
University of California
Santa Barbara

Using Workload Prediction and Federation to

Increase Cloud Utilization

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Alexander E. Pucher

Committee in charge:

Professor Rich Wolski, Chair
Professor Chandra Krintz
Professor Amr El Abbadi

September 2016

The Dissertation of Alexander E. Pucher is approved.

Professor Chandra Krintz

Professor Amr El Abbadi

Professor Rich Wolski, Committee Chair

August 2016

Using Workload Prediction and Federation to Increase Cloud Utilization

Copyright c© 2016

by

Alexander E. Pucher

iii

Acknowledgements

I thank my amazing advisors Rich Wolski and Chandra Krintz who have guided me

during these past years of my journey to the edge of the state of the art in distributed

systems and cloud computing. Countless conversations and inputs encouraged me to fol-

low my curiosity, expand on existing work, and take on a big challenge with its calculated

risk. I also thank Divyakant Agrawal and Amr El Abbadi who took me into their fold

during my early days at UC Santa Barbara and have been supportive ever since.

The process of doctoral studies is more than just an intellectual pursuit. I am grateful

to have made great friends in the UC Santa Barbara community and all around California,

friends with whom I spent many many hours and went on interesting and fun adventures.

A special thank you goes to my lab mates who I have spent more time with than anyone

else over the past three years. We shared the daily grind, waded together through the

highs and lows of the PhD experience and still had a lot of fun.

Finally, I thank my family for their dedicated and sustained support all around the

globe, wherever my studies and work took me – in intellectual, emotional, and worldly

ways. I cherish the frequent conversations, and the visits and great hospitality at home.

Without all of you, I would not have reached this point. Thank you.

iv

Curriculum Vitæ
Alexander E. Pucher

Education

2016 Ph.D. in Computer Science (Expected),
University of California, Santa Barbara, United States.

2010 M.S. in Computer Science,
Vienna University of Technology, Austria.

2009 B.S. in Computer Science,
Vienna University of Technology, Austria.

Publications

Providing Lifetime Service-Level-Agreements for Cloud Spot Instances
A. Pucher, R. Wolski, C. Krintz
International Conference on Grid and Cloud Computing and Applications (GCA), 2015.

[Best Paper Award]
Using Trustworthy Simulation to Engineer Cloud Schedulers
A. Pucher, E. Gul, C. Krintz, and R. Wolski
IEEE International Conference on Cloud Engineering (IC2E), 2015.

Using Syntactic and Semantic Similarity of Web APIs to Estimate Porting Effort
H. Jayathilaka, A. Pucher, C. Krintz, and R. Wolski
International Journal of Services Computing (IJSC), 2014.

Cloud Platform Support for API Governance
C. Krintz, H. Jayathilaka, S. Dimopoulos, A. Pucher, R. Wolski, and T. Bultan
IC2E Workshop on the Future of PaaS, 2014.

Characterizing Tenant Behavior for Placement and Crisis Mitigation in Multi-Tenant
DBMSs
A. J. Elmore, S. Das, A. Pucher, D. Agrawal, A. El Abbadi, and X. Yan
ACM SIGMOD International Conference on Management of Data, 2013.

Low-Latency Multi-Datacenter Databases Using Replicated Commit
H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El Abbadi
International Conference on Very Large Databases (VLDB), 2013.

v

TritonSort: A Balanced Large-Scale Sorting System
A. Rasmussen, G. Porter, M. Conley, H. Madhyastha, R. Mysore, A. Pucher, and A.
Vahdat
USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2011.

vi

Abstract

Using Workload Prediction and Federation to Increase Cloud Utilization

by

Alexander E. Pucher

The wide-spread adoption of cloud computing has changed how large-scale computing

infrastructure is built and managed. Infrastructure-as-a-Service (IaaS) clouds consolidate

different separate workloads onto a shared platform and provide a consistent quality of

service by overprovisioning capacity. This additional capacity, however, remains idle for

extended periods of time and represents a drag on system efficiency.

The smaller scale of private IaaS clouds compared to public clouds exacerbates over-

provisioning inefficiencies as opportunities for workload consolidation in private clouds

are limited. Federation and cycle harvesting capabilities from computational grids help

to improve efficiency, but to date have seen only limited adoption in the cloud due to

a fundamental mismatch between the usage models of grids and clouds. Computational

grids provide high throughput of queued batch jobs on a best-effort basis and enforce

user priorities through dynamic job preemption, while IaaS clouds provide immediate

feedback to user requests and make ahead-of-time guarantees about resource availability.

We present a novel method to enable workload federation across IaaS clouds that

overcomes this mismatch between grid and cloud usage models and improves system

efficiency while also offering availability guarantees. We develop a new method for faster-

than-realtime simulation of IaaS clouds to make predictions about system utilization

and leverage this method to estimate the future availability of preemptible resources

in the cloud. We then use these estimates to perform careful admission control and

provide ahead-of-time bounds on the preemption probability of federated jobs executing

vii

on preemptible resources. Finally, we build an end-to-end prototype that addresses

practical issues of workload federation and evaluate the prototype’s efficacy using real-

world traces from big data and compute-intensive production workloads.

viii

Contents

Curriculum Vitae v

Abstract vii

1 Introduction 1
1.1 Thesis Statement . 5
1.2 Challenges . 5
1.3 Methodology . 6
1.4 Contributions . 7
1.5 Permissions and Attributions . 8

2 Background 9
2.1 Federation in Large-Scale Computing . 12

2.1.1 Globus . 13
2.1.2 Condor . 14
2.1.3 Hadoop . 17

2.2 Federation in IaaS Clouds . 19

3 Validated Simulation For Engineering Cloud Schedulers 22
3.1 Introduction . 22
3.2 Related Work . 26
3.3 Methodology . 29

3.3.1 Model Construction . 31
3.3.2 Discrete Event Simulation . 32
3.3.3 Adding Perturbations . 33
3.3.4 Scheduler Operation . 34

3.4 Results . 35
3.4.1 Simulation Registration . 36
3.4.2 Power-Aware Scheduler at Scale 41
3.4.3 Capacity Planning . 44
3.4.4 Capacity Planning for Scale-Out Workloads 46

ix

3.5 Conclusion . 49

4 Estimating Job Preemption Probability in IaaS Clouds 51
4.1 Introduction . 51
4.2 Related Work . 54
4.3 Methodology . 57

4.3.1 Scheduling Model . 59
4.3.2 Preemption Policy . 60
4.3.3 Predicting Preemption . 60
4.3.4 Evaluation Metrics . 61

4.4 Results . 62
4.4.1 Conditional Distributions and Sample Size 64
4.4.2 Prediction with Production Traces 66
4.4.3 SLA-Aware Co-Scheduling of Production Traces 70
4.4.4 SLA-Aware Co-Scheduling with Platform Scaling 72

4.5 Conclusion . 74

5 IaaS Cloud Federation Using Preemptible Resources 76
5.1 Introduction . 76
5.2 Related Work . 81
5.3 Methodology . 83

5.3.1 Federation Architecture . 85
5.3.2 Instance Lifetime Guarantees . 87
5.3.3 Estimating Native Utilization . 89
5.3.4 Estimating Federation Overheads 90
5.3.5 Admission Control . 92
5.3.6 Evaluation Traces . 96
5.3.7 Evaluation Metrics . 99

5.4 Results . 100
5.4.1 Federation Baseline . 102
5.4.2 Federation with SLA Guarantees 104
5.4.3 Federation with Platform Scaling 105
5.4.4 Efficiency Gains at Scale . 108
5.4.5 Sensitivity to Duration Estimates 110
5.4.6 Sensitivity to Seasonality . 112

5.5 Conclusion . 113

6 Conclusion 114

7 Future Work 117

Bibliography 120

x

Chapter 1

Introduction

The wide-spread adoption of cloud computing has lead to a change in how large-scale com-

puting infrastructure is built and managed. A “cloud” abstracts away the details of the

underlying hardware resources in large computer systems and exposes system capabilities

as services. Clouds also provide a high-level application programming interface (API)

that simplifies provisioning of resources and comes with guarantees about their expected

quality of service (QoS). The degree of abstraction and the associated QoS guarantees

differ between the three types of “cloud” paradigms used in practice – Infrastructure-as-

a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS).

IaaS clouds provide on-demand access to virtualized cluster infrastructure, such as

“instances” – virtual machines with associated storage and network interface – and an

“object store” – a scalable key-value data store accessible via a REST-base API. Platform-

as-a-Service (PaaS) abstracts away the operating system and software stack and enables

rapid development of network-accessible applications against a streamlined and highly

scalable API. Software-as-a-Service (SaaS) refers to software solutions delivered with an

always-online model. IaaS and PaaS clouds typically cater to developers, whereas SaaS

applications are tailored to end user needs.

The services offered by clouds, together with their QoS guarantees, are summarized

in the cloud’s service level agreement (SLA) [1]. The service quality is measured over

1

Introduction Chapter 1

fixed periods of time using different metrics. The specific metrics, their measurement

windows and corresponding targets are defined as service level objectives (SLOs). These

SLOs form the foundation for cloud customers’ reasoning about the expected platform

performance.

The IaaS model in particular has been adopted for “public clouds” and “private

clouds” [2]. Public clouds are operated by commercial providers and offer customers

access to resources with a pay-as-you-go model. Public provider infrastructure typi-

cally relies on large data centers and proprietary software stacks. Private clouds are

deployed by a wide variety of organizations internally on enterprise IT infrastructure.

Private clouds exist at varying scales and commonly use open-source frameworks for im-

plementation. The decision between “outsourcing” to a public cloud and “insourcing”

to a private cloud is driven by numerous factors such as privacy, cost and customization

requirements.

