class
that is (directly or indirectly) derived from T. We will call
R the runtime type or concrete type of the object that p is
pointing to. Now let p be a reference (to an object) and
p.foo() a method call. We call p in p.foo() the receiver
expression, and the type of the receiver expression is the
runtime type of p. We will use the term virtual call to
include both invokevirtual and invokeinterface calls.

Definition 3.1 (Closed-World Set). The set of cla-
sses and methods that participate in o�-line analysis and op-
timization is called the Closed-World set, and is denoted by
CW .

Definition 3.2 (Connected Closed-World Set).
Let x and y be any two classes in a CW such that x is an an-
cestor of y in the CIG. Let P be a set of all paths between x
and y. CW is said to be a connected closed-world if and only
if all types in P are also in CW. CW is said to be a root-
connected closed-world if x is the class java.lang.Object

(i.e., the root of the CIG).

A closed world's having the \connected" property simpli�es
the analysis and aids in program optimization. Through-

198

public void m1(String cName)
{

B p;
if (...)

S1: p = new B(); // extant
else
{

S2: Class c = Class.forName(cName);
S3: Object o = c.newInstance();
S4: p = (B) o; // non-extant

}
S5: for (...)

{
S6: p.Bbar(...); // p is extant or non-extant

}
}

Figure 2: Example for Extant Analysis

out this paper we will assume a root-connected closed world,
unless otherwise stated.

Definition 3.3. A class C (or a method M) is extant if
and only if C (or M) is in CW. An object O is extant if
and only if its runtime type is extant.

We will sometimes state that a class or method is not extant
through use of the term non-extant.

Definition 3.4. A reference (such as a receiver expres-
sion) is unconditionally extant at a program point (call site)
if and only if it can only point to an extant object at that pro-
gram point (call site); otherwise it is conditionally extant.

Since we use the terms class and type interchangeably we
sometimes say that a \type is extant" instead of saying that
a \class is extant."

Definition 3.5. A virtual call site is unconditionally ex-
tant if and only if the receiver expression at that call site is
unconditionally extant (otherwise it is conditionally extant).
A static call site is extant if and only if the target method of
the call site is in CW .

Extant analysis is a data
ow problem for computing the
\extant state" of the receiver expression at each virtual call
site. Extant analysis is performed during the o�ine analy-
sis phase. The lattice for extant analysis consists of three
elements: UNKNOWN (>), unconditionally extant (UCE),
and conditionally extant (CE or ?). Let ES = f>;UCE;?g
be the set of lattice elements (extant states). Let A 2 ES ,
then ?^A = ?, and >^A = A. If a receiver expression is
conditionally extant, we can then establish a \degree of ex-
tantness". For instance, if we can determine statically that
a receiver expression can never point to an extant object,
then we say it is unconditionally non-extant (UCNE).4 We

4Sometimes it is convenient to assume a four element lat-
tice f>;UCE; UCNE;?g, with UCE ^ UCNE = ?. For
instance, if we know that a reference will always point to
a non-extant object, then we can set its extant state to
UCNE. As we will discuss in Section 4, if the receiver ex-
pression of a virtual call site has extant state UCNE, then it
is not bene�cial to optimize with respect to such call sites.

will use the concept of \degree of extantness" in Section 4
for specialization.
We compute the extant state of the receiver expression of
each invocation site in two steps:

1. The extant state of the receiver expression is set to ? if
the target method is not implemented in the declared
type D of the receiver expression, or in any ancestor
or descendant of D in CW .

2. For any other receiver expressions, apply the meet (^)
operation to the extant states of the set of compile-
time objects the receiver expression can point to.

If the set of compile-time objects of the receiver expression
is empty, the extant state of the receiver expression is set to
? for safety in optimization. This can happen for a receiver
expression reached by a parameter of a non-public method
in the closed world.
The set of compile-time objects a reference variable can
point to can be computed by applying a pointer analysis
algorithm [16; 34; 24; 9; 32; 30]. A compile-time naming
scheme similar to those used in pointer analysis identi�es
compile-time objects [7; 30].
The extant state of a compile-time object is initialized with
UCE (unconditionally extant) if the object is allocated with
a type that is in the closed world. Otherwise, its extant
state is initialized with ?.5

In Java a public method can be invoked from outside the
closed world. Let M(: : :) be a method that can be invoked
from outside the closed world. If p is a reference parameter
of M , then p can also potentially point to a non-extant ob-
ject. To re
ect this, when a compile-time object is passed
as a parameter to a public method, we apply a meet with ?
to the extant state of the compile-time object. If M is not
reachable from any method in the closed world, each refer-
ence parameter ofM is assigned a compile-type object with
extant state of ?. We call methods such as M(: : :) entry
boundary points to the closed world.
When a reference variable is passed as a parameter to a
method invocation on a potentially non-extant object, the
extant state of the objects indirectly reachable from the
parameter can become non-extant because the objects can
be replaced. We apply a meet with ? to the extant state
of objects indirectly reachable from parameters passed to
a method invocation on a potentially non-extant object.
Reachability information is implicit in the pointer analysis
solution.
A statement which performs a read of a static reference vari-
able is also an entry boundary point, as such a variable may
have been modi�ed by another thread during the execution
of the containing method.6 Therefore, when a compile-time
object becomes reachable from a static reference variable, we
also apply a meet with ? to the extant state of the compile-
time object.
Consider the example shown in Figure 2. At S1 the refer-
ence variable p points to an extant object (assuming that
B is extant), whereas at S4, p can potentially point to a
non-extant object (assuming that the value of cName is not

5Its extant state is initialized with UCNE in the four element
extant-state lattice.
6We cannot eliminate static variables from consideration by
using techniques similar to \lambda-lifting" for free vari-
ables, due to multiple threads.

