
Contaminated Garbage Collection �

Dante J. Cannarozzi, Michael P. Plezbert, and Ron K. Cytron

Washington University Box 1045

Department of Computer Science

St. Louis, MO 63130 USA

Abstract

We describe a new method for determining when an object
can be garbage collected. The method does not require
marking live objects. Instead, each object X is dynam-
ically associated with a stack frame M , such that X is
collectable when M pops. Because X could have been dead
earlier, our method is conservative. Our results demonstrate
that the method nonetheless identi�es a large percentage of
collectable objects. The method has been implemented in
Sun's Javatm Virtual Machine interpreter, and results are
presented based on this implementation.

1 Introduction

In education, research, and industry, use of garbage-collected
languages such as Java and ML remains strong. However,
despite many advances, the cost of automatic garbage col-
lection continues to be prohibitive in some areas, notably
embedded, real-time, and scienti�c applications.

� CPU cycles must be devoted to collecting the garbage.
Incremental systems amortize the cost, and extra pro-
cessors can hide the cost if those processors have noth-
ing better to do.

� The need for collection can occur at unpredictable and
inopportune times.

� Storage becomes fragmented unless objects are moved,
but object relocation fools most storage systems. An
object can be in cache, but known by its former ad-
dress. Access of the object at the new address results
in a fault followed by a fetch from slower storage.

� Traditional garbage collectors mark live objects. While
generational collection can limit such marking to a
subset of a program's live objects, the marking phase
pollutes the cache as the live objects are touched.

�Sponsored by the National Science Foundation, under grant
NCR 9628218; contact author cytron@cs.WUSTL.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and
that copies bear this notice and the full citation on the �rst page. To
copy otherwise, or republish, to post on servers or to distribute to
lists, requires prior speci�c permission and/or a fee.
PLDI 2000, Vancouver, British Columbia, Canada.
Copyright 2000 ACM 1{58113{199{2/00/0006. . . $5.00.

In this paper, we propose and evaluate the performance of a
new scheme, the contaminated garbage (CG) collector. This
new collector has the following properties:

� It can operate in concert with a traditional collector,
decreasing the frequency with which the traditional
collector must be called.

� It does not require a \marking" phase, so that data
caches remain valid even as objects are collected.

� It collects a reasonable percentage of dead objects.

� It correctly identi�es dead objects, but objects that it
thinks are live may in fact be dead.

To elaborate on the last point, CG collection is conservative,
though not in the traditional sense of that term. Conserva-
tive collection has been proposed for languages (such as C)
in which reference variables cannot be precisely determined;
such collectors are conservative because they may be forced
to treat a value as a pointer [3]. The CG collector is con-
servative in a di�erent way and for di�erent reasons, as we
explain shortly.

Our paper is organized as follows: Section 2 explains
our approach using a simple example. Section 3 describes
an implementation of a CG collector, along with compli-
cations that arise from multiple threads and native code.
Section 4 compares our approach with previous work. Sec-
tion 5 presents experiments based on this implementation.
Section 6 presents conclusions and ideas for future work in
this area.

2 Approach

Our idea is based on the following property of single-
threaded programs (multiple threads are addressed in Sec-
tion 3). Each object X in the heap is live due to references
that ultimately begin in the program's runtime stack and
static areas.1 When the set of frames containing direct or
indirect references to X is popped, then X is no longer live
and it can be collected.

Moreover, owing to the nature of a stack, the set of
frames that keep X live must contain some frame M that
is last-to-be-popped (oldest) among the set's frames. The
liveness of X can thus be tied to frame M : when frame M
pops, X can be collected.

1We view static references as stemming from a program's initial
stack frame.

264

0

1

2

3

4

5

D

E
C

B

A

Figure 1: Frames that keep objects live.

2.1 Example

We illustrate the CG collector using the example shown in
Figure 1. The stack frames are shown numbered from 0 to 5;
frame 5 is youngest frame, and frame 0 is not popped until
the program �nishes. Each frame corresponds to a method
invocation, and the local variables for each method reside
within the method's frame. The objects, labeled with letters
A through F , reside in the heap. Arrows in Figure 1 depict
the references from the methods' local variables to the heap
objects. Though not shown in Figure 1, we assume each
object X has a �eld x that is capable of referencing any
other object. Also, we assume in this example that any
method can access the program's static variables.

Given the frame references shown in Figure 1, the live-
ness of the objects is as follows.

Object Referencing Frames Earliest Frame
A 3, 5 3
B 2, 5 2
C 1, 5 1
D 4, 5 4
E 0 0

Although A is referenced by two frames, the object is live
until frame 3 is popped. This illustrates an important prop-
erty of our approach. With each object X, we associate a
single frame M such that when M is popped, X is known
to be dead|we then say that X's life depends on frame M ,
or that M is X's dependent frame.

As a special case, we associate frame 0 with objects
that are referenced by static variables. Thus, CG collection
determines that variables such as E in Figure 1 appear to be
live for the duration of the program. Frame 0 also serves to
represent objects for which we (currently) cannot determine
a dependent frame, as discussed in Section 3.