Clouds consolidate workloads from different users onto the same platform and aim

to create the illusion of “infinite” resources available to any individual user. The consol-

idation of different workloads smoothens demand so peaks in the workload of one user

can be compensated for by a low in another user’s workload. In order to create the illu-

sion of infinite resources, clouds “overprovision” available capacity to handle worst-case

peak demand. This additional hardware and their auxillary support systems, however,

remain idle during non-peak times and represent a drag on overall system utilization and

resource efficiency.

The smaller scale of private IaaS clouds relative to public clouds creates additional

challenges. While public clouds rely on a diverse user base and take advantage of eco-

nomics of scale, private clouds are smaller and cater to a more specialized audience. With

the smaller user base comes less variety in demand patterns and thus fewer opportunities

to smooth out aggregate resource demand. Finally, multiple private clouds may co-exist

2

Introduction Chapter 1

within the same organization in order to consistently guarantee access to part of the

available resources for each organizational unit. This fragmentation further reduces the

pool of workload available for consolidation and exacerbates the issue of overprovisioning.

Efficiency problems in large-scale systems due to idle capacity have been addressed

in the past. Computational grid frameworks share load across different organizations

via “federation” – the controlled pooling of resources across multiple clusters owned by

different entities – to maximize user productivity. This sharing of load may use explicitly

scheduled capacity, as implemented by Globus [3], or opportunistically available capacity

via “cycle harvesting”, as implemented by Condor [4]. In a federation setting, resources

ultimately remain in control of the owner and are only made available temporarily to

users of another organization. To enforce local control, these systems require the ability

to “preempt” (terminate) federated workload to free up space for locally generated work-

load if the system reaches capacity. The integration of federation and cycle harvesting

capabilities has lead to a substantial increase in the efficiency of computational grids.

IaaS clouds can benefit from adopting federation and cycle harvesting. The pooling

of resources across multiple clouds via federation reduces the need for overprovisioning

by providing more opportunities for workload consolidation. The preemption mechanism

implemented in cycle harvesting schedulers guarantees local control over resources even

when these resources are in active use by federated workload. Together, these techniques

allow IaaS clouds to participate in a federation without compromising their autonomy,

while still reducing the required degree of overprovisioning. While useful for IaaS clouds

in general, we expect the benefits to be especially pronounced for private clouds deployed

for smaller user bases with a limited ability to consolidate workload internally.

There is, however, a fundamental difference in the usage patterns and guarantees

expected by users of grids and cloud. Grid users submit batch jobs to a queuing system

and expect the grid to make a best effort attempt at completing their jobs over time

3

Introduction Chapter 1

under changing conditions. Cloud users in contrast expect interactive feedback about

the availability of requested resources, predictable progress, and consistent quality of

service as set forward in the cloud’s SLA.

Grid workloads consist of queued batch jobs whose execution is constrained by pre-

defined resource quotas and job priorities. Grids optimize the utilization of available

resources by prioritizing, re-ordering or re-routing jobs within a federation. IaaS clouds

instead provide resources “on demand” with immediate feedback to the user about either

the successful provisioning of resources or the rejection the request. Cloud users further

expect provisioned resources to remain available until freed explicitly, which simplifies

management of and reasoning about cloud applications. In a federation setting across

independent organizations, however, the clouds’ ahead-of-time availability guarantees are

at odds with an organization’s potential need to preempt running jobs to enforce quotas

and priorities.

There is substantial interest in overcoming these challenges and enable “cloud feder-

ation” in academic and commercial contexts [5, 6]. Most recently, the National Science

Foundation (NSF) funded the “Aristotle Cloud Federation” to create a next-generation

scalable data infrastructure. In the spirit of computational grids, Aristotle allows each

participating campus to buy and maintain its own resources as needed, but also share

excess capacity when available. In an industry context, “hybrid” clouds [7, 8] that merge

public and private cloud resources are a common use-case, albeit with limitations regard-

ing preemption and ahead-of-time guarantees.

Automating workload federation between different clouds can reduce substantially

the need for overprovisioning while still maintaining organization boundaries for provi-

sioning and budgeting. In private clouds these improvements translate to productivity

gains, while in public clouds they can simplify opportunistic capacity use and enable safe

workload consolidation across multiple providers.

4

Introduction Chapter 1

1.1 Thesis Statement

Can the utilization of private IaaS clouds be increased by using ahead-of-time guar-

antees on the availability of preemptible resources to implement workload federation?

1.2 Challenges

Building an end-to-end cloud federation system is difficult. Existing literature pro-

poses numerous different approaches to cloud federation, but the proposed designs are

either partial solutions or not implemented and evaluated in a real system. A major bar-

rier to end-to-end evaluation of cloud federation architectures is the extensive engineering

effort required to implement prototypes on top of production-quality IaaS frameworks.

Experimentation with cloud infrastructure at scale is difficult. The modification of

open-source IaaS cloud frameworks is complex as their components interact with many

different parts of the underlying hardware and operating systems. Thus, the implemen-

tation of research prototypes for cloud federation architectures is slow, error prone, and

potentially unrepresentative of production system behavior. Even when implemented

successfully, a cloud federation architecture must then be tested at the scale of real-

world clouds and, potentially, at even larger scales for future use-cases. This makes real

world experimentation with numerous competing designs infeasible. Simulation can al-

leviate these issues, but predictions must be validated against real world measurements

to be trustworthy.

Cloud SLAs demand quality of service guarantees for each job request to be made

ahead of time. The reliability of a preemptible tier of instances depends on the dynamic

state of the cloud and future incoming workload. If the future utilization of the system

can be predicted sufficient accuracy, guarantees about the availability of preemptible re-

5

Introduction Chapter 1

sources can be made. Batch workloads are promising candidates for prediction as they

have a known input size and bounded runtime and thus do not require open-ended guar-

antees about resource availability. The use of a bounded look-ahead window enables us

to predict resource availability and provide ahead-of-time guarantees despite preserving

a cloud’s preemption capabilities.

1.3 Methodology

To address these challenges and increase the efficiency of IaaS clouds via reduced

overprovisioning, we design and implement an end-to-end architecture for workload fed-

eration across independent IaaS clouds that enables opportunistic cycle harvesting while

still providing availability SLAs with ahead-of-time guarantees. We first evaluate the

efficacy of our solution in simulation and then implement and evaluate a real-world pro-

totype of our IaaS cloud federation architecture on top of the open-source Eucalyptus

framework.

We enable accurate prediction of the behavior of IaaS clouds via validated simulation.

Existing work on cloud simulation (c.f. Section 3.2) offers numerous approaches, albeit

with limited or absent validation of results against measurements from real systems. We

develop a method for creating simulation models that are validated at observable scale

and then carefully extrapolate their results to larger scales. Our approach is inspired

by perturbation theory and enables experimentation with federation schemes without

building numerous real world prototypes at scale.

We develop a method to provide ahead-of-time guarantees on the availability of pre-

emptible instances in IaaS clouds. We repurpose our validated simulation method to

make dynamic predictions about the future state of the cloud with a Monte-Carlo style

approach. These predictions are based on the historic behavior of the cloud and its cur-

6

Introduction Chapter 1

rent internal state. We then use these predictions to implement admission control to

enable batch workloads with bounded job duration to execute opportunistically on pre-

emptible capacity with ahead-of-time guarantees on their preemption probability. This

enables federation of batch workloads between independent IaaS clouds in a way that pre-

serves clouds’ control over their own resources via preemption, but still offers availability

SLOs to federation users.

We implement our proposed architecture in a prototype using the Eucalyptus IaaS

framework and evaluate its efficacy with real-world workload traces. These traces are

replayed on live clouds in faster-than-realtime and at smaller-than-realworld scale. This

evaluation ensures that unmodeled aspects of the system do not invalidate our earlier

simulation results. The implementation is complete end-to-end and addresses practical

issues of cloud federation such as setup overheads and data transfer between source and

destination clouds. We use production traces of computationally-intensive and big data

analytics workloads to form realistic expectations about the efficiency gains achievable

through cloud federation.

1.4 Contributions

In summary, in this dissertation, we investigate a new approach to IaaS cloud fed-

eration and develop novel methodology to support its real world implementation. We

take inspiration from existing work in grid federation, cycle harvesting and simulation.

In particular, we contribute:

• an architecture for job federation between independent IaaS clouds. The proposed

architecture enables independent IaaS cloud to share workload opportunistically

while maintaining local control over resources.

7

Introduction Chapter 1

• a method for creating validated simulation models of IaaS clouds. Resulting models

can be validated against measurements from clouds at observable scale and then be

extrapolated to larger scale, thus allowing trustworthy experimentation with cloud

federation at unobservable scale.

• a method for providing ahead-of-time availability guarantees for preemptible re-

sources in IaaS clouds. These statistical guarantees about resource availability are

made at request time and remain valid for a user-specified time window.

• an end-to-end implementation of cloud federation on the open-source Eucalyptus

IaaS framework. The prototype implements our cloud federation architecture, ad-

dresses practical issues of job federation, and does not modify the internal structure

of Eucalyptus. We perform an evaluation of the correctness of the federation mech-

anism and the availability guarantees made via replay of real-world traces recorded

from production clouds. We further investigate the impact of other practical con-

cerns, such as inaccurate bounds on job duration and seasonality in the workload.

1.5 Permissions and Attributions

1. Chapter 3 is a partial reprint of “Using Trustworthy Simulation to Engineer Cloud

Schedulers” by A. Pucher, E. Gul, C. Krintz, and R. Wolski, and has previously

appeared in IC2E 2015.

2. Chapter 4 is a partial reprint of “Providing Lifetime Service-Level-Agreements for

Cloud Spot Instances” by A. Pucher, C. Krintz, and R. Wolski, and has previously

appeared in GCA 2015.

8

Chapter 2

Background

“If we fail to understand and apply previous research, we will at best rediscover

well-charted shores. At worst, we will wreck ourselves on well-charted rocks.”