199

known during o�-line phase). Therefore at S6, the receiver
expression p can invoke a method Bbar(...) that may not
be in the closed world.

Property 3.1. If a receiver expression p at a call site
p:foo() is unconditionally extant, then during execution all
possible target methods of the call are within the closed world.

An important implication of the above property is that we
never need a runtime type check with respect to an optimiza-
tion of such unconditionally extant call sites. For instance,
we can directly devirtualize and inline such call sites with-
out any runtime type checks if, during o�ine analysis, we
can determine that there is only one target for such virtual
calls.
If a receiver expression is conditionally extant, then the call
site can potentially invoke methods outside the closed world.
We call such call sites exit boundary points of the closed
world. The invocation of p.Bbar(...) at S6 in Figure 2
is an example of an exit boundary point. We need to spe-
cialize code regions containing optimizations depending on
such call sites, where the invocation of the specialized code
is guarded by a runtime type check.
In the next two sections we will use extant analysis infor-
mation (1) to compute code regions that are candidates for
specialization; and (2) to compute the extant safety test for
determining whether to call the specialized or unspecialized
code during execution.

4. CODE SPECIALIZATION
In this section, using extant analysis, we will �rst show how
to identify methods or parts of methods as candidates for
specialization (Section 4.1). We then show how to use con-
cepts from parametric data
ow analysis to generate spe-
cialized code. (Section 4.2).

4.1 Identifying Specialization
In our framework a method or a part of a method is always
specialized with respect to an exit boundary point in the
closed world. In the previous section we used extant analy-
sis to determine the extant state of a receiver expression. If
the extant state of the receiver expression p at a virtual call
site p:foo() is UCE, then we can perform unconditional op-
timization with respect to such call sites. But if the extant
state of p is ? we can do one of the following (depending
on the \degree of extantness"): (1) do not perform any op-
timization with respect to such exit boundary points; or (2)
perform optimizations with respect to such exit boundary
points but guard the optimized code using a dynamic test.
In the remainder of this section we describe how to iden-
tify code regions that are candidates for optimization. We
optimize code with respect to an exit boundary points only
if it is bene�cial to do so. Therefore in the remainder of
this section we assume that the receiver expression is not
unconditionally non-extant.
To motivate the problem, consider the simple example shown
in Figure 3. Assume that all classes shown in the �gure be-
long to the closed world. The compile-time object created
at S10 and passed to method A::Abar(� � �) as the �rst pa-
rameter, i.e. c1, has its initial extant state as UCE. Since
A::Abar(�� �) is a public method, the extant state of the
compile-time object is applied to a meet with ?, resulting
in the extant state of CE. c1 is passed to parameter c of

A::Afoo(C c) at S1. The extant state of receiver expres-
sion c at S5 does not change in A::Afoo(C c), and we ap-
ply specialization to A::Afoo(C c) to create a specialized
A::Afoo'(C c) in which we directly devirtualize and inline
c.Bbar(b) at S5 (without any runtime guards controlling
the inlined method). A::Afoo(C c) is specialized here with
respect to the exit boundary point de�ned at S5. During ex-
ecution we perform an Extant Safety Test (EST) at S1 to de-
termine whether to call the specialized version A::Afoo'(C

c) or to call the unspecialized version A::Afoo(C c). Once
A::Afoo'(C c) is invoked, it can safely execute for that in-
vocation even if a new class is loaded that can override the
method B::Bbar(B b).
Now consider the method A::Agoo(C c, String s). We
cannot specialize the whole method A::Agoo(...) wherein
we can directly inline c.Bbar(b). In both A::Afoo(C c) and
in A::Agoo(...), the receiver expression c for invocations
of c.Bbar(b) at S5 and S9, respectively, can point to a non-
extant object. But in the case of A::Afoo(C c) a new class
can be loaded only prior to the execution of S1, whereas
in the case of A::Agoo(...) a new class can be loaded at
S7, and the receiver expression at S9 can point to the newly
loaded class. We can specialize part of A::Agoo(...) by
placing an extant test just prior to S9 to check whether the
receiver expression can point to a non-extant object gener-
ated at S8. In the next section we will show how to generate
and place extant tests.
Next we establish two key properties to determine which
methods (or parts of methods) are candidates for safe spe-
cialization. Intuitively, given an exit boundary points �, we
can place an EST just prior to �. But we want to move this
test as early as possible to create opportunities for other op-
timizations. The next property essentially states how far up
can the test be moved from an exit boundary points.

Property 4.1. Let m be a program point, let � be an
exit boundary point, and let P(m;�) be the set of all pro-
gram paths from m to � in the program. The statements in
P(m;�) can be safely specialized with respect to � if, during
execution, (1) there does not exist a non-extant (runtime)
object One that can reach � before reaching m and (2) any
object that reaches both m and � is extant.

In Property 4.1, if m is an entry point to a method M , then
we can specialize the whole method M with respect to �.
The portions of M that do not lie on a path from m to �

will not a�ect the safety of the specialization. Let us dissect
Property 4.1 into three parts: (1) program point m, (2) the
set of paths P(m;�), and (3) the exit boundary point �.
At compile-time we want to identify m such that P(m;�)
can be safely optimized and specialized with respect to �.
To invoke the specialized code we want to place an EST
ESTm at m that ensures safe invocation of the specialized
code. For an invocation of a path P in P(m;�) to be safe,
we have to ensure that whenever P is executed, the receiver
expression re� at � points to an extant object. Let p� be the
receiver expression at �, and EST (p�) be an EST performed
at � that returns true if and only if p� points to an extant
object. Any EST ESTm that we place at a program point
m should satisfy the following property:

Property 4.2. An EST at program point m, denoted as
ESTm , is safe with respect to EST (p�) if ESTm implies
EST (p�), expressed as ESTm v EST (p�).