With the situation shown in Figure 1, it is clear that D
could be collected when frame 4 pops. However, programs
can cause one object to reference another, which has the
e�ect of changing an object's dependent frame. We next
examine the liveness of each object as the following program
executes statements that cause one object to reference an-
other. All of these statements are executed within Figure 1's
frame 5| the frame of the currently active method. For our
example, we assume this method has access to all objects as
follows. Objects A through D are referenced using frame
5's parameters (locals in the JVM); object E is static and
globally accessible.

(1B:b = A

(2C:c = B

(3D:d = C

(4E:e = D

(5E:e = ?

Figure 2: Instructions a�ect object lifetime.

The e�ects of the program's steps on the liveness of the
heap objects are described as follows.

1 B now references A. With this reference established, A
can be collected no earlier than B. Thus, A's dependent
frame is changed from 3 to 2.

We say that B has contaminated A by touching (refer-
encing) it.

2 C now contaminates B which still references A. Thus, the
liveness of both B and Amust be adjusted, so that they
are now dependent on frame 1.

3 Although D now contaminates C, D depends on frame
4, which will be popped before C is dead. Thus, the
dependent frames of A, B, and C are not changed|
those objects all depend on frame 1.

However, D now has access to those objects. If D's
liveness changed, then the liveness of those objects
might also be a�ected. Our algorithm tracks such
information e�ciently, though conservatively.

4 Sure enough, E now contaminates D, which makes all the
objects take on its liveness. Thus, all objects become
dependent on frame 0.

5 Although E has contaminated D, E no longer references
it. Ideally, this should revert the actual liveness of A{
D to the situation after 4 . For example, A can be
collected when frame 1 pops.

In our approach, however, contamination cannot be
undone. Once E contaminates the other variables (in-
directly, by contaminating D), they become dependent
on frame 0. Their dependence cannot be improved to
a younger frame.

An extreme example of this is the \static �nger of
death". Suppose a static variable references every heap
object. At each contamination, the a�ected object
becomes dependent on frame 0, which isn't popped
until the program �nishes. As shown in Section 5,
actual programs have better manners.

An unresolved issue from the above discussion concerns how
to track the e�ects of a program's future behavior after 3 .
The problem is that D doesn't change any object's lifetime
by referencing C. However, future changes to D's dependent
frame may a�ect objects that can be referenced from D.

We accommodate this problem by asserting that con-
tamination is symmetric, a�ecting both X and Y when X

references Y . Thus, in the above example, D's dependent
frame becomes synonymous with C's, so that future changes
to D are correctly accommodated. Unfortunately, this con-
servatively makes D dependent on frame 1 after 3 executes.

265

2.2 Summary

In summary, the CG collector operates as follows.

� We maintain an equilive equivalence relation over a
program's heap-allocated objects. Objects in the same
block of the induced partition are viewed as having the
same lifetime and are dependent on the same frame.

Equilive sets grow through union operations; an equi-
live set's dependent frame can change as the program
executes, but always by moving to an older frame.

� When a frameM pops, all equilive sets associated with
M contain objects that must be dead. Such objects
can be safely collected when M pops. If the objects
are already in some kind of list L, then the objects can
be returned to the available storage pool by joining
L to the free-storage list. This can be accomplished
with two storage accesses, which should not disrupt
the e�ectiveness of the data cache.

� Two blocks A and B of the relation are merged (by
a union operation) when objects A 2 A and B 2 B

contaminate each other. This could happen because
A references B, or because B references A.

An exception to this policy occurs in an optimization
described in Section 3.4.

� When a new block is formed by merging two existing
blocks, the new block is dependent on the older (lower-
numbered) of the existing blocks' dependent frames.

� The liveness of an object X , and therefore X's block,
is a�ected if a method returns X to its caller. The
liveness of X's block must be adjusted so that its
dependent frame is popped no sooner than its caller's.

The re
exive and transitive aspects of equilive are accurate.
However, the symmetric property introduces conservative-
ness, as illustrated with the example of D above.

Our approach is therefore conservative|though not be-
cause we can't tell what is a reference and what is not [3].
The CG collector may overestimate the lifetime of an object.
For such objects, traditional garbage collection may collect
the object when we would not. We therefore evaluate our
approach in Section 5 by showing the percentage of objects
that are collectable using CG.

Our approach does have the following advantages over
traditional collection.

� Traditional collection requires marking live objects.
While generational collectors [18, 10] can limit them-
selves to marking a subset of the live objects, this
phase of garbage collection pollutes the cache (and
more distant virtual memory components) with ob-
jects that are not referenced actively by the running
program [9].

� Maintaining the equilive relation can be accomplished
e�ciently if the disjoint sets of objects are maintained
using Tarjan's union by rank and path compression
heuristics [7]. The resulting overhead is a (nearly)
constant amount of work per storage reference.

3 Implementation

We implemented our approach in the context of Sun's Java
system, JDK 1.1.8. Our changes were con�ned to those

portions of the Java Virtual Machine (JVM) [11] that deal
with object creation, frame creation (in response to method
calls), method return, and the base (traditional) garbage
collection. Sun's 1.1.8 system o�ers the following JVM in-
terpreters.