– Thain et al., Distributed computing in practice: the Condor experience, 2005.

Cloud computing realizes the long-held vision of computation as a utility [9]. In this

chapter, we discuss the background of different types of clouds and list major public

providers and open-source frameworks for private IaaS clouds. We further survey ex-

isting literature for improving utilization in computational grids and large clusters via

federation and opportunistic computing. We conclude our disposition by highlighting

recent developments in federation techniques for IaaS clouds specifically.

The “cloud” abstracts away the details of the underlying infrastructure and instead

describes its capabilities in the form of services. The individual services and their

promised “quality of service” (QoS) is defined and published in the cloud’s Service-

Level-Agreement (SLA). The service quality is measured quantitatively using different

high-level metrics. Their corresponding targets and measurement time widows are de-

fined as Service-Level-Objectives (SLOs). These explicit SLOs, such as object storage

availability and durability measured over the period of a month, simplifies users’ reason-

9

Background Chapter 2

ing about the system reliability and performance ahead of time. While the SLA defines

“guarantees” it also provides means to compensate cloud users for the provider’s failure

to meet the SLOs. There are three primary types of clouds that are distinguished based

on their level of abstraction:

Infrastructure-as-a-Service (IaaS) clouds offer full-privilege access to virtual machine

“instances” and scalable storage from a web-accessible “object store”. Instances come

with attached storage and a network device and can be launched and terminated on

demand, either manually by the user or programmatically for load-proportional scaling

of resources. IaaS clouds typically provide additional Application Programming Inter-

faces (APIs) for managing cluster infrastructure such as virtual networks, SAN storage,

messaging, and load balancing.

Platform-as-a-Service (PaaS) clouds abstract away the operating system and software

stack and enable rapid development of applications against a streamlined and scalable

API. The focus of PaaS typically lies on web-applications and assumes a three-tier ar-

chitecture with load balancer, application servers and backend database. The cloud user

implements the business logic of the application and uses high-level APIs to access data

storage, task scheduling, and other functionality. The PaaS cloud dynamically performs

load balancing and scaling of the associated underlying infrastructure.

Software-as-a-Service (SaaS) refers to software solutions tailored to end-users deliv-

ered with an always-online model. SaaS applications fulfill a domain-specific use case

such as email, calendar, and contact management. The infrastructure automatically

performs maintenance tasks such as dynamic scaling, backup and patching. The user

accesses the application as a remote service and thus requires a constantly available In-

ternet connection. Depending on the specific application, limited offline capabilities may

be provided.

Major public IaaS providers include Amazon AWS [10], Google Cloud Platform [11],

10

Background Chapter 2

Microsoft Azure [12], Rackspace [13], and IBM SoftLayer [14]. All commercial IaaS

providers offer access to resources on a pay-as-you go basis, and may offer additional cost

structures for opportunistic or long-term customers. They typically rely on dedicated

data centers to house their hardware and use proprietary software stacks to offer access

to compute instances, object store, and related services. Commercial providers keep the

details of their implementation as trade secrets and limit benchmarking of their services

at scale, thus making academic research on public clouds difficult.

Amazon AWS offers services across the entire spectrum from IaaS, over PaaS, to

SaaS. Their IaaS services include the EC2 platform for cloud instances and the S3 object

store, both of which integrate with a number of additional services for networking, data

analytics, and others. The EC2 and S3 APIs have become the quasi-standard for open-

source IaaS cloud frameworks and client libraries, such as euca2ools [15] and boto [16]

for Python. Google Cloud Platform offers IaaS and PaaS services: cloud instances via

Compute Engine, an object store via Cloud Storage, and a number of specialized database

and analytics capabilities. Google App Engine is a prominent PaaS platform for hosting

scalable web applications. Its API has been adopted by open-source PaaS frameworks

such as AppScale [17]. Microsoft Azure is a cloud offering that provides a variety of

IaaS, PaaS, and SaaS services and specializes in tight integration with other Microsoft

products. Rackspace Public Cloud is an IaaS platform with several additional services

for networking, data analytics, and “bare metal” hosting of applications. IBM SoftLayer

equally provides IaaS compute and storage services, as well as networking, data analytics

and bare metal capabilities.

Private IaaS clouds build on open-source frameworks such as OpenStack [18], Euca-

lyptus [19], CloudStack [20], OpenNebula [21], and Nimbus [22]. They implement major

services found in public IaaS clouds, such as compute, storage and load balancing but al-

low deployment on clusters on-premise. They are further (partially) API compatible with

11

Background Chapter 2

commercial providers, such as Amazon AWS, and enable the creation of “hybrid” clouds

that combine local infrastructure and resources rented from public providers. In contrast

to public clouds, their source code is openly accessible and can be benchmarked and

customized. This property makes them highly flexible for deployment at different scales

and offers an opportunity to perform domain-specific optimization. As a consequence,

academic research in the cloud context typically relies on these open-source frameworks.

2.1 Federation in Large-Scale Computing

Computational grid frameworks enable load sharing across different organizations via

federation. Globus [23] is a grid computing framework that integrates compute clusters

and, to a degree, pools of workstations with a standardized interface. It supports pooling

of resources across organizations via “federation”. We discuss Globus in Subsection 2.1.1.

Cycle harvesting enables opportunistic computing with temporary spare capacity.

Condor [24] is a scheduler for batch computating on pools of workstations and imple-

ments a run-while-idle model. Idle workstations may be used opportunistically to run

computation in the background. Active tasks are preempted (terminated) when the work-

station’s primary user returns or the workstation goes offline. Condor supports transfer

and restoration of state via checkpointing and implements a federation mechanism –

“flocking” – that allows combining pools of workstations across multiple organizations.

We discuss Condor in Subsection 2.1.2.

Big data analytics framworks, such as Apache Hadoop, can integrate heterogeneous

hardward and perform parallel computation and batch processing at large scale. Apache

Hadoop and its distributed filesystem HDFS specifically have been adapted to perform

federated storage and analysis of very large data sets and achieve high performance by

imposing a processing pipeline structure (e.g. map-reduce) that is amenable to paral-

12

Background Chapter 2

lelization. Hadoop further optimizes performance by leveraging data locality (i.e. mov-

ing code to the data) and speculative execution of straggling tasks. We discuss Apache

Hadoop further in Subsection 2.1.3.

2.1.1 Globus

Globus [25] has become the de-facto standard for managing and connecting compu-

tational grids. A major contribution of Globus is the standardization of communication

protocols between diverse systems – most prominently via the Open Grid Services Infras-

tructure (OGSI) and more recently the Web Service Resource Framework (WSRF) [26].

OGSI provides abstractions for creating and managing stateful grid services across di-

verse compute environments. OSGI is a specification language based on the XML-based

Web Service Definition Language (WSDL). WSRF is an evolution of OGSI that provides

an improved separation of concerns in the specification and takes advantage of features

added to WSDL over time.

The Globus framework was originally developed as middleware to enable the man-

agement and development of “metacomputers” – virtual supercomputers that integrate

resources from diverse, geographically distributed computer systems into a single en-

vironment for parallel applications with stringent scheduling requirements [3]. Globus

implements the paradigm of “separation of policy and mechanism” by providing low-level

abstractions and allowing higher level policy to control their usage. Primary function-

ality includes resource allocation and monitoring, authentication, process management,

and communication and storage primitives.

Grids enable the “controlled and coordinated sharing” of resources across collaborat-

ing organizations [27]. Globus decomposes the Grid architecture into multiple layers: fab-

ric, connectivity, resource, collective and application. The framework builds higher level

13

Background Chapter 2

abstractions on top of the “fabric” layer, which implements low-level process manage-

ment, communication and storage functionality within a single physical system. Globus

then enables cross-system (and organization) authentication, discovery and coordination

of individual resources. Applications developed on top of Globus may take advantage of

the existing components in the form of services with defined APIs, modify them, or add

entirely new domain-specific services.

Besides interoperability between diverse environments and computer systems, security

is a primary concern. Globus integrates with various services within organizations, such

as single sign-on and key management, and puts emphasis on encrypting data in-flight.

Further, resource usage by different users is monitored and metered for auditing and

accounting purposes.

The effective use of distributed grid resources for applications with strict scheduling

requirements needs accurate information about the systems in both, static and dynamic

terms. Globus maintains a directory of resources and monitors their basic availability

via regular heartbeats. With increasing adoption of Globus, additional services were

integrated that provide sinformation and forecasts about dynamic system properties,

such as network latency and bandwidth [28].

2.1.2 Condor

Condor [4] is a high-throughput batch system for compute-intensive jobs executing

on pools of non-dedicated workstations. It implements the “cycle harvesting” paradigm

– the opportunistic execution of jobs on idle capacity – with a best-effort job completion

“guarantee”. Condor implements a series of capabilities to take advantage of intermittent

spare capacity effectively, such as checkpointing, job migration, remote system calls, and

resource classification.

14

Background Chapter 2

Open Science Grid (OSG) [29] is a consortium of independent science communities

that opportunistically share spare compute capacity across distributed compute facilities

via Condor. Workload federation across these sites is used extensively and has success-

fully supported projects of vast scale from weather prediction to protein analysis. OSG

has also been a major driver in the maturing of Condors open-source software stack.

Condor jobs consist of a number of tasks that execute within a specialized runtime

environment. Each job comes with an associated type that determines the treatment of

the job and its tasks by the Condor scheduler. “Master-worker” batch jobs execute a

flexible number of tasks without particular ordering and enable the concurrent execution

of tasks on multiple workstations. This job type is malleable and allows the scheduler

to selectively preempt and restart tasks on different workstations. Condor jobs that

require co-scheduling of tasks, such as MPI applications, are referred to as “parallel”

jobs. Parallel jobs depart from the cycle harvesting paradigm and require dedicated

nodes. That is, the scheduler does not allow the preemption or migration of tasks even

if the workstation is no longer found to be idle. Finally, “DAGMan” jobs execute a

user-defined dependency graph of related jobs and automatically propagate results and

errors between jobs.