200

Class A{
public void Abar(C c1, String s)

{

S1: Afoo(c1);
S2: Agoo(c1, s);

}

private void Afoo(C c)
{

S4: B b = new B(); // extant

S5: c.Bbar(b);
}

private void Agoo(C c, String s)

{

...
S6: if(...) {

S7: Class x = Class.forName(s)
S8: Object c = x.newInstance(); // non-extant

}

S9: c.Bbar(b);
...

}
}

class B {

public void Bbar (B b)

{
...

}
}

class C extends B {

...

public void Efoo()
{

...
}

}

class D {

...
public void Dbar(A a1)

{

S10: C cc = new C();
S11: a1.Abar(cc, "...");

}
}

Figure 3: A closed-world program.

In other words, whenever ESTm is true, EST (p�) should be
true. But if ESTm is false, EST (p�) can be either true or
false. We call ESTm a surrogate of EST (p�). We say ESTm
is stronger than ESTn (or ESTn is weaker than ESTm) if
ESTn v ESTm , where ESTm and ESTn are two surrogates
(possibly at the same program point) of EST (p�).

Consider the example program in Figure 3. The set of ob-
jects pointed to by the receiver expression c at S5 is the
same as the set of objects pointed to by c at the entry of
A::Afoo(). But this is not true in the case of A::Agoo().
Therefore A::Agoo() cannot be fully specialized. But if we
place an EST immediately prior to S9, the part of the pro-
gram from the EST point to the exit boundary point can
be specialized. In Section 5, we show how to compute the
EST.

4.2 Specialization Using Parametric Data Flow
Analysis

In the previous section we illustrated how to specialize meth-
ods for a devirtualization optimization. The optimization
was based on a closed-world analysis performed with respect
to an exit boundary point. A closed-world analysis which
is parameterized with respect to exit boundary points is an
example of a parametric data
ow analysis [29; 8]. For de-
virtualization, the candidate method (or partial method) for
specialization contains the exit boundary point. There are
optimizations, such as stack allocation based on escape anal-
ysis [11], where the method to be specialized does not con-
tain the exit point on which it depends. For such problems
an interprocedural parametric data
ow analysis is needed
to generate the specialized methods.

Parametric data
ow analysis is based on augmenting data

ow analysis with the computation of conditions on which
the validity of the analysis depends. Let hc; fi denote a data

ow fact f whose truth value depends on the condition c.
Suppose T is a transformation that uses this fact. Then the
transformation T is correct if the condition c holds during
program execution. Once the condition c becomes false, the
transformation T is unsafe.
Consider escape analysis for compile-time garbage collec-
tion. Let p = new R() be an allocation site in a method
M that we wish to transform to p = newstack T(). This
transformation T is safe only if we can prove that the ob-
jects allocated at this site cannot escape M . Let O be the
compile-time object name for this site. Using parametric
escape analysis we can compute parameterized escape infor-
mation h�;Oi, where � is the set of exit boundary points
that could potentially a�ect the escapement of O. Assume
O does not escape M under the condition that none of exit
boundary points in � will target a method outside the closed
world. Now we can specialize T with respect to all exit
boundary points in �, and place an EST guarding the spe-
cialized transformation. We specialize T only if we can �nd
a placement for an EST that will satisfy Property 4.2.

5. EXTANT SAFETY TEST
Extant Safety Tests (ESTs) are condition-checks that guard
the safe execution of a specialized method (or portions of
a method). These tests depend on runtime information.
There are several ways to perform the EST. Any test that
we perform, however, must satisfy Property 4.2. Consider
Figure 3. We can place the following EST at S4:

S4: if(EST(c1)) Afoo'(c1) /* specialized */
else Afoo(c1) /* unspecialized */

EST(c1) returns true if c1 points to an extant object, oth-
erwise it returns false. EST(c1) is a surrogate for EST(c) at
S2. ESTs that query objects for safety can be implemented

201

by adding a bit in the class table, and setting the bit to 1
for extant classes. For newly loaded classes (that are not
in the closed-world) this bit is set to 0. During runtime we
can query the class table to check if the object is extant or
non-extant.
EST can also be performed on control
ow predicates. Con-
sider the following example:

boolean cond = bar();

if(cond)

{

y = new_e T(); // create an extant object

... // assume y is still points

// to extant object

}

else if(...)

y = new_ne S(); // create a non-extant object

S20: y.foo();

In the above example, whenever cond is true, y points to
an extant object. Therefore, cond can be considered as a
surrogate for EST(y) at S20, and the part of program con-
sisting of the \then" portion can be specialized with respect
to y.foo() at S20.

5.1 Using the Sparse Evaluation Graph
We use the sparse evaluation graph (SEG) [10] for determin-
ing the extant tests and their placements. The SEG is a gen-
eralization of static single assignment (SSA) [13] and can be
applied to both forward and backward monotone data
ow
problems, while o�ering the same bene�ts as those of SSA
applied to forward def-use based data
ow problems. Un-
like SSA, where a de�nition triggers formation of �-nodes,
in the SEG only a statement with a non-identity transfer
function for the analysis triggers formation of �-nodes. For
extant analysis, statements that a�ect the value of a receiver
expression have a non-identity transfer function. The SEG
has the following useful properties:

� Each use of a variable has a single de�nition point.