� The reference interpreter is written entirely in C.

� A more e�cient interpreter implements the most fre-
quently executed portions in (Sparc) assembly lan-
guage.

To facilitate our implementation, we based our work on the
C version. However, the changes we made are compatible
with the architecture of the (speedier) assembly version.

We next sketch our basic implementation and describe
how we accommodate interpreter-generated static references
and the more conceptually demanding characteristics of the
JVM|namely, multiple threads and native code.

3.1 Data Structures and Modi�cations

Sun's JVM interpreter manages objects using handles. Each
handle contains a pointer to the object's current location as
well as a reference to an appropriate method table for (vir-
tual) method-lookup. References between objects indirect
through the handles. Thus, if objects are relocated (dur-
ing garbage collection, for example), then only the handle's
pointer to the object needs to be updated.

The interpreter o�ers a standard treatment of method-
call and method-return. Each activation record is pushed
onto a thread-speci�c stack [1].

To implement our approach, we modi�ed Sun's JDK 1.1.8
system as follows.

objects: We augmented each object handle with �elds to
accommodate union/�nd of the equilive blocks.

A straightforward implementation would require one
\ancestor" �eld and one integer �eld to represent the
rank (for details on Tarjan's algorithm, see [7]). Of
course, \primitive" objects (such as integers) do not
use handles and thus do not incur any overhead.

A more clever representation can be achieved by noting
that the lower bits of JVM object pointers are already
reserved, and are therefore assumed to be zero. The
equilive sets can then be maintained so that the rank
never exceeds a predetermined threshold. Thus, the
union/�nd algorithm can be implemented with one
additional word per object handle.

Our approach requires the ability to determine any
object's dependent frame. In a straightforward imple-
mentation, this can be achieved simply by introducing
a pointer into the handle, such that the pointer refer-
ences the the object's dependent frame.

This pointer can be eliminated if each equilive set's
representative element points to the dependent frame
for the entire set.

In summary, the results reported in this paper were
obtained by introducing four 32-bit words into what
was formerly a 64-bit object header. Although good
results were obtained, such overhead is excessive, es-
pecially for small objects. Reduction of this overhead
using the above ideas is the subject of future work.

An array is treated as just another object|we do not
di�erentiate an array's elements. Thus, any object
stored into an array causes the array and the object to
contaminate each other.

266

frames: When a frame is popped, the equilive objects that
depend on the frame can be collected. Thus, each
frame is equipped with a reference to a list of its de-
pendent equilive blocks.

static variables: We maintain a list of objects that are
dependent on our \frame 0". Such variables are never
collected by our approach.

Essentially, the JVM interpreter must take action for
those JVM instructions that cause one object to refer to
another. The JVM instruction set conveniently separates
these by whether the referencing object is static.

� When an object is created, it is associated with the
frame of the currently active method.

� The areturn instruction causes a method to return
an object to its caller. The object's equilive block is
adjusted to depend on the caller's frame, unless the
object is already dependent on an older frame.

� The putfield instruction causes object X to reference
Y . If Y is not null, then X and Y contaminate each
other, as described earlier.

In the special case where Y is already static, the opti-
mization described in Section 3.4 avoids contaminating
X.

� The putstatic instruction can cause a static variable
to reference an object. If so, the referenced object's
equilive block is added to the list of frame-0 dependent
blocks.

We began with almost no familiarity of Sun's JVM inter-
preter. Nonetheless, it took only 6 weeks to implement our
approach in that system. While this is a tribute to the
interpreter's design, it also underscores the simplicity of our
approach. Similarly, the code generator of a native-code
compiler could easily be modi�ed to emit the necessary code
to maintain our structures.

3.2 Interpreter-generated static references

For our approach to work, it must be able to take action
when one object references another. For code written in
Java, this requirement poses no problem. However, the
interpreter can itself generate references to objects, and we
had to integrate such references into our garbage collector.

A good example of this kind of problem is the intern()
method of the String class. A program could generate
multiple String objects, each with the same contents. The
intern() method maps any String to a unique occurrence
with its contents. Thus, given any two strings, equality of
their contents can be tested using \==" once the strings are
mapped using intern(). JDK 1.1.8 implements intern()
using a hash table|internal to the interpreter|to maintain
references to the unique occurrences of any String mapped
via intern(). The references from the hash table are essen-
tially static, since a String must map to the same reference
via intern() for the duration of a program.

Because this activity is not part of the JVM instruction
stream, we had to insert calls in the String class to tell our
collector that any String mapped via intern() is static.

The class loader and JNI-processing components were
other sources of static references to the heap. Most likely,
any implementation of JVM will maintain such references.
To use our approach, these need to be identi�ed and proper
calls to our collector must be inserted.

3.3 Multiple Threads and Native Code

A

Thread 1 Thread 2

0

1

2

3

4

5

0

1

2

3

4

5

Figure 3: Two threads sharing an object.