The current system [30] supports multiple runtime environments, referred to as “uni-

verses”. The universe determines the API available to the programmer. Common uni-

verses are the “standard”,“vanilla” and “VM” universes. The standard universe provides

the ability to checkpoint and migrate the job between machines and allows the invocation

of remote system calls to the machine used to submit the job in the first place. While

this offers convenience to the developer it creates overhead and external dependencies.

As an alternative, the vanilla universe avoids this overhead, but places the burden for

transfer of state between tasks and the aggregation of results on the developer (it is the

default for jobs in the OSG). Finally, the VM universe is implemented on top of virtual

15

Background Chapter 2

machines with arbitrary disk images and implements checkpointing via disk snapshots.

The Condor scheduler implements a priority scheme for resource allocation across

jobs and users. The job priority affects the execution order of jobs in each users indi-

vidual queue of pending jobs. Resources are allocated between jobs of different users

proportional to the user priority. The users relative priorities are adjusted over time to

account for actual resource usage and achieve fair resource sharing. That is, Condor

does not starve jobs of low priority users, but allocates a smaller share of resources pro-

portional to the ratio of individual user priorities. While Condor attempts to maximize

the throughput of jobs, it does not make explicit guarantees about when or whether a

submitted request will execute.

Condor’s success in harvesting idle resources at the University of Wisconsin led to a

proliferation of Condor pools at different sites. Apart from solving technological chal-

lenges this success is attributed to Condor’s flexibility and its motto “leave the owner

in control, regardless of the cost.” [31] The developers retained this motto when adding

cross-organization federation capabilities to Condor via “flocking”.

The first generation of workload federation in Condor – “gateway flocking” [24] –

allows jobs to be submitted across organization boundaries and is fully transparent to

the user. Gateway nodes in each pool forward cluster status information and requests,

such that resources can be acquired across multiple pools. The gateway nodes in each

cluster are responsible for only admitting external requests if their requirements align

with local policy. Thus, gateway nodes protect the independence of each organization.

The second generation of federation – “direct flocking” [32] – removes the trans-

parency provided by gateways in favor of fine-grained access control and usage accounting

on a per-user basis. Instead of negotiating federation on an organizational level, the indi-

vidual user obtains access to multiple Condor pools and negotiates for resource directly.

While direct flocking increases the burden on the user, it adds flexibility over gateway

16

Background Chapter 2

flocking and simplifies the overall system architecture by removing the dependency on

gateway nodes.

As an adaptation from Globus, the Condor ecosystem spawned “Condor-G” [33] to

integrate with other batch systems and implement standardized communication proto-

cols. These protocols enable wide-area job management, authentication, and secure data

transfer. Condor-G introduces the “gliding-in” of jobs as a way to run Condor jobs across

disparate batch systems by creating “personal” Condor pools for a user from resources

located in different systems.

2.1.3 Hadoop

Apache Hadoop [34] is an open-source batch system modeled after Google MapRe-

duce [35] for the distributed processing and ad-hoc analysis of large quantities of unstruc-

tured data. Hadoop is the quasi-standard for big data analytics and has spawned a large

ecosystem of related open-source projects, such as Apache YARN [36], Apache Spark [37],

and Apache Hive [38]. The Hadoop Distributed File System (HDFS) [39] serves as the

foundation for fault-tolerant data storage and high throughput file access. HDFS is or-

ganized in a hierarchical Master-Slave architecture with centralized name nodes keeping

track of meta data and replica location and multiple data nodes redundantly storing file

contents in fixed-size chunks.

Hadoop uses a batch processing architecture and implements the Map-Reduce paradigm.

A Hadoop job is submitted to a queue and then processed in three phases: “map”, “shuf-

fle”, and “reduce”. The work in each phase is split into multiple “tasks” that can be

processed in parallel by worker nodes. The map phase reads input data in fixed-size

chunks from HDFS and applies a user-defined transformation that emits a number of

key-value tuples. The shuffle step then transfers related tuples (intermediate data) to

17

Background Chapter 2

pre-defined target nodes, the reducers. The reduce phase then applies a user-defined

aggregation function to the tuples at each reducer separately and writes the results back

to HDFS. The Hadoop scheduler keeps track of task progress and transparently masks

faults by restarting failed or slow tasks, thus enabling rapid development of highly parallel

applications.

Research on Hadoop federation proceeds in three primary areas: the placement of

and access to HDFS data and replicas across different sites, the optimal scheduling and

placement of tasks, and Hadoop integration with other compute frameworks.

G-Hadoop [40] is an extension to Hadoop for federated execution across multiple high

performance computing (HPC) clusters belonging to different organizations. G-Hadoop

moves map tasks to the cluster holding the (potentially large) input data and minimizes

redundant data transfers by leveraging the cluster’s SAN for intermediate data storage

rather than node-local storage and HDFS. HDFS on the Grid [41] integrates Hadoop on

top of Globus grids and addresses the challenge of data storage in the face of resource

failure and preemption. Multicluster HDFS [42] explores the behavior of HDFS spanning

multiple clusters with different configurations.

Cardosa et al. [43] investigate the workload-specific performance of different data

placement schemes and job scheduling strategies for Hadoop in geographically distributed

Hadoop clusters. They distinguish between Local MapReduce (LMR), Global MapRe-

duce (GMR) and Distributed MapReduce (DMR). LMR creates a local replica of the

input data before performing any computation and is preferred for jobs that do not ag-

gregate (or even expand) the input data. DMR performs a two stage computation by first

creating a local aggregate per cluster and then merging the intermediate results from all

clusters in a second step. Finally, GMR executes tasks across all participating clusters,

taking into account data locality on a best-effort basis. Fed-MR [44] expands on the

DMR model, with a top-level Hadoop cluster federating jobs to region-specific clusters

18

Background Chapter 2

and then collecting and aggregating results. Fed-MR further considers practical issues of

federation such as data placement constraints and the generation and automated merg-

ing of intermediate results. G-MR [45] efficiently processes sequences of Hadoop jobs

across geo-distributed clusters by constructing a graph of data and transformation de-

pendencies. Analysis of this dependency graphs allows for an effective choice of partial

aggregation and replication strategies for inputs, intermediate data and outputs.

MapReduce On Opportunistic eNvironments (MOON) [46] modifies Hadoop to per-

form well on preemptible resources such as those found in Condor workstation pools.

MOON uses a combination of stable and volatile nodes to store and process data by

maintaining a core replica of critical data on dedicated, always available nodes. Data

replication on preemptible resources is controlled automatically based on a user-defined

availability SLO and MOON improves HDFS to handle the temporary unavailability of

resources. The system further uses an aggressive task replication strategy to improve job

throughput under preemption pressure.

Distributed Hadoop MapReduce on the Grid (HOG) [47] fully integrates Hadoop into

the Open Science Grid (OSG) with federated and preemptible Condor resources. HOG

tackles the challenges of high task failure rates due to preemption and data loss in a

highly distributed and unstable setting. It provisions Hadoop worker nodes and HDFS

data nodes through Condor’s “gliding-in” and uses aggressive monitoring and replication

strategies to handle correlated preemption or site-wide failures, albeit for practical reasons

it still maintains some persistent state on a non-preemptible master node.

2.2 Federation in IaaS Clouds

CloudLab [5] is a platform for cloud research across multiple federated facilities at

the University of Utah, Clemson University, the University of Wisconsin Madison, the

19

Background Chapter 2

University of Massachusetts Amherst, and several industry partners. Similar to the OSG

it provides a unified interface to access federated compute resources for research, with an

emphasis on bare metal access for experimentation with open-source cloud frameworks

at scale. The different facilities participating in CloudLab focus on different aspects of

data center infrastructure, such as high storage density or high performance networking.

Another federated testbed for cloud research is OpenCirrus [6], with multiple loca-

tions at universities and industry research labs. The various sites have a different focus

according to their operators’ interests, such as networking, high-performance computing,

and large scale data analytics. Similar to other federation efforts, the authors emphasize

its unified user management, high tolerance to load spikes and ability to run workloads

and experiments at scale.

Private IaaS frameworks have limited load sharing abilities via “hybrid cloud” capa-

bilities. Most open-source IaaS frameworks implement mechanisms to spawn resources

in public clouds, such as Amazon AWS, to increase the capacity of private clouds. Euca-

lyptus supports hybrid cloud capabilities through its client-side “euca2ools” utility [15],

which provides a single API for accessing Eucalyptus deployments as well as Amazon

AWS [7]. OpenStack supports federated identity management and allows one cloud’s

users to authenticate to another cooperating cloud without managing separate credentials

[8].

As an alternative, an additional PaaS abstraction layer can be used to implement

workload federation across multiple IaaS clouds, albeit with the restriction on applications

developed on top of the specific PaaS framework. RightScale [48] offers a commercial

PaaS framework for deploying applications across cloud boundaries. The open-source

AppScale framework [49] has been used to deploy HPC applications across multiple AWS

and Eucalyptus clouds.

Public IaaS providers implement opportunistic computing with a preemptible tier

20

Background Chapter 2

of instances. Amazon AWS originally introduced “spot instances”, a preemptible tier

of instances whose price is determined by “spot market” where users bid on available

spare capacity. Google Compute Cloud later also introduced a class of lower cost in-

stances which may be preempted at any any time. Related work is explored in detail in

Section 4.2.

To enable federation, a number of changes to the architecture of IaaS clouds have

been proposed in the literature. Previous work makes a distinction between “inter-cloud”

federation – the transfer of self-contained jobs from one cloud to another – and “cross-

cloud” federation – the mashup of services such as storage and compute from multiple

providers. We elucidate further in Section 5.2.