� �-nodes are introduced to merge multiple de�nitions
coming from distinct control
ow paths. Let S be the
set of de�nition points of a variable We introduce �-
nodes at the iterated dominance frontier IDF (S).

� Given a variable v, let SEGd(v) denote the de�nition
point of the use of v. SEGd(v) will dominate the use
point of v.

Now, let � be an exit boundary point, and v be the receiver
expression at �. The program point m = SEGd(v) will
satisfy Properties 4.1 and 4.2 for the exit boundary point
�. Therefore, all program statements between m and �

inclusive can be safely specialized with respect to �.
If the SEG de�nition point is the entry of a method, we can
place the EST at each call site invoking the method instead
of at the entry of the method. Placing the EST in a caller
can enable further optimizations in the caller with respect
to the called method.
Finally, since the runtime type of a compile-time object is
determined at compile time in Java by the allocation site, we
can regard compile-time objects with an identical runtime
type as the same compile-time object. This will reduce the
number of merge points and, thereby, allow the placement
of EST earlier in the program.

5.2 Optimization of Extant Safety Tests
Let PP(m;�) be the set of program points which occur in
one or more of the paths in P(m;�). Given two surrogates
ESTm and ESTn of EST (p�), ESTm is preferable to ESTn
if

ESTn v ESTm ^ PP(n; �) � PP(m;�):

For example, if SEGd(v) (described in Section 5.1) is a sim-
ple copy from a reference variable, such as \v = w;", the
extant test applied to w at the program point n = SEGd(w)
whose de�nition of w reaches the use of w at m is prefer-
able to that applied to v at m. This process of identifying
a preferable extant test can be repeated until the de�nition
is a merge node (i.e., a � node) or the de�nition is an as-
signment of a de-reference such as \v = p.f1;". Another
instance of a favored EST is one that can cover multiple
exit boundary points.
One can perform several optimizations to identify the most
preferable among multiple ESTs. Partial Redundancy Elim-
ination (PRE) for eliminating partially redundant ESTs is
one example. An EST E1 is partially redundant if the truth
value of an earlier EST E2 implies the truth value E1 for
certain program paths.
Using pro�ling information or static analysis, we can also
hoist ESTs to infrequently executed program points. For
example, a static analysis applied to the example code seg-
ment below might identify that all the objects pointed to by
p at S100 are extant if the object pointed to by head at S1
is extant. In that case, we can place an extant test for the
object pointed to by head at S1 that covers all the objects
pointed to by p at S100 in the loop body.

. . .

S1:

for (T p = head; p != null; p = p.next)

{

. . .

S100: p.m(...);

. . .

}

There exists a tradeo� between the strength (i.e. precision)
of an extant test and the size of the set of program points
that can be specialized. Although ESTn v ESTm , ESTn
might be favored over ESTm if PP(m;�) � PP(n;�) { the
increased size of the specialized code, at the cost of the larger
failure rate of ESTn , might still improve the overall perfor-
mance of the optimized code. Pro�ling and static analysis
can help determine whether (and where) the precision of an
extant test can be sacri�ced for the increased size of the
specialized code.

6. IMPLEMENTATION AND EMPIRICAL
RESULTS

Table 1 shows the benchmark programs used in our exper-
iments. Except for portBob all benchmarks are from the
SPECjvm98 suite. We performed two kinds of experiments:
(1) measuring closed-world characteristics; and (2) measur-
ing extant analysis characteristics. We used the Jalape~no
Virtual Machine as our experimental platform. The Jalape~no
Virtual Machine is an implementation of Java written in
(mostly) pure Java [1].

202

Program Description aCWClass CWMeth aCWMeth
compress Compression/Decompression 25 313 112
jess NASA's CLIPS expert system 112 640 400
db Database search and modify 16 328 104
javac Source to byte code compiler 71 659 399
mpegaudio Decompress audio �le 55 479 270
mtrt Multithreaded image rendering 38 460 235
jack Parser generator generating itself 59 563 59

portBob Portable Business Object Benchmark 46 751 398

Table 1: Descriptions of the Benchmarks Used in Our Experiments.

Program Calls CWCW aCWCW %CWCW %aCWCW VC vCWCW %vCWCW
compress 18162511 18162219 18156434 99.99 99.99 15752583 15752361 99.99
jess 5987201 5781028 5292904 96.55 88.40 5690075 5502619 96.71
db 2191950 2191541 81112 99.98 3.70 1552273 1551941 99.97
javac 3075125 2782215 1313793 90.47 42.72 2488027 2259527 90.81
mpegaudio 9434285 9417509 9245643 99.82 98.00 6227385 6227169 99.99
mtrt 23098433 22698823 20882723 98.26 90.41 21149934 20929658 98.95
jack 6177988 6177408 867514 99.99 14.04 4281738 4281478 99.99

portBob 3201292 3174413 1485197 99.16 46.39 1762623 1752009 99.39

Table 2: Closed-World Characteristics.