The discussion so far has been limited to single threads
and Java-source programs. In this section, we describe our
currently simple treatment of multiple threads and native
code. More sophistication is possible, but that is a subject
of future work.

Our assumption that an object is dependent for its life on
a single stack frame does not hold if a program shares such
an object among multiple threads, as shown in Figure 3.
Within Thread 1, A is dependent on frame 3; however,
Thread 2 can also access A until its frame 1 is popped.

For the purposes of this paper, we dynamically discover
objects that are accessed by multiple threads and we treat
their equilive blocks as static|dependent on the program's
frame 0.

Sun's JVM system allows native (e.g., C) code to be
interspersed with Java code|each can call the other. A
mechanism (object pinning) is already provided so native
code can rely on an object's address. However, when C code
calls Java methods, it is possible that objects are created
and returned, perhaps brie
y, to the native caller. To be
conservative, we catch such allocations and treat the equilive
blocks as if they were static.

3.4 An Optimization

While the approach described in Section 2 is correct, we
identi�ed a situation for which we can o�er a better treat-
ment. Consider the results of the assignment

A:a = S

where S is static|associated with the last-to-be-popped
stack frame. As described in Section 2, our approach would
union the equilive blocks containing A and S. As a result,
A would also be regarded as static, existing for the lifetime
of the program. However, in this case, such action is unnec-
essarily conservative. The object S is already determined
not to be collectable until the program is over. No further
action can cause S to be regarded as more live than that.
Thus, if S is believed to last for the duration of the program,
there is no reason to join A's equilive bock with S's when A
references S.

Ther results presented in Section 5 include this optimiza-
tion, except for one column in Figure 4 which is designed to
show the bene�ts of the optimization.

4 Previous work

Wilson presents an excellent survey of storage allocation [19]
and collection [18] techniques. All known methods for exact

267

garbage collection require marking live objects to some ex-
tent. Generational collection limits the scope of the marking
phase to a set of objects that are believed mostly to be dead.

One way of comparing our work is to examine how vari-
ous approaches view the notion of a generation.

� Traditional generational collection de�nes a genera-
tion by the longevity of its objects. This separates
newer from older objects, so that garbage collection
can concentrate on the newer (presumably shorter-
lived) objects. More recently, it has been proposed
to focus on other than the youngest generation [15].

� The train algorithm, discussed below, views objects
not only in terms of their longevity, but also in terms
of their interconnection. Objects that reference each
other tend to be clustered in the same generation. This
nicely accommodates cyclic data structures, as they
become free at the same time.

� Our algorithm attempts to cluster objects, not in terms
of their longevity, but in terms of their expected expi-
ration. When they must die|not how long they have
lived|is our key concern. We dynamically compute
the time at which a cluster of objects must be dead,
based on the references among the objects.

4.1 Generally related work

Appel [2] has observed that stack-allocated storage (i.e.,
local variables) can be managed more e�ciently using the
(more general) heap. Instead of reclaiming each frame in-
dividually upon its method's return, multiple frames are
collected when garbage collection transpires. In summary,
Appel proposes to treat stack-allocated objects as heap-
allocated. We are essentially trying the dual of that ap-
proach: we model heap-allocated objects as if they were
allocated in a stack frame, but we continually revise which
stack frame holds a heap-allocated object.

Static analysis techniques [5, 13, 20] attempt to deter-
mine the lifetime of objects, by �nding environments from
which such objects cannot escape. The representation for
such environments can be a stack frame [12], so that objects
are directly associated with a \deeper" stack frame than the
method in which they are instantiated.

Also, the notion of an environment-escape has been gen-
eralized to that of a region [17, 16]. Regions are perhaps the
closest in nature to the ideas expressed in this paper. As
with our approach, regions can decrease the need for mark-
based garbage collection. A region essentially introduces
a stack-based pair of allocation and deallocation sites for
an object, where the sites are determined by static analysis
and not by a program's syntax. The distinguishing feature
between regions and our work is that regions are determined
statically, while our approach operates dynamically.

It is not clear that regions are better or worse than our
approach.

� Our approach continually enlarges the \region" asso-
ciated with an object, when the object is referenced
by objects with longer lifetimes. For example, the in-
struction sequence shown in Figure 2 leaves all objects
dependent on frame 0 in our approach. Static analysis
(such as proposed in the \regions" work) could easily
show that A could be collected when frame 1 pops.

� Because static methods must accommodate any path
through a program, it is possible that our approach can

fare better because it adjusts the expected expiration
of objects dynamically, as determined by actual exe-
cution paths in a program. Thus, we might determine
that an object can be released at a point prior to that
which static analysis can show that the object is free.

The integration of our method with static approaches is the
subject of future work.