21

Chapter 3

Validated Simulation For
Engineering Cloud Schedulers

3.1 Introduction

In this chapter, we develop a method for validated simulation of IaaS clouds that

addresses some of the challenges inherent in experimentation with large scale systems.

If we are to evaluate an architecture for cloud federation, it must be tested at scale.

Replicating existing large scale cloud infrastructure, such as Amazon AWS, for research

purposes is infeasible. There are budgetary constraints to installing infrastructure for

research purposes, but also competitive considerations – commercial cloud providers hold

the details of their implementation as trade secrets.

Simulation can overcome the scaling issue, but a simulation approach has limitations

of its own. When driving a complex engineering effort, such as the development of a cloud

federation architecture, we are concerned about the accuracy of the simulation model.

Existing literature about cloud simulation provides methods for exploratory research

at scale, but their results are typically not validated against measurements from real

systems.

For cloud computing, simulation systems to date focus on ab initio techniques in

22

Validated Simulation For Engineering Cloud Schedulers Chapter 3

which various low-level cloud components (machines, networks, storage devices, etc.)

are simulated and these component simulations are then composed into a full system

simulation. This “bottom up” approach is both flexible and easily extensible, and yields

insights that stem from comparative ranking (e.g. “this” configuration is better than

“that” one). The value of this approach cannot be underestimated, however, the scale

and reliability requirements for clouds present challenges for ab initio methods with

respect to accuracy that must be addressed before they can be considered “trustworthy”

from an engineering perspective. This approach tends to produce results at scales that are

difficult to test empirically. Finally, the composite model may become so complex that

the error interactions between component models become untamable, even if components

are validated individually against empirical measurement.

We propose a novel method for creating models of IaaS clouds with quantifiable

accuracy for validated simulation. Our work explores an approach rooted in perturbation

theory [50] that focuses on validation of simulated results against empirical measurement

– at the cost of flexibility and extensibility – as a way of addressing the engineering

needs for specific cloud systems. Specifically, we build a parsimonious “top down” model

of the end-to-end system that derives from the implementation specifics of the system.

We then add “noise” (taken from statistically sampled empirical measurements of the

system) to “perturb” this model. For validation, we analyze the perturbed model’s

outputs statistically over multiple runs – as a Monte-Carlo [51] style simulation – and

compare them to the distributions of end-to-end measurements taken from repeated runs

of a real system.

We apply validated simulation to the development of cloud schedulers that support

workload federation. For cloud schedulers in particular, this approach proves fruitful

because the models are quite parsimonious (reducing the possibility of error propagation)

and the system measurements are easily gathered at scales that are feasible for repeated

23

Validated Simulation For Engineering Cloud Schedulers Chapter 3

measurement. Once validated, the model can be scaled up in any dimension characterized

by independent performance response. For example, if the performance of the physical

machines hosting user-allocated virtual machines is independent (due to the isolation

properties of the cloud platform) then the physical machine count can be scaled without

introducing additional error.

We emphasize that our work is intended to complement ab initio approaches in that it

targets the development of a specific component (a cloud scheduler for example), that the

component must be amenable to a perturbation-based approach to modeling, and that

scaling is trustworthy only in the dimensions of independence. Further, our approach

is intended to produce accuracy only in the parameters that are necessary for a partic-

ular component’s operation as an isolated feature. That is, the method is appropriate

for clouds because component operation is already isolated through internal modular-

ity techniques for realiability reasons. Our method relies on this isolation property and

access to the source code so that the relevant model parameters can be identified.

Even with these restrictions it is possible to use our simulation technique to explore

performance and scaling properties in a manner similar to previous approaches. A key

additional benefit of our method is that the results are validated at scales that can be

tested and that there is evidence that their accuracy is preserved at different scales and

configurations. Another practical benefit of using a top-down approach to simulation is

the parsimonity of the model, which leads to fast execution. This maximizes the benefits

of faster-than-realtime simulation and allows many different designs and scenarios to be

tested within short time frames.

Before we adopt validated simulation to test federation architectures, we must first

evaluate the feasibility of applying validated simulation in the cloud engineering context.

For this purpose, we perform a case study that adds an invasive feature to an open-source

IaaS framework. We implement a power-aware scheduler from the literature [52], whose

24

Validated Simulation For Engineering Cloud Schedulers Chapter 3

properties are already well-known. We first predict its behavior for a set of workloads and

cloud configurations with validated simulation. We then compare these predictions with

measurements from a functionally equivalent implementation in a real system. Thus,

this case study serves as evaluation of the efficacy of our perturbation-inspired approach

to building validated simulation models. We also describe and detail the use of the vali-

dated simulation model to related problems, such as enterprise IT capacity-planning with

production cloud traces, as a way of demonstrating its general utility besides supporting

the development of our cloud federation architecture.

In summary, this chapter makes the following contributions:

• We outline a simulation approach that is designed to support production-quality

engineering of cloud platforms by applying a new approach – perturbation-based

modeling – to cloud simulation.

• We demonstrate the use of this methodology in the implementation of a new power

optimizing scheduler for a production-quality private cloud platform.

• We evaluate the simulation’s accuracy for both, reproducing observable cloud be-

havior and making predictions about the behavior of a scaled-up (and yet unob-

served) variant of a cloud.

• We evaluate validated simulation’s general utility for capacity planning with syn-

thetic and production traces in private IaaS clouds.

We first describe the steps of our methodology for top-down model development,

discrete event simulation, model fitting, and validation. As an example of this pro-

cess, we show how we use it to implement a new power-optimizing scheduler. The

empirical evaluation of our approach includes the registration of our simulator against a

production-quality Eucalyptus private cloud, an evaluation of the scheduler in simulation

25

Validated Simulation For Engineering Cloud Schedulers Chapter 3

and real-world implementation, and an investigation into capacity planning leveraging

the simulator.

3.2 Related Work

Empirical evaluation of distributed systems technologies has a long tradition in Com-

puter Science. Recently, Gustedt et al. [53] has classified methodologies and recommends

best practices for performing experimental validation of large scale systems using real-

scale experiments, emulation, benchmarking, and simulation. The authors discuss the

importance of ab initio (high-level, imprecise, easily composable, and extensible simula-

tion for use in comparative analysis and exploration) and validated simulation (simulation

that produces behavior that matches that of a real system with low error).

Research in data center power-efficiency [54, 55, 56] predates the call for power-

proportional computing [57], but has gained substantial traction and public interest

since [58]. Recent work in datacenter power efficiency is surveyed by [59] and illustrates

the significant potential of energy- and cost-savings via pro-active power-management.

The power-aware scheduler we implement in this paper, was originally proposed in [52].

It uses the QBETS [60] predictor to estimate the number of hot spares needed to maintain

a configurable responsiveness SLA.

Grid research has spawned multiple simulators. This includes SimGrid [61] and Grid-

Sim [62]. The former provides validation for some simulation components, the latter is

an ab initio approach. Such systems are challenging to use for cloud systems since they

lack support for on-demand resource allocation, elasticity, and other cloud features.

To facilitate cloud research on a broad scale, the community developed a series of

domain-specific simulators. In particular, CloudSim [63] and NetworkCloudSim [64] al-

low simulation of large-scale clouds using an ab initio approach. CloudAnalyst [65]

26

Validated Simulation For Engineering Cloud Schedulers Chapter 3

extends CloudSim to facilitate simulation of globally distributed applications such as

social networks. These simulators model system components and workloads from the

bottom up and compose them into large-scale configurations. Their approach is very

flexible and extensible, but does not provide the accuracy guarantees necessary for eval-

uating production-quality cloud components. Alternatives allow for real-scale (in-situ)

experimentation [6, 66], but their use is limited for practical reasons (e.g. time, available

cluster size, budgetary constraints).

GreenCloud [67] is a simulator that focuses on exploring the energy consumption of

different datacenter network architectures. It builds upon the NS2 [68] network simula-

tor, and estimates the efficiency of hibernation and power-stepping strategies for servers

and network components. Workloads and hardware are modeled with differing compute

and communication capacities and, similar to our approach, the authors consider SLA re-

quirements. GreenCloud inherits network level accuracy from NS2, but does not consider

accuracy of per-node resource allocation or empirical validation of predictions.

EMUSIM [69] uses emulation of Bag-of-Task applications to extract performance

properties and simulate their behavior at larger scale more accurately. An evaluation step

ensures that emulation and simulation agree at observable scales. We similarly obtain

empirical measurements at small scale and scale them up in simulation. In contrast, our

approach focuses on cloud infrastructure components (not individual applications) and

makes predictions about the utilization and resource-use of the cloud as a whole.

RC2Sim [70] is an integrated simulation and emulation environment for testing of

production-quality cloud management code. It provides a compatible web API and em-

ulates distributed operations, such as file transfers and remote shell access, on a single

physical machine. This prior work focuses on functional testing of code rather than, as

we do in this paper, on accurate simulation of resource-usage and execution time.

DCSim [71] simulates IaaS clouds with a specific focus on dynamic power- and SLA-

27

Validated Simulation For Engineering Cloud Schedulers Chapter 3

optimization. The authors use tiered scale-out-type workloads and evaluate the advan-

tage of VM migration and replication strategies over static provisioning. Similar to our

work, they consider node power states and transitions, but do not perform an empirical

evaluation of the simulation results.

GDCSim [72] addresses the thermal aspects of power-management in data centers

by integrating existing models. Specifically, It investigates the interaction of workloads

and resource management policies with heat dissipation and fluid dynamics of different

physical data center layouts. Empirical validation of predictions is left for future work.