6.1 Closed-World Characteristics
We used a pro�le-based approach to construct the closed
world. We �rst instrumented the Jalape~no Virtual Ma-
chine to collect method pro�le information (i.e., the num-
ber of times a method is executed) and construct the set
of methods and classes included in the closed world. For
the SPECjvm98 suite, we used the data size of 1 during the
pro�ling and the closed-world construction phase. For port-
Bob we used a data size needed for constructing a minimum
population (please see [4] for details about portBob). We
included methods that were executed at least once in the
closed world. The closed world contains both the applica-
tion methods and the Java library methods, but does not
include methods from the Jalape~no Virtual Machine. The
closed world for each of SPECjvm98 programs also includes
the methods of the SPECjvm98 driver which executed at
least once.
In Table 1 the aCWClass column indicates the number of
classes in the application that contain at least one method
in the closed world. The aCWMeth column indicates the
number of methods in the application that were included in
the closed world. The CWMeth column indicates the num-
ber of methods in the closed world, including Java library
methods used (but not methods of Jalape~no).
To analyze the dynamic characteristics of the closed world,
we again instrumented the Jalape~no Virtual Machine. For
this we used the data size of 10 for SPECjvm98, and the
population size of 10% for portBob. Table 2 shows the dy-
namic results that we collected. The column Calls shows the
total number of method calls. The CWCW column shows
the number of calls in which both the callee and the caller
were in the closed world. The aCWCW column shows the
number of calls in which both the caller and the callee are
within the application.
For the SPECjvm98 suite on average, for 97.87% of the
method calls, the caller and the callee are within the closed
world (column %CWCW). For portBob this percentage is
99.16%. This suggests that one can perform optimistic in-

terprocedural optimizations assuming the closed world is the
whole program, and in large part the outside world does not
pollute the closed world. The %aCWCW column in Table 2
shows the percentage of calls that are within the applica-
tion. The percentage here varies from 3.7% to 99.99%. The
benchmarks db and jack make a signi�cant number of calls
to Java library methods. For such programs, including Java
libraries in the closed world gives better results.
The last three columns (VC, vCWCW, and %vCWCW) are
numbers related to virtual calls. For both SPECjvm98 and
portBob a large percentage of virtual calls are within the
closed world.

6.2 Extant Analysis
We implemented extant analysis on the top of the Jalape~no
Optimizing Compiler [1]. Tables 3, 4, and 5 show the results
of our experiment. We used the closed-world program con-
structed during pro�ling for our analysis. We used method
pro�le information to obtain dynamic counts. In all the ta-
bles the pre�x \Dy" indicates a weighted dynamic count of
the static information.
We implemented the extant analysis algorithm described in
Section 3, assuming a root-connected closed world. We also
make certain reasonable optimistic assumptions with respect
to entry boundary points: (1) that public methods are not
called from outside the closed world; and (2) the extant state
of compile-time objects remains unchanged when they be-
come reachable from static reference variables; and (3) when
a reference variable is passed as a parameter to a method,
the extant state of the compile-time objects reachable from
the parameter remains unchanged. In the last case, however,
we apply a meet with ? to the extant state of a compile-time
object returned by the method. The closed-world character-
istics described in the previous section, which show a high
percentage of method calls to be in the closed world, support
these optimistic assumptions with respect to entry boundary
points.
Step 1, as stated in Section 3, is used to compute the extant

203

Program VC UNEVC %UNEVC
compress 700 87 12.4
jess 1671 143 8.56
db 822 95 11.5
javac 2986 374 12.52
mpegaudio 988 86 8.70
mtrt 1645 92 5.59
jack 1735 105 6.05

portBob 2221 145 6.53

Table 3: Non-extant virtual call characteristics based on class hierarchy analysis.

state of the receiver expression for each invocation site. We
implemented a simple class hierarchy analysis to construct
the call graph. During the call graph construction, for a vir-
tual call site p:foo(), it is checked whether the method foo()
is de�ned within the closed world in a class that is either the
declared type P of p, or is an ancestor or a descendent class
of P . If there is no such method foo(), then the receiver
express p is marked as UCNE (unconditionally non-extant).
Otherwise, the extant type of p remains UNKNOWN(>).
The column UNEVC in Table 3 shows the number of uncon-
ditionally non-extant virtual calls discovered by this analy-
sis. On average about 8.98% of virtual calls are identi�ed to
be unconditionally non-extant.
We measured the number of virtual calls that are candi-
dates for devirtualization based on their having one target
method in the closed world. Let p:foo() be a virtual call,
and let D be the declared class of p. If there is exactly one
implementation of foo() in D or some ancestor or descen-
dent class of D, then p:foo() is a candidate for devirtual-
ization. As a special case, if foo() is implemented in class
D and is declared as final, then the receiver expression is
unconditionally extant and the call p:foo() can be directly
devirtualized. Table 4 illustrates these measurements. Col-
umn UnVC represents all virtual calls whose extant type is
UNKNOWN(>) after the analysis of Step 1 described above.
(UnVC is same as VC - UNEVC shown in Table 3). The
column DeV indicates those calls in UnVC that are candi-
dates for devirtualization. Column DyDeV represents the
corresponding dynamic numbers. Column DeVF represents
all calls in DeV that are unconditionally extant based on
their being declared as final.
On average 91.20% of the UNKNOWN virtual calls are can-
didates for devirtualization and the corresponding dynamic
percentage is 79.97%. Of the calls that are candidates for
devirtualization, on average, 58.94% are unconditionally ex-
tant (the corresponding dynamic average is 61.40%). Thus
on average 53.75% of the UNKNOWN virtual calls are un-
conditionally extant due to being declared as final (the
corresponding dynamic number is 49.10%). These uncondi-
tionally extant calls can be directly devirtualized. For the
remaining UNKNOWN virtual calls (i.e., 46.25% static per-
centage and 50.89% dynamic percentage), further analysis,
described in the next section, is needed to determine their
extant type.