4.2 The train algorithm

Our approach is in
uenced by the train algorithm [10, 14].
That algorithm continually reorganizes the heap so that
objects that reference each other are clustered at the time
that such objects are dead. In the jargon of the train algo-
rithm [10], our approach can be expressed as follows. Each
stack frame is associated with a train. When the stack frame
is popped, all cars of the frame's train are known to be
free, so we simply return those objects to the heap. The
train algorithm moves objects between cars of trains during
garbage collection, with the goal of clustering objects that
reference each other. Instead of moving individual objects,
our approach essentially joins two trains, leaving them at-
tached to the appropriate stack frame. We are less precise
than the train algorithm, because we deal with objects only
in terms of their containing trains. Also, once trains are
joined, we do not consider separating them.

The train algorithm is more precise, but|like all genera-
tional approaches|it requires keeping track of certain kinds
of references. In summary, our approach does not supplant
the train algorithm. Both approaches are incremental: ob-
jects that are dead may go uncollected for some time. Our
approach avoids marking, and storage is returned as method
frames are popped. The integration of our method with the
train algorithm is the subject of future work, as discussed
in Section 6.

5 Experiments

We implemented our approach as described in Section 3.4.
We then conducted experiments on the approach using the
programs described in Figure 4.

� The �rst program is a student's compiler project (the
parsing and semantic analysis phases), written by a
Java novice. No thought whatsoever was expended on
e�cient use of objects. The size of this program is
in
ated: 6088 of the lines were generated by scanner-
and parser-generating tools.

� The programs trav and corners compute navigation
information (based on shortest-path), using US Census
road descriptions [4]. These programs were written by
a Java expert, hand-optimized to minimize the need
for garbage collection. Ttrav is a multithreaded ver-
sion of trav, designed to operate as an applet. Simi-
larly, Tcorners is a multithreaded version of corners.
The applet versions load the data in a separate thread,
under control of applet buttons that can suspend or
resume the loading.

� The bottom set of programs are the SPEC suite [8].
Here, they were run on their smallest problem sizes.2

2The mtrt program is a multithreaded version of raytrace; how-
ever, multiple threads are required for computation only for the larger
problem sizes. Thus, our results for these two programs are very
similar.

268

Name Description Lines Objects Collectable
of source created No opt With opt

jmm Compiler from a course 7552 20634 78% 79%
corners Finds road intersections 4378 177477 36% 99%
Tcorners Threaded version of above same 187450 36% 38%
trav Solves TSP, gives dir'ns 5747 542933 61% 79%
Ttrav Threaded version of above same 552936 61% 61%
compress Modi�ed Lempel-Ziv 920 5144 11% 14%
jess Expert System 570 46129 36% 42%
raytrace Ray Tracer 3750 277052 98% 98%
db Database Manager 1020 8088 24% 41%
javac Java Compiler 9485 26127 23% 30%
mpegaudio MPEG-3 decompressor N/A 7578 8% 9%
mtrt Ray Tracer, threaded 3750 276108 98% 98%
jack PCCTS tool N/A 410479 70% 90%

Figure 4: Benchmarks; Percentage of objects collectable by our approach, without and with the optimization described in
Section 3.4.

5.1 Collectable Objects

For each benchmark, Figure 4 shows the number of objects
created during its run. The right two columns show the
percentage of all objects that were collected by our method.
The rightmost column shows the percentage of collectable
objects when the optimization described in Section 3.4 is
enabled; this is of course the preferred implementation. For
comparison purposes, we also show the percentage of objects
collectable without the optimization. All other objects were
treated by our method as static|live until the end of the
program. Given our approach, such objects are either de-
clared static or else they are referenced indirectly by a static
object.

The ray-tracing, path-navigating, and jack programs
were over 90% collectable using the CG collector. The mpeg-
audio and compress programs do not generate many ob-
jects; the objects that are generated are fairly long-lived.
Thus, we did not collect much for those programs, but nei-
ther would an exact approach. For the other benchmarks,
we are from 30%{60% successful. Although those numbers
may seem low, even if we are only 50% successful, this means
that the traditional collector would be called half as often
as without our approach.

5.2 Size and Age of the Equilive Blocks

Recall that blocks containing objects A and B are merged
when A references B (or B references A). For the following
reasons, we were curious about the number of objects that
accrue in each block prior to the block's collection using CG.

� Blocks that contain a single object are exact: no unions
are performed and so we can return such objects at the
next method-return.

� If most blocks are size 1, then an approach that looks
only for such blocks might work well without the over-
head of our more general approach.

� Recalling our example from Section 2, we were forced
to overestimate D's lifetime when it was merged with
C. Our approach could be improved by keeping track
of dependent frames per-object instead of per-block.
However, this would be unreasonable if there were
many objects per block.

Figure 5 shows the size of the collectable blocks created
during the runs of our benchmarks. Although most blocks
contain more than one object, the majority of blocks do
contain three or fewer objects.

Next, we measured the distance to die for objects that
we were able to collect. Suppose an object X is born in
frame M . When X is �nally collected, it must depend on a
frame at least as old as M . The singleton blocks mentioned
earlier|for which our information is exact|may not die in
their allocating frame, because a frame can return a result
to its caller. Figure 6 shows the age, in frame distance,
of objects when they die. Objects that are collected in
the 0 column never escape the frame in which they were
allocated. Many collectable objects fall into that category.
However, most are associated with older frames. For the
jack benchmark, almost all objects allocated in a frame are
detected collectable when that frame's caller returns.