DCSim [73] uses detailed models and hardware specifications to simulate the impact

of networking infrastructure on web applications. The authors augment their simulation

model with workload characteristics obtained from real-world measurements and make

accurate, empirically validated, predictions about latencies for a set of benchmarks. The

work is similar to ours in terms of allowing trustworthy capacity planning, but targets

3-tier web applications instead of generic IaaS cloud infrastructures.

iCanCloud [74] uses hardware models to offer a limited POSIX-inspired API to em-

ulated the execution of distributed applications on a simulated cloud platform. The

authors also emphasize it’s graphical user-interface as distinction to other simulators. As

an “ab-initio” simulator, its performance is evaluated for a specific application use-case

against an analytical model, measurements from Amazon EC2, and an CloudSim im-

plementation. The work is different from our approach as it focuses on evaluating the

performance of a specific application at scale and generates predictions based on detailed

hardware models that are composed into a full cloud simulation.

PICS [75] is a cloud simulator that focuses on producing performance and cost predic-

tions for batch workloads executing on public clouds. PICS implements a discrete event

simulation to replay workload traces from synthetic or realworld sources with a focus

on scheduling VMs, storage, and network. The authors perform a rigorous evaluation

28

Validated Simulation For Engineering Cloud Schedulers Chapter 3

of simulation results against measurements taken from Amazon EC2 for a mix of work-

loads in terms of VM count, VM utilization, and realized cost over time. They further

perform a sensitivity analysis regarding the calibration of performance parameters to a

specific cloud as performed by the user. This work is similar to ours in its focus on job

scheduling and aggregate cloud performance metrics, as well as its extensive evaluation

of predictions against measurements from cloud systems executing the same workload.

Differences exist in simulation registration and the granularity of the scheduling simula-

tion. Our approach offers a structured process to calibrate and validate the simulation

model with an existing cloud, whereas PICS relies on the user to configure relevant pa-

rameters. PICS investigates the behavior of scale-out workloads by simulating task-level

granularity scheduling, while our simulation assumes fixed-size (non-malleable) jobs.

We take a “top-down” approach to cloud simulation, inspired by perturbation theory,

rather than the “ab initio” approach explored by extant literature. Starting from a

whitebox inspection of the cloud under investigation we derive a parsimonious model

that we then “perturb” with “noise” (measurements taken from registration runs on the

real system) until the desired level of accuracy is reached. As this noise is probabilistic,

we perform Monte-Carlo style simulation to produce results and associated confidence

bounds. Most importantly, the simulation’s accuracy can be validated end-to-end with

measurements taken from benchmarks (or historic behavior) of the specific, modeled

system. Thus, we achieve validated accuracy at the cost of model flexibility.

3.3 Methodology

We outline a process for conducting cloud scheduler research for private clouds in

terms of a specific example in which we seek an implementation of a new power-optimizing

scheduler for a private cloud. The scheduler uses on-line machine learning methodologies

29

Validated Simulation For Engineering Cloud Schedulers Chapter 3

to predict (in real time) when machines should be powered on and off to avoid delays

associated with machine spin up. Before an expensive engineering effort can be launched

to implement such a scheduler or a skeptical IT professional can be convinced to introduce

a new methodology, the reliability, performance, and efficacy properties of a new scheduler

must be verified. Our goal with this process is to facilitate accurate, faster-than-realtime,

end-to-end testing via validated simulation.

The goal of the methodology is to use a “top down” approach to simulation that mod-

els only those parameters that are necessary to capture the behavior of the component

of interest with sufficient accuracy. Identifying the parameters of this model requires

an understanding of the fault isolation properties of the platform which, in our example

use case, comes from source code inspection. The fault isolation properties establish the

independence of our model parameters which is required for trustworthy scaling of our

simulations.

The approach is to:

1. start with the most parsimonious model of end-to-end behavior that is possible,

2. perturb the model using statistical sampling technique to represent unmodeled

behavior,

3. test the model by comparing its outputs generated in simulation to measurements

taken from the “real world” system,

4. if the model is insufficiently accurate, add terms, adjust the perturbation, and

repeat.

Thus every addition of a variable to our model of the cloud should be justified by a

necessary increase in accuracy. Variables that only contribute marginally to the aggregate

result are omitted and modeled in aggregate as “perturbing” error terms. The level of

30

Validated Simulation For Engineering Cloud Schedulers Chapter 3

accuracy that is acceptable is ultimately decided by the consumers of the simulation.

In an engineering context the error terms may serve as inputs to a risk analysis, where

variability is acceptably low when the difference in risk that greater accuracy would

engender is deemed insignificant by those taking the risk.

3.3.1 Model Construction

The first step in our approach is a white-box inspection of the documentation and

source code. With information about the control and data flow in hand, we are able

to identify critical inputs, cloud components and their interactions, and relevant output

metrics.

In this case study, we are interested in evaluating a new cloud scheduler, which

requires user requests, the physical platform configuration, and the allocation algorithm

as inputs. The cloud model consists only of a set of independent nodes with fixed resource

capacities that hold a number of instances with fixed requirements. Interactions between

this model and the scheduler implementation take place if and only if a request arrives

or the life time of an instance expires.

The outputs of the cloud scheduler that we can observe are (a) request acceptance

rate and (b) the allocation of “virtual machines” (VMs) to nodes over time. We quantify

this behavior by computing the aggregate CPU time for each physical node devoted to

work assigned to it by the scheduler. Comparing node CPU time, both in simulation and

actual measurements, succinctly captures the end-to-end behavior of the system under

test for the cloud scheduler component.

Note that a new scheduler may require additional modeling terms beyond those that

capture the existing system’s behavior. In our case, we wish to implement and test a

power-aware scheduler that predictively and pro-actively powers on and off nodes based

31

Validated Simulation For Engineering Cloud Schedulers Chapter 3

on recent load history [52]. To enable this, we must extend the model to represent

periodic polling of load (the periods are called “epochs” in the scheduler algorithm) and

power states of the nodes (awake, waking, and asleep) that the scheduler can manipulate

via messages to the nodes. We extend the output set of this scheduler to include the

aggregate power-up delay it generates and the amount of time each node spends in the

awake or waking state. We perturb the model by representing the delay necessary to

power a node up as empirically determined distributions (so as to avoid their simulation

overhead).

3.3.2 Discrete Event Simulation

To simulate the system in faster-than-real time, the next step is to develop a discrete-

event simulation that captures only the changes in the states specified in the model. In

our example, scheduler events are triggered by

• the arrival of a new VM request from the input trace

• the acceptance and launch of a new VM assigned to a node

• the termination and cleanup of a VM as reported by the node running it

• the expiration of a timer marking epoch boundaries,

• the expiration of a timer marking the end of a node power-up sequence

The simulation of the scheduler (either the existing or the new power-optimizing sched-

uler) from these events takes a trace of VM activity, which we represent as start-time

and and duration pairs for a set of VMs.

Note that this event list demonstrates the parsimony in our approach. Through

inspection, it is clear that Eucalyptus breaks the VM start and termination sequence

32

Validated Simulation For Engineering Cloud Schedulers Chapter 3

into a series of separate “phases” for the purpose of error handling and fault tolerance.

We represent these in our simulator by the perturbation of VM start-up and termination

delays. Notice also that we can omit the node power-down time as its addition does not

change the results in a way that we could detect.

At a high level, the simulation works as follows. User requests consist of request

time (arrival), instance lifetime (duration) and instance type (size). The platform con-

figuration contains physical node IDs and capacity (cores, memory, disk). The scheduler

assigns requested instances to nodes, and removes them as they expire based on a policy

(the algorithm implemented). Additionally, the scheduler is notified when node power

states or epoch times change in order to perform power-budget accounting.

3.3.3 Adding Perturbations

To fit and evaluate the simulation model we extract performance information from

a live cloud. We require two types of measurements: those we use to introduce per-

turbations (e.g. VM start-up, termination, etc. and those that we use to validate the

simulations (i.e. the aggregated outputs of the scheduler).

We use a combination of log analysis and instrumentation to collect these measure-

ments. Log analysis is preferable since it avoids the possibility of disturbing system

performance through the introduction of instrumentation. In the case where the existing

logs do not carry the information with sufficient resolution to drive the simulation, we

take care to modify the source code of the platform to introduce additional logging infor-

mation in a way that is unlikely to change execution performance. For example, logging

new events that require synchronization of otherwise asynchronous activities must be

avoided.

The measured noise – the values for launch and teardown delays – are fuzzy. To get

33

Validated Simulation For Engineering Cloud Schedulers Chapter 3

accurate simulation results later on we represent the noise as empirical distribution of

individual measurements rather than averaging them. In our simulation we then sample

these distributions to obtain varying noise values when processing each individual event.

As a consequence, the aggregate results of the simulation are non-deterministic and we

are required to average them over multiple runs in a Monte-Carlo [51] style simulation.

3.3.4 Scheduler Operation

Both, the existing scheduler and the power-optimizing scheduler must be implemented

for the simulator. The accuracy risk (and one of the reasons necessitating validation)

comes from the observation that the simulated and real implementations may differ.

Ideally, both the discrete-event simulation and the implementation for the real system

share the same source code. In our example, that sharing is possible, but we opted

instead to rely on validation so that we might implement the schedulers in different

programming languages. The production system schedulers are written in C and our

discrete event simulation is written in Scala.

The existing production scheduler uses a “greedy’ scheduling algorithm to maximize

multi-tenancy. When a new VM is to be assigned to a node, the scheduler considers the

node list in a fixed order and uses a first-fit assignment algorithm.

The power-optimizing scheduler uses load measurements taken over discrete epochs

to predict how many powered-up machines will be needed in the “next” epoch to avoid a

power-on event with a specified probability. While a node is being powered on, the VM

start will be delayed by the remaining duration of the power-up sequence. This delay

is experienced by the user directly. Thus the goal of the power-optimizing scheduler

is to minimize power usage, subject to an SLO specified by the cloud administrator

that limits the probability of any given user experiencing a power-up delay. As in the

34

Validated Simulation For Engineering Cloud Schedulers Chapter 3

greedy scheduler, we order hosts by status (awake, waking, and asleep) and ID. We place

an incoming VM on the first available awake host (followed by a waking host). If no

powered-up host can be found, the request will be enqueued for a powered-down node,

which is immediately sent a wake-on-lan message. A start delay is incurred whenever a

VM is placed on a machine in waking or asleep state.