6.3 Extant Analysis Using Pointer Analysis
We also implemented a simple
ow-insensitive/context-insensitive
pointer analysis to compute the extant type for all UN-
KNOWN receiver expressions, as described in Step 2 of Sec-
tion 3. For pointer analysis we identi�ed four kinds of rele-

vant statements.

� p = neweT (), an allocation site where extant objects
are created;

� p = newneT (), an allocation site where non-extant
objects are created;

� p = q, reference copy statement. We simpli�ed p:f = q

and p = q:f as p = q. This way we do not distinguish
among objects accessed via object �elds. We also do
not distinguish among array components.

� Call statements. As stated in Section 6.2, we make an
optimistic assumption that the extant state of compile-
time objects reachable from a reference variable passed
as a parameter remains unchanged in the callee.

6.4 Summary
Figure 4 summarizes how virtual calls in SPECjvm98 and
portBob are classi�ed. UNEVC in the �gure is same as the
UNEVC shown in Table 3. Here we analyze the pie chart for
portBob. We can slice the 2221 virtual calls in portBob
into six categories. As shown in Table 3, 6.5% of virtual calls
are unconditionally non-extant. The label NDeV represents
the number of virtual calls that have more than one target
method within the closed world. Only 2.3% of the virtual
calls have more than one target. The remaining 91.2% of
the virtual calls are candidates for devirtualization. DeVF
indicates the number of these calls that are unconditionally
extant based on their being declared as final. There are
34.1% of such calls, which can be directly devirtualized. The
remaining 57.1% of virtual calls are subject to pointer anal-
ysis for further classi�cation. Pointer analysis determines
that an additional 29.9% of all virtual calls are uncondition-
ally extant (and so can be directly devirtualized), 0.1% are
conditionally extant (devirtualization requires an EST), and
an additional 27.1% are unconditionally non-extant.

Table 5 shows the extant characteristics for devirtualization
based on this simple pointer analysis. Column DeVNF indi-
cates those virtual calls that are candidates for devirtualiza-
tion and are not unconditionally extant (as determined by
the analysis of the previous section). For these virtual calls,
pointer analysis is used to determine whether the receiver
expression of such calls points to extant and/or non-extant
objects. The columns UEDev, CEDeV, and UNEDeV, show
which of these virtual calls are unconditionally extant, con-
ditionally extant, and unconditionally non-extant, respec-
tively.

204

Program UnVC DeV %DeV DyVC DyDeV %DyDeV DeVF %DeVF DyDeVF %DyDeVF
compress 613 566 92.33 15683774 15677145 99.96 389 68.73 15676404 99.99
jess 1528 1451 94.96 367189 291140 79.29 840 57.89 212151 72.87
db 727 662 91.06 58457 34020 58.19 417 62.99 26463 77.79
javac 2612 2362 90.43 193642 106550 55.02 1622 68.67 60921 57.17
mpegaudio 902 841 93.24 815313 635285 77.92 613 72.89 600129 94.47
mtrt 1553 1499 96.52 4705232 4345162 92.35 481 32.09 233123 5.36
jack 1630 1198 73.50 2154117 1755851 81.51 849 70.87 1139311 64.89

portBob 2076 2026 97.59 786832 751933 95.56 758 37.41 140235 18.65

Table 4: Devirtualization characteristics.

Program DeVNF UEDeV CEDeV UNEDeV
Raw % Raw % Raw %

compress St 177 43 24.29 6 3.39 128 72.32
Dy 741 96 12.95 120 16.19 525 70.85

jess St 611 268 43.86 88 14.40 255 41.73
Dy 78989 34327 43.46 17223 21.80 27439 34.74

db St 245 84 34.28 8 3.26 153 62.45
Dy 7557 193 2.55 129 1.70 7235 95.70

javac St 740 372 50.27 187 25.27 181 24.45
Dy 45629 37264 81.66 3897 8.54 4468 9.79

mpegaudio St 228 43 18.86 6 2.63 179 78.51
Dy 35156 175 0.50 121 0.34 34860 99.16

mtrt St 1018 812 79.76 6 0.59 200 19.65
Dy 4112039 3974777 96.66 122 0.003 137140 3.33

jack St 349 226 64.75 36 10.31 87 24.93
Dy 616540 239825 38.89 274135 44.46 102580 16.64

portBob St 1268 663 52.29 3 0.24 602 47.48
Dy 746300 173721 23.28 39405 5.28 533174 71.44

Table 5: Devirtualization Extant Characteristics.

7. DISCUSSION AND RELATED WORK
In the Java community, there are two camps: the \vir-
tual machine" camp that emphasizes the dynamic nature
of Java such as dynamic class loading, and the \static com-
piler" camp that would like to apply whole program analy-
sis and optimization for performance.7 Supporting dynamic
class loading for full Java compliance while applying static
whole program analysis/optimization for performance has
been viewed as an oxymoron, and adopting one has meant in
large part abandoning the other. The extant analysis in the
present work provides a means to accommodate this seem-
ingly contradictory goal of full Java cmpliance and static
whole program analysis/optimization. The more closely the
CW matches the runtme characteristics of the application
for an execution, the better the performance of the execu-
tion. The extant tests still ensure a correct execution, albeit
with a poorer performance, if CW poorly matches the run-
time characteristics of the execution.

We have used specialization of parts of the program as the
principal mechanism for the optimizations based on extant
analysis. Specialization is a technique for instantiating a
program with respect to some runtime invariants [14; 12].
We apply extant analysis to determine the runtime invari-
ants that we use in specializing methods and partial meth-
ods. One disadvantage of specialization is that it can in-
crease code size and so should be applied only to \hot meth-
ods" [12].