For those objects that die in their birth frames, it may
be worth considering how such objects could be collected
sooner than their dependent frame pops. The singleton
sets can be collected once it can be shown that no local
variable references the object. As described in Section 4,
static approaches may serve well here.

5.3 Thread Behavior

Because we treat multiple threads conservatively, we mea-
sured the number of objects that were forced into the static
set when they were accessed by multiple threads. Recall that
objects in the static set are treated by our approach as live
for the program's duration. Figure 7 shows that most of our
benchmarks had very few thread-shared objects. The mtrt

and raytrace programs are equipped to run multithreaded,
but did not in fact use multiple threads for the data sizes we
supplied. On the other hand, the applet-versions of corners
and trav generate a graph in one thread that is used by
another. The graph itself is treated statically because of this
thread sharing. Also, any object referenced by the graph,
or referencing the graph, becomes unioned with the graph's
objects. All such objects are treated as live for the program's
duration in our approach. Such harsh treatment of thread-
shared objects is unnecessary, as described in Section 6.

269

Name Total Number of blocks of size Percent
Collectable 1 2 3 4 5 6{10 > 10 Exact

jmm 16283 2038 1070 2676 953 53 13%
Tcorners 71510 10320 4849 14413 572 1193 14%
corners 174901 10315 4848 11988 514 1193 1 6%
Ttrav 336894 48571 6682 81260 3521 757 482 38 14%
trav 429132 141846 6681 80772 3463 757 482 45 33%
compress 709 206 110 32 7 2 1 2 29%
jess 19604 3380 1829 3158 19 68 10 31 17%
raytrace 272552 40516 9491 1503 1835 3 4278 2 15%
db 3323 819 138 321 4 2 1 3 25%
javac 7768 3413 640 340 176 142 72 2 44%
mpegaudio 717 214 108 39 8 2 1 1 30%
mtrt 271622 40323 9366 1476 1799 2 4278 2 15%
jack 366818 136001 85463 13517 4719 30 27 1 37%

Figure 5: Distribution of block sizes.

Name Distance from birth to death frames.
0 1 2 3 4 5 > 5

jmm 4574 3842 4336 2204 1327
Tcorners 15149 11501 16297 17460 9655 1448
corners 15146 9056 13824 14925 15598 4040 102312
Ttrav 49483 11515 10339 87609 86003 83029 8916
trav 21029 5766 1354 823 2761 4 6
compress 174 193 158 84 64 25 11
jess 6152 3679 6709 503 62 18 2481
raytrace 35806 23823 29071 13876 11449 6383 152144
db 667 620 1207 603 72 22 129
javac 3602 1954 1340 221 406 88 157
mpegaudio 181 204 173 74 56 18 11
mtrt 35581 23759 29003 13685 11260 6287 152047
jack 79977 263071 19495 2521 1717 22 15

Figure 6: Age at death of objects we collect.

270

Name Total Percentage
num of of static objects

static objects due to threads
jmm 4347 0%
Tcorners 115940 98%
corners 2546 0%
Ttrav 216042 98%
trav 113801 0%
compress 4434 0%
jess 26523 0%
raytrace 4444 1%
db 4763 0%
javac 18357 0%
mpegaudio 6859 0%
mtrt 4430 1%
jack 43659 0%

Figure 7: Percentage of objects that we treat as static (live
for the program's duration) due to sharing among threads.

5.4 Performance and Overhead

Finally, we examine the run-time overhead of our approach
in Figure 8. We began with Sun's JDK 1.1.8 (call this the
base system) and modi�ed it to use our CG algorithm. The
rightmost column of Figure 8 shows the speedup obtained by
CG. Recall that our approach incurs overhead for maintain-
ing the equilive blocks. Also, action is taken at each store

and return operation. The base system does not incur such
overhead, but does pause to garbage collect when its heap
becomes relatively full.

The rightmost column shows from 4%{24% improvement
in execution time using CG. This represents an absolute sav-
ings of time using our approach over the base system, even
though we perform extra work at every store operation.
Thus, the savings can be attributed to avoidance of the tra-
ditional garbage collector. Moreover, we set up the runs to
avoid heap compaction. Thus, the savings stems primarily
from avoiding the marking phase of garbage collection.

The corners and trav programs are not improved by our
approach. However, these were hand-optimized by an expert
to avoid garbage generation. Thus, the overhead surfaces
but without the bene�ts for these programs.

To isolate the overhead of maintaining the equilive sets,
we ran the base system with the \-noasyncgc"
ag|and
gave it plenty of storage|so that it never ran garbage collec-
tion. Thus, the middle column of numbers in Figure 8 shows
the speedup (typically slowdown) of our approach over the
base system when the base system never needs to collect. In
a few cases, we still beat the base system, probably because
the cache performance is better for CG than for a system that
never collects (and thus needs a lot of primary storage).