The power manager uses a fast, non-parametric quantile predictor and makes con-

servative estimates about the number of hot spares needed to fulfill the responsiveness

(non-delay) SLO. It determines the target count of active nodes in fixed time steps -

epochs - by comparing the current spare capacity of the cloud to the size of request

bursts in the past. Depending on the result of this comparison additional nodes are then

woken up or powered down.

Note that our implementation of cloud federation described in the next chapter relies

on a similar quantile predictor to make admission decisions. As we will show, the simula-

tion model produces sufficiently accurate results to feed the power manager’s predictor.

This compels us to use a similar simulation model for evaluating the efficacy of our cloud

federation architecture.

3.4 Results

In this section, we evaluate our approach and its example implementation. We first

overview our experimental setup and then present the results that we achieve by statis-

tically registering our simulator with the actual target IaaS system it simulates. Using

registered simulation, we then evaluate our power-aware scheduler and evaluate a number

of different capacity planning scenarios, using a number of different traces (actual and

synthetic) and cloud configurations.

For our empirical measurements we use a seven node commodity hardware cluster.

35

Validated Simulation For Engineering Cloud Schedulers Chapter 3

Table 3.1: Summary of Synthetic Workloads . Units are in Seconds.
Name Total Duration VM Count Arrival Duration

Exponential 36305 443 λ = 0.0125 λ = 0.002
LogNormal 35646 420 µ = 3.8 µ = 4.5

σ = 1.0 σ = 1.0

Each node runs on CentOS v6.5 and holds four cores, 8 GB ram, and a 500 GB hard drive

and is connected to the network via two 1 Gbit ethernet links. We set up Eucalyptus

v3.4.2 with a dedicated head and storage node and six nodes serving as instance hosts.

Since we need control over the placement of instances and power management of nodes,

we install from source and inject a small code modification that enables explicit node

selection by our scheduler. We implement the power manager to interact with the cluster

controller via its shared-memory interface. Eucalyptus is a production-quality system

and as such includes a number of security features that are in place to prevent these

kinds of outside modifications. For this reason, we temporarily disable message signature

verification to make the injection of load traces less labor intensive to implement.

We use a number of synthetic workloads and production cluster traces [76] to eval-

uate the simulator and the power-optimizing scheduler. The synthetic workloads are

generated from exponential and lognormal distributions for instance arrival times and

durations (details in Table 3.1). We also have access to anonymized traces from Euca-

lyptus installations used in enterprise production (described later in Table 3.7). Using

these traces it is possible to “replay” the VM load and scheduling activity that took place

when they were gathered, either in simulation or on a working Eucalyptus system.

3.4.1 Simulation Registration

For registration we execute a benchmark trace on a single node which has been sepa-

rated from the six node Eucalyptus IaaS cluster and measure various system overheads.

36

Validated Simulation For Engineering Cloud Schedulers Chapter 3

Table 3.2: Summary of Empirical Cluster Attributes collected
Attribute Description

VM start delay Instance start delay until
boot sequence

VM teardown delay Instance termination delay
until resources freed

Node wakeup delay Time required for node
wake-on-lan

The registration trace contains 100 instance start- and stop-requests over a period of 10

hours. We use choose a constant interarrival time between requests to avoid an implicit

look-ahead bias towards our synthetic exponential and log-normal test traces. We collect

the empirical samples of instance startup, instance termination, and power-up delays.

Separately, the latencies for hibernation are obtained by manual execution of a script

power cycling the machine. We then configure the simulator to use these empirical la-

tency distributions and prepare for testing the power manager with synthetic workloads.

The specific attributes that we profile in this study are shown in Table 3.2.

Registering the simulation this way is not necessarily straight forward: Eucalyptus

uses a polling model so that it can control message traffic internally. The cluster nodes

do not report the completion of state changes to the head node until they are polled

explicitly, which currently happens in 6 seconds intervals and can lead to artifacts in

the observed distributions. Anecdotally, in our first registration trace we used fixed

interarrival times of requests which was a multiple of the 6 seconds polling interval. This

caused us to measure delays in multiples of 6 seconds plus an offset – depending on

when we first started the registration run within the 6 second polling window – only. To

reduce distortions in our observations due to synchronized launch and polling intervals

we introduced a small random variation in start- and stop-times of instance requests that

we draw from a uniform distribution (between 0 and 6 seconds).

We use synthetic workloads during the registration testing phase so that we can ensure

37

Validated Simulation For Engineering Cloud Schedulers Chapter 3

0	

1	

0	 2	 4	 6	 8	 10	

Ca
pa

ci
ty
	 (%

)	

Time	 (hours)	

U)liza)on	 Awake	

0	

1	

0	 2	 4	 6	 8	 10	

Ca
pa

ci
ty
	 (%

)	

Time	 (hours)	

U)liza)on	 Awake	

Figure 3.1: Timeries showing synthetic exponential (left) and lognormal (right) work-
load trace with power-optimizing scheduler activated at the 5 hour mark. The x-axis
depicts time in one hour intervals, and the y-axis shows the fraction of the number of
cores occupied. The dotted line shows the fraction of cores that belong to nodes that
are powered-up.

Table 3.3: Utilization per Node (Exponential Trace)

All A B C D E F

sim (mean) 0.4008 0.8727 0.7564 0.5195 0.2217 0.0346 0.0000
sim (sd) 0.0066 0.0033 0.0091 0.0085 0.0085 0.0047 0.0000
real (mean) 0.4033 0.8742 0.7551 0.5250 0.2311 0.0344 0.0000
real (sd) 0.0052 0.0053 0.0061 0.0062 0.0075 0.0024 0.0000

that the observed response of the system is meaningful on a feasible time frame. That

is, a replay of the production traces described later in Table 3.7 in real time would span

months if executed in real time. Alternatively, selective extractions of tractable “busy”

periods might skew the sample and the attempt to “speed up” the trace (i.e. using a

fitted probability model as described in [77]) could introduce additional error.

Thus, to test registration accuracy we choose two synthetic traces each having a

duration of 10 hours, with a mean utilization of 1/3 of the 6 node cluster capacity. The

Table 3.4: Uptime per Node (Exponential Trace)

All A B C D E F

sim (mean) 0.8711 1.0000 1.0000 1.0000 0.9128 0.7766 0.5375
sim (sd) 0.0127 0.0000 0.0000 0.0000 0.0166 0.0235 0.0119
real (mean) 0.8758 1.0000 1.0000 1.0000 0.9312 0.7704 0.5529
real (sd) 0.0094 0.0000 0.0000 0.0000 0.0115 0.0174 0.0098

38

Validated Simulation For Engineering Cloud Schedulers Chapter 3

Table 3.5: Utilization per Node (Lognormal trace)

All A B C D E F

sim (mean) 0.3974 0.8555 0.7305 0.5140 0.1960 0.0665 0.0217
sim (sd) 0.0045 0.0024 0.0053 0.0082 0.0039 0.0001 0.0023
real (mean) 0.3985 0.8550 0.7223 0.5213 0.2025 0.0696 0.0202
real (sd) 0.0043 0.0022 0.0046 0.0059 0.0050 0.0037 0.0036

Table 3.6: Uptime per Node (Lognormal trace)

All A B C D E F

sim (mean) 0.8565 0.9851 0.9851 0.9637 0.9161 0.7192 0.5696
sim (sd) 0.0025 0.0000 0.0000 0.0020 0.0000 0.0042 0.0038
real (mean) 0.8605 0.9851 0.9851 0.9652 0.9178 0.7292 0.5805
real (sd) 0.0048 0.0000 0.0000 0.0000 0.0001 0.0112 0.0033

first trace is generated from an exponential distribution for arrival times and instance

durations, whereas the second trace uses a lognormal distribution for both. For the

exponential distribution, these values of λ correspond to a mean inter arrival time of 80

seconds and a mean duration of 500 seconds. For the lognormal distribution, the mean

inter arrival time is 81 seconds and the mean duration is 785 seconds. Note that there

is a minimum lifetime of 360 seconds to allow for instance startup and all VM requests

issued are single-core and uniform in memory and disk requirements.

In all test cases the power-optimizing scheduler is configured to guarantee a respon-

siveness SLA that at least 95% of all start requests will not be affected by a delay due to

waking a node from hibernation. The epoch length is set to 300 seconds with a minimum

history length of 60 epochs, which triggers activation of the power manager at the five

hour mark in our benchmark traces.

Our results show agreement between simulation predictions and out-of-sample mea-

surements. We repeat simulation and real world runs 12 times (a total of 120 hours)

for each trace separately and compute the averages. For visualization, two exemplar

runs from the benchmarks are shown in the graphs in Figure 3.1. The figures depict

39

Validated Simulation For Engineering Cloud Schedulers Chapter 3

Table 3.7: Summary of Private Cloud Dataset Characteristics

Data Set Nodes Cores/Node Time Period Description
DS2 7 12 Aug. 2012 to Apr. 2013 Medium sized company with

2,000 to 5,000 employees
DS3 7 8 Aug. 2012 to May 2013 Small company with

50 to 100 employees
DS5, DS6 31 32 Nov. 2013 to Dec. 2013 Large company with

50,000 to 100,000 employees

the activity of the power manager over time. The y-axis represents the number of cores

used, normalized to maximum capacity. The x-axis represents time in one hour (3600

seconds) intervals. The solid line shows the number of cores occupied by instances in

the cluster while the dotted line shows the number of cores available on awake nodes.