7This observation is made by one of the PLDI reviewers.

Any static analysis and optimization, however, can be per-
formed to the program parts that extant analysis �nds un-
conditionally extant. Static analysis and optimization can
also be applied to program parts found to be conditionally
extant, by guarding the execution of the optimized code
with dynamic extant tests. A tradeo� exists between the
overhead due to dynamic extant tests and the improved per-
formance by the optimization, which static analysis and/or
runtime pro�ling can help analyze.

Extant tests o�er better optimization opportunities than
tests based on the runtime type of an object that typically
guard against incorrect specialization for a receiver expres-
sion [20]. In contrast to such runtime tests, a single ex-
tant test can cover multiple statements, and thereby o�ers
the opportunity for optimizations across the multiple state-
ments. Further, the multiple statements covered by a single
extant test can cross methods or class boundaries, in which
case interprocedural optimizations such as inlining can be
performed across multiple levels of method invocations.

Detlefs and Agesen [15] introduce the concept of preexistence
in the context of a dynamic compiler so that inlining only
takes place for those call sites for which it can be proved
that the object pointed to by the receiver expression has
been allocated. Their preexistence analysis is related to our
intraprocedural extant analysis. One limitation of Detlefs
and Agesen's scheme is that the inlining transformation in
a method m may have to be invalidated and the method
m may have to be recompiled for some future invocation
of m. Their scheme could employ a simple dynamic extant

205

6.5%
2.3%

34.1%

29.9%

0.1%

27.1%

portBob

UNEVC
NDeV
DeVF
UEDeV
CEDeV
UNEDeV

9.3%

9.4%

49.4%

17.5%

3.3%

11.2%

SPECjvm98

UNEVC
NDeV
DeVF
UEDeV
CEDeV
UNEDeV

Figure 4: Virtual call characteristic for SPECjvm98 and portBob

test, based on the target of the object, to guard against
incorrect execution of inlined code. Our framework is more
general than preexistence and runtime type checking in that
it can be applied to optimizations other than inlining, such
as escape analysis.
Our formulation of parametric data
ow analysis is related
to other work. Burke and Torczon formulate a recompi-
lation test that compares current interprocedural informa-
tion with annotation sets that record those interprocedural
facts which must continue to hold for a previous compila-
tion to remain valid [5]. Their most precise computation of
annotation sets involves augmenting data
ow analysis to
compute auxiliary information which is associated with the
elements of a data
ow solution. Chatterjee et al. parame-
terize points-to analysis for compiling large programs with
multiple modules [8]. They obtain summary functions for
points-to analysis of methods by inference of the relevant
conditions on the unknown initial values for parameters and
globals at method entry. Rountev et al. propose a frame-
work for analyzing program fragments that is an extension
of Chatterjee et al.'s work [29].
Static Java compilers which perform interprocedural analy-
sis and optimization, such as HPCJ [22] and Marmot [17],
do not allow dynamic class loading during program execu-
tion. JAX (Jikes Application eXtractor) [33] is a byte con-
verter for compressing application class �les. It performs
whole program analysis, but again makes a \closed-world"
assumption. Hotspot and other JIT compilers do not sup-
port aggressive interprocedural optimizations [27; 23]

8. CONCLUSIONS
In this paper we solve an important problem for e�cient ex-
ecution of Java: that of interprocedural optimization in the
presence of dynamic class loading. We describe a framework
for interprocedural optimization that does not depend upon
runtime invalidation and recompilation. The framework is
based on the optimization of a closed-world program prior
to execution. A runtime safety test is used to enforce cor-
rectness. Our experimental results hold out the hope that
with the framework described here, we can expect that a
large percentage of a Java program can be optimized as if
Java did not have the capability for dynamic class loading.

9. ACKNOWLEDGEMENTS
First and foremost we would like to thank Mark Wegman
for his constant support and encouragement. We would
like to thank Deepak Goyal, John Field, Harini Srinivasan,
Ganesh Ramalingam, Vivek Sarkar, Rajesh Bordaw, and

Peter Sweeney for their helpful comments on various drafts
of this paper. We would like to thank Jalape~no team mem-
bers, especially Derek Lieber, Dave Grove, and Steve Fink,
for their help with the Jalape~no system. Finally, we thank
the referees and the committee members of PLDI for their
insightful comments.

10. REFERENCES

[1] B. Alpern, D. Attanasio, J. J. Barton, A. Coc-
chi, D. Lieber, S. Smith, and T. Ngo. Implement-
ing Jalape~no in Java. In ACM Conference on Object-
Oriented Programming Systems, Languages, and Ap-
plications, 1999.

[2] B. Alpern, M. Charney, J.-D. Choi, T. Cocchi, and
D. Lieber. Dynamic linking on a shared-memory multi-
processor. In International Conference on Parallel Ar-
chitectures and Compilation Techniques, 1999.

[3] D. F. Bacon and P. F. Sweeney. Fast static analysis
of C++ virtual function calls. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 324{341, Oct. 1996.

[4] S. Baylor, M. Devarakonda, S. Fink, E. Gluzberg,
M. Kalantar, P. Muttineni, E. Barsness, R. Arora,
R. Dimpsey, and S. Munroe. Java server benchmarks.
IBM Systems Journal Special Issue on Java Perfor-
mance, 39(1), 2000.

[5] M. Burke and L. Torczon. Interprocedural optimiza-
tion: Eliminating unnecessary recompilation. ACM
Transactions on Programming Languages and Systems,
15(3):367{399, July 1993.