5.5 Larger SPEC runs

We next examined the performance of our approach on the
\larger" SPEC benchmarks. These are really the same pro-
grams used previously, but with longer running times. As
shown in Figure 9, most of the benchmarks generated sub-
stantially more objects. The exceptions to this are compress
and mpegaudio, which are computational in nature. Inter-
estingly, our approach worked only better in terms of the
percentage of collectable objects. Notably, db went from
41% collectable in the small run to 99% collectable in the

Name Our time Speedup over Speedup over
(seconds) JDK -noasyncgc JDK

jmm 4.77 .98 1.14
Tcorners 57.0 .87 .91
corners 55.0 .91 .89
Ttrav 142.0 .89 .89
trav 140.0 .90 .89
compress 772.34 .99 1.05
jess 11.5 1.00 1.24
raytrace 63.9 1.00 1.20
db 3.2 1.00 1.14
javac 7.9 1.00 1.17
mpegaudio 86.3 .99 1.04
mtrt 62.2 .98 1.20
jack 157.5 1.00 1.10

Figure 8: Timing results. The rightmost column shows the
speedup of our method over the traditional collector in the
JDK 1.1.8 system. The middle column is explained in the
text.

large run. Similarly, the number of objects that we can
collect exactly (because they were uncontaminated) mostly
improved in the large runs, except for db.

Name Objects Collectable Exactly
Created With opt Collectable

compress 6,959 28% 27%
jess 7,924,661 41% 42%
raytrace 6,346,978 99% 82%
db 3,211,531 99% 0%
javac 5,879,703 91% 12%
mpegaudio 7,582 9% 30%
mtrt 6,585,974 99% 80%
jack 6,863,344 90% 37%

Figure 9: Spec benchmarks, large runs.

Finally, we compare execution times for the SPEC bench-
marks in Figure 10. The \small" speedups are reprised from
Figure 8; included also are the speedups (and slowdowns)
of our method for the medium- and large-scale runs of the
benchmarks.

Our approach worked well for the small runs, and it
should be noted that even the \small" runs take substantial
time. As we move to the medium- and large-runs, our
approach starts to lose ground. We believe this is happening
for the following reasons.

� Figure 9 shows the statistics for how well we can collect
objects for the large runs. Although a large percentage
are collectable, it may be the case that we collect them
too late to do the long-running programs any good.
Indeed, we found that we had to allocate more storage
to the long runs. In doing so, the programs hardly
collected at all when run with traditional garbage col-
lection.

� Figure 9 shows that when the mpegaudio and compress

programs run longer, they do not allocate more ob-
jects. Our approach continues to incur overhead but
this is never o�set by any real collection of objects for
these programs.

271

name Small Medium Large
compress 1.05 .95
jess 1.24 .88 .66
raytrace 1.20 .85 .68
db 1.14 .83 .48
javac 1.17 .86 .70
mpegaudio 1.04 .97
mtrt 1.20 1.19 .67
jack 1.10 1.10 .69

Figure 10: Speedup of our approach over JDK 1.1.8. For
the Large run, mpegaudio and compress took over an hour
to complete with either system.

� Because our method is conservative, and owing the na-
ture of contamination, the preciseness of our collector
only degrades with time.

� When a frame pops, we return all of its dependent ob-
jects to the heap. Currently, our data structures do not
mesh well with the freelist of the heap-allocator. As
a result, we return objects one-at-a-time to the heap.
By reconciling our data structure with the freelist's,
we can return all objects with a single operation.

Based on our experimentation, we next present ideas for
future work.

6 Conclusions

We have presented a simple but conservative approach for
tracking an object's dependent frame. Our experiments
show the following.

� A reasonable percentage of objects are collectable by
our approach (Figure 4 and Figure 9).

� Of those objects that are CG-collectable, most occur
in blocks with three or fewer objects (Figure 5).

� For some programs (such as jack and jess), most
objects that we can collect are collected within one
or two frames of their birth (Figure 6). For other pro-
grams (such as raytrace and mpegaudio), a majority
of objects are collected more than 5 frames past their
birth frame.

� Although our approach performs well for the small
runs of the SPEC benchmarks, performance is lost on
the longer runs.

In response to these observations, our plans for the future
include the following.

To gain better insight into when and how well objects
can be collected, we plan to identify the point at which

� an object becomes collectable

� traditional (exact) garbage collection collects it

� CG collects it

While it appears that a large number of objects can be
reclaimed e�ciently by our approach, our results suggest the
following possibilities for future work.

� The operations needed to maintain the equilive sets
are su�ciently simple that they might be incorporated
directly into a storage architecture.

� The equilive singleton sets could be maintained \by
type". Thus, when a frame is popped, there would be
a collection of free objects of a given type. Instead of
returning such objects to a general free-storage pool,
they could be recycled the next time objects of that
type are needed. For languages like Java, where ob-
jects of a given type always take the same size (except
for arrays), such object recycling could have a big
payo�.

Moreover, this could improve the reference locality of
a program. Others [6, 9] have suggested using garbage
collection as a time to reorganize (live) storage to im-
prove locality. If CG can recycle the dead storage, then
the next instantiation of an object type may have its
data already in cache.