[6] C. Chambers. The Design and Implementation of the
Self Compiler, an Optimizing Compiler for Object-
Oriented Programming Languages. PhD thesis, Stan-
ford University, 1992.

[7] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis
of pointers and structures. In SIGPLAN '90 Conference
on Programming Language Design and Implementation,
pages 296{310, June 1990. SIGPLAN Notices 25(6).

[8] R. Chatterjee, B. G. Ryder, and W. A. Landi. Rele-
vant context inference. In 26th Annual ACM SIGACT-
SIGPLAN Symposium on the Principles of Program-
ming Languages, Jan. 1999.

206

[9] J.-D. Choi, M. Burke, and P. Carini. E�cient

ow-sensitive interprocedural computation of pointer-
induced aliases and side e�ects. In 20th Annual ACM
SIGACT-SIGPLAN Symposium on the Principles of
Programming Languages, pages 232{245, Jan. 1993.

[10] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic con-
struction of sparse data
ow evaluation graphs. In 18th
Annual ACM Symposium on the Principles of Program-
ming Languages, pages 55{66, Jan. 1991.

[11] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and
S. Midki�. Escape analysis for Java. In ACM Confer-
ence on Object-Oriented Programming Systems, Lan-
guages, and Applications, 1999.

[12] C. Consel and F. Noel. A general approach for run-time
specialization and its application to C. In In 1996 ACM
Symposium on Principles of Programming Languages,
pages 145{156. ACM, January 1996.

[13] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. An e�cient method for computing
static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Lan-
guages and Systems, 13(4):451{490, 1991.

[14] J. Dean, C. Chambers, and D. Grove. Selective spe-
cialization for object-oriented languages. In SIGPLAN
'95 Conference on Programming Language Design and
Implementation, pages 93{102, June 1995. SIGPLAN
Notices, 30(6).

[15] D. Detlefs and O. Agesen. Inlining of virtual methods.
In the 13 European Conference on Object-Oriented Pro-
gramming, pages 258{278, 1999.

[16] M. Emami, R. Ghiya, and L. J. Hendren. Context-
sensitive interprocedural points-to analysis in the pres-
ence of function pointers. In SIGPLAN '94 Conference
on Programming Language Design and Implementation,
pages 242{256, June 1994. SIGPLAN Notices, 29(6).

[17] R. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaard,
and D. Tarditi. Marmot: An optimizing compiler for
Java. Technical Report MSR-TR-99-33, Microsoft Re-
search, June 1999.

[18] J. Gosling, B. Joy, and G. Steele. The Java Language
Speci�cation. Addison Wesley, 1996.

[19] U. Holzle, C. Chambers, and D. Ungar. Debugging opti-
mized code with dynamic deoptimization. In SIGPLAN
'92 Conference on Programming Language Design and
Implementation, June 1992. SIGPLAN Notices 27(6).

[20] U. Holzle and D. Ungar. Optimizing dynamically-
dispatched calls with run-time type feedback. In SIG-
PLAN '94 Conference on Programming Language De-
sign and Implementation, pages 326{336, June 1994.
SIGPLAN Notices, 29(6).

[21] U. Holzle and D. Ungar. A third generation self im-
plementation: Reconciling responsiveness with perfor-
mance. In ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pages
229{243, 1994.

[22] IBM Corporation. IBM High Perfor-
mance Compiler for Java, 1997. See
http://www.alphaWorks.ibm.com/formula/hpc.

[23] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi,
T. Ogasawara, T. Suganuma, T. Onodera, H. Komatsu,
and T. Nakatani. Design, implementation, and eval-
uation of optimizations in a just-in-time compiler. In
ACM 1999 Java Grande Conference, pages 119{128,
June 1999.

[24] W. Landi and B. Ryder. A safe approximate algorithm
for interprocedural pointer aliasing. In SIGPLAN '92
Conference on Programming Language Design and Im-
plementation, pages 235{248, June 1992. SIGPLAN
Notices 27(6).

[25] S. Liang and G. Bracha. Dynamic class loading in the
Java virtual machine. In ACM Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations. ACM, 1998.

[26] T. Lindholm and F. Yellin. The Java Virtual Machine
Speci�cation. The Java Series. Addison-Wesley, 1996.

[27] S. Meloan. The java hotspot[tm] performance engine:
An in-depth look, 1999.

[28] NaturalBridge. BulletTrain optimizing compiler
and runtime for JVM bytecodes, 1996. See
http://www.naturalbridge.com.

[29] A. Rountev, B. Ryder, and W. Landi. Data
ow anal-
ysis of program fragments. In Proceedings of the 7th
Symposium on the Foundations of Software Engineer-
ing, 1999.

[30] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-
analysis problems in languages with destructive up-
dating. ACM Transactions on Programming Languages
and Systems, 20(1):1{50, Jan. 1998.

[31] V. Saraswat. Java is not type-safe, 1997.
Information available in Web page at
http://www.research.att.com/~vj/bug.html.

[32] B. Steensgaard. Points-to analysis in almost linear time.
In 23rd Annual ACM SIGACT-SIGPLAN Symposium
on the Principles of Programming Languages, pages 32{
41, Jan. 1996.

[33] F. Tip, C. La�ra, P. F. Sweeney, and D. Streeter. Prac-
tical experience with an application extractor for Java.
In ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, Nov. 1999.

[34] R. P. Wilson and M. S. Lam. E�cient context-sensitive
pointer analysis for C programs. In SIGPLAN '95 Con-
ference on Programming Language Design and Imple-
mentation, pages 1{12, June 1995. SIGPLAN Notices,
30(6).

207