� On its own, our approach never improves the depen-
dent frame of an equilive block. However, it may be
possible that such information could be reset when
traditional collection is performed. Such fresh starts
may give our approach more latitude in �nding dead
objects.

� Because many objects appear to be collectable when
their birth frame pops, it is worth considering how
such objects could be collected sooner. In particular,
an object in a size-1 set can be collected once its depen-
dent frame no longer references the object. This could
happen well before the executing method's frame pops.

Static analysis [5, 16] may help determine where such
variables die. Also, it is possible that an e�cient
dynamic scheme could detect that such variables are
dead.

� Static analysis might also help by determining the con-
ditional liveness of objects. If object X can be shown
to be as live as object Y , and we can tell that X is
dead, then Y must also be dead.

� Our treatment of thread-shared objects is to consider
them live for the program's duration. Instead, a set
of dependent stack frames could be associated with
an equilive block. Further investigation is needed to
explore the expense and bene�ts of a more general
approach.

� Our approach could compliment the train algorithm
by collecting objects when methods return. Exact
collection might be required less frequently. Also, the
train algorithm could update our structures when it
does run, sharpening the e�ectiveness of our approach.

Acknowledgements

We thank Guy Steele Jr. and Sun Microsystems for access
to their Java interpreter. We also thank the PLDI program
committee for their review of our work and their helpful
comments. In particular, we are grateful to Mads Tofte for
showing us the important connection of our approach with
\regions".

272

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
Reading, Mass., 1986.

[2] Andrew Appel. Empirical and analytic study of stack
versus heap cost for languages with closures. Journal
of Functional Programming, 6(1):47{74, 1996.

[3] Hans-Juergen Boehm. Space e�cient conservative
garbage collection. SIGPLAN Notices, 28(6):197{
206, June 1993. Proceedings of the ACM SIGPLAN
'93 Conference on Programming Language Design and
Implementation.

[4] US Census. Tiger mapping service, the "coast to coast"
digital map database. Technical report, US Census
Bureau, 1999. http://tiger.census.gov/.

[5] D. R. Chase. Garbage Collection and Other Optimiza-
tions. PhD thesis, Dept. of Computer Sci., Rice U.,
Houston, TX, August 1987.

[6] Trishul Chilimbi and James Larus. Using generational
garbage collection to implement cache-conscious data
placement. Proceedings of the International Symposium
on Memory Management, 1998.

[7] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, Mass., 1990.

[8] SPEC Corporation. Java spec benchmarks. Technical
report, SPEC, 1999. Available by purchase from SPEC.

[9] Scott Haug. Automatic storage optimization via
garbage collection. Master's thesis, Washington Uni-
versity, 1999.

[10] Richard L. Hudson, Ron Morrison, J. Eliot B. Moss,
and David S. Munro. Garbage collecting the world:
One car at a time. In OOPSLA'97 ACM Conference on
Object-Oriented Systems, Languages and Applications
| Twelth Annual Conference, volume 32(10) of ACM
SIGPLAN Notices. ACM Press, October 1997.

[11] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Speci�cation. Addison-Wesley, 1997.

[12] Alastair Reid, John McCorquodale, Jason Baker, Wil-
son Hsieh, and Joseph Zachary. The need for pre-
dictable gc. Proceedings of the Second Workshop on
Compiler Support for System Software, 1999.

[13] Cristina Ruggieri and Thomas P. Murtagh. Lifetime
analysis of dynamically allocated objects. InConference
Record of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, pages 285{293,
San Diego, California, January 1988.

[14] Jacob Seligmann and Ste�en Grarup. Incremental
mature garbage collection using the train algorithm.
Proceedings of ECOOP '95, pages 235{252, 1995.

[15] Darko Stefanovic. Properties of Age-Based Automatic
Memory Reclamation Algorithms. PhD thesis, Univer-
sity of Massachusetts, Amherst, 1999.

[16] Mads Tofte. A brief introduction to regions. Proceedings
of the International Symposium on Memory Manage-
ment (ISMM), pages 186{195, 1998.

[17] Mads Tofte and Jean-Pierre Talpin. Implementation
of the typed call-by-value �-calculus using a stack of
regions. In Conference Record of POPL '94: 21st
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 188{201, Portland,
Oregon, January 1994.

[18] Paul R. Wilson. Uniprocessor garbage collection tech-
niques (Long Version). Submitted to ACM Computing
Surveys, 1994.

[19] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and
David Boles. Dynamic storage allocation: A survey and
critical review. In Henry Baker, editor, Proceedings
of International Workshop on Memory Management,
volume 986 of Lecture Notes in Computer Science,
Kinross, Scotland, September 1995. Springer-Verlag.

[20] Kwang Keun Yi and Williams Ludwell Harrison. Inter-
procedural data
ow analysis for compile-time memory
management. Technical Report CSRD 1244, University
of Illinois at Urbana-Champaign, Center for Supercom-
puting Research and Development, Urbana, IL 61801,
USA, August 1992.

273