The activation of the power manager can clearly be seen at the five hour mark. With

changes in utilization, a fluctuation of the number of awake nodes can be observed. Due

to the high frequency of these changes in our registration traces, we expect the impact

of inaccuracies in the simulation to be exacerbated.

Tables 3.3 and 3.4 show average utilization and uptime (expressed as fractions,

respectively) per node and their standard deviations using the synthetic exponential

trace. The counterparts for the synthetic lognormal trace can be found in Tables 3.5

and 3.6. For this experiment, we are concerned with numerical accuracy and do not

adjusted the power savings for the power manager’s warmup period. We find a good

match between simulation and real world observation, with the largest per-node difference

of 2%.

Note that in our initial runs the registration of both, core utilization and up time

between simulated and measured exponential runs did not seem to match as precisely as

we had anticipated. In particular, the utilization and uptime of nodes seemed to differ

to a greater extent than we had hoped. Investigating the cause of this inconsistency,

40

Validated Simulation For Engineering Cloud Schedulers Chapter 3

we discovered an implementation bug in the power manager that we integrated into

Eucalyptus. This discrepancy illustrates an ancillary benefit to trustworthy simulation.

By working with a perturbative model we were able to anticipate the degree of accuracy

we could expect and thus launch a targeted debugging effort when we did not achieve it.

3.4.2 Power-Aware Scheduler at Scale

The results described in the previous section show that the simulation of Eucalyptus

with the power-optimizing scheduler match the observations of an actual Eucalyptus

implementation of the scheduler to an error of less than 2% at scales that are feasible to

test. In this section, we use the simulator to study the effects that the scheduler would

have achieved in production settings had it been available and deployed.

We run the simulator using traces gathered from the logs generated by Eucalyptus

when run in several production settings. The commercial enterprises who donated their

Eucalyptus logs to the project asked not to be identified specifically. Table 3.7 summa-

rizes the node and core counts for each commercial trace, its duration, and a description

of the size of the business. We number the datasets as DS2, DS3, DS5, and DS6 as they

are part of a larger collection of data sets. The anonymized traces from the collection

are available to the research community from [76].

We do not replay these traces through a “live” installation of Eucalyptus because

each of these traces spans several months in real time. Further, in order to observe the

power-optimizations from a working system, it would have been necessary to recreate

the specific deployments that generated each trace. Note, however, from Table 3.7,

that the core and node counts in these production deployments are modest. Production

enterprises are often partitioned into smaller units both to enhance fault isolation and to

allow resource expenses to better track business unit organization.

41

Validated Simulation For Engineering Cloud Schedulers Chapter 3

Thus at these scales, the power-optimization results are likely to be nearly as accurate

as those shown in Subsection 3.4.1. An inspection of the source code indicates that any

additional overhead introduced by the additional nodes and cores would be covered by

the perturbation terms in the model with one important caveat. At the time these traces

were generated, the power-optimization scheduling algorithm did not exist nor had we

begun its development. Thus we lack the specific hibernation and wake-on-lan response

times that are necessary to parameterize the model. In the absence of this data, we use

the empirical samples from our test cloud in its place. The result is an accurate simulation

of what the efficacy would have been if the machine power-cycling performance response

were the same as it is in our laboratory.

Two of the three production traces are nine months in length with highly variable

resource demand. The third trace is one month in length and has a very regular workload.

Further, we set the power-manager epoch time to 1000 seconds, as suggested by the

original authors, and use the same 95% responsiveness SLA as before. Also, the history

length for samples takes by the power-optimizing scheduler is set to 2000 samples.

To predict efficacy, we define power efficiency to be the total CPU time for all nodes

normalized to its theoretical maximum possible, divided by the uptime of active nodes

normalized to its always-on baseline (as shown in Equation 3.1).

efficiency =
total cpu time/max cpu time

total uptime/max uptime
(3.1)

Recall from Subsection 3.4.1 that CPU time is the amount of CPU time used by a node

to run the VMs assigned to it and uptime is the total duration that a node is in the

powered-up or waking state. As such, this formulation of efficiency captures the degree

to which the power used by the system is used to run VMs.

We run a Monte-Carlo simulation 30 times for each trace, once with power manager

42

Validated Simulation For Engineering Cloud Schedulers Chapter 3

0.230	
0.131	

0.645	

0.341	 0.337	

0.855	

0	

0.25	

0.5	

0.75	

1	

DS2	 DS3	 DS5	

Effi
ci
en

cy
	

baseline	 power-‐aware	

Figure 3.2: Comparison showing power-efficiency of the power-aware scheduler with
bars representing baseline (left) and power-aware (right) efficiency for three production
traces (DS2, DS3, and DS5).

enabled, once without. The results are shown in Figure 3.2. Error bars have been omitted

due to the minimal deviation of the averages between runs. For the variable DS2 and

DS3 the efficiency increases by a factor of 1.5 and 2.6 respectively, and for the constant

DS5 by 1.3. While the relatively small improvement for the constant workload DS5

seems intuitive, the differences between DS2 and DS3 are not obvious at first. Close

investigation shows that DS2 contains requests that demand access to the whole cluster

after long periods of inactivity while DS3 has users demand small batches several times

before issuing a large request. With this difference, the power manager becomes more

conservative in its predictions for DS2 compared to DS3, which results in lower overall

power-savings and efficiency.

Note that in our initial runs of the long-term traces we observed a large miss-

percentage for the first two traces with our implementation of the power manager. The

simulation and implementation agreed, but together they did not meet the SLO that

the scheduling algorithm should have obtained. In communication with the authors of

the algorithm, we found a discrepancy with our implementation when correcting for very

long periods of inactivity on the cluster. We corrected our implementation, both in the

simulator and for Eucalyptus itself, re-validated on our test bed and then executed the

43

Validated Simulation For Engineering Cloud Schedulers Chapter 3

long-term traces again. This time the SLO was met without exception. Due to faster-

than-realtime simulation the turnaround time for debugging, updating and re-evaluation

correspond to a fraction of the time required for real-time testing alone.

By replaying real-world traces, the simulator helps to determine the impact of subtle

differences in the workload before the production deployment of a new scheduler. This

is especially true when synthetic traces do not exhibit all the properties of production

workloads. This makes testing efforts more robust and provides insights for planning the

deployment of a new IaaS resource manager.

3.4.3 Capacity Planning

Aside from software development and testing, trustworthy simulation can inform ca-

pacity and business planning. So far, we have solved one-dimensional, monotonic prob-

lems for testing a power manager’s efficiency under a single SLO constraint. In contrast,

stakeholders in enterprises have to consider multidimensional problems with considera-

tion given to capital and operating expenses, ease of use, robustness of a system and

transition policies, among others. Using the simulator to test different platform config-

urations against a recorded trace, we find Monte-Carlo simulation provides additional

insights to inform trade-offs between cost and expected quality of service and simplifies

the decision-making process.

In this experiment, we use a 1-month section of a production trace (depicted in

Figure 3.3). Given this workload and our use of the power manager, we investigate

how many nodes we can remove from the cluster while still meeting our chosen SLO

(95% responsiveness and 99% start request acceptance). To enable this, we run the

simulation with the power manager activated (PM) and without (base) and incrementally

remove nodes from the base configuration until SLO violations occur. We use the same

44

Validated Simulation For Engineering Cloud Schedulers Chapter 3

0	

1	

0	 5	 10	 15	 20	 25	 30	 35	

Ca
pa

ci
ty
	 (%

)	

Time	 (days)	

U(liza(on	

Figure 3.3: This production trace of an over-provisioned cluster with a fixed workload
is the foundation of the down-sizing scenario.

0	

0.25	

0.5	

0.75	

1	

base	 -‐1	 -‐2	 -‐3	 -‐4	 -‐5	 -‐6	 -‐7	 -‐8	 -‐9	 -‐10	 -‐11	 -‐12	 -‐13	 -‐14	

Effi
ci
en

cy
	

efficiency	 (base)	 efficiency	 (PM)	 accept	

Figure 3.4: Power-efficiency increases while request acceptance rate decreases as node
count goes down in the base case. The power-aware scheduler guarantees constantly
high efficiency.

configuration of the power manager from previous experiment and register the system

via the logged request delays of the real system. We conservatively assume 600 seconds

for node power-up.

Figure 3.4 depicts the aggregate power-efficiency and request acceptance rate on the y-

axis and the reduction in the number of nodes over the baseline system on the x-axis. We

omit plotting misses due to wake-on-lan as the SLO is never violated in this experiment.

There are two interesting insights revealed by the data. First, after a reduction by 8

nodes we cross the threshold of diminishing returns for the non-power-aware case, while

the maximal reduction lies at 9 nodes before violating the acceptance SLO. However, even

guaranteeing a 99.9% acceptance SLO would still allow for a reduction by 6 nodes (about

45

Validated Simulation For Engineering Cloud Schedulers Chapter 3

20% of the cluster). Second, for the power-aware case, we notice that the efficiency is

almost constant and independent of the node count for the cluster’s specific workload.

With this data about the non-parametric power-manager in hand, decision-makers

can focus their attention on other aspects of the capacity planning problem. Furthermore,

if different levels of quality of service guarantees are being considered, reliable estimates

about their expected cost can be obtained via simulation.

3.4.4 Capacity Planning for Scale-Out Workloads

Our final use-case is capacity planning for scale. Simulation gives decision-makers the

ability to make reliable forward-looking estimates about the hardware requirements for

an expected workload without acquiring or renting all necessary resources (i.e. servers

and infrastructure) for testing ahead of time.

In this set of scale-planning experiments, we run the simulator as a “parameter sweep”

varying both the number of nodes in the simulation, and the intensity of the workload

(by changing the mean arrival time) independently. Thus each simulation depicts the

behavior of the cloud at a given size for a given workload intensity. The simulator assumes

a scale-out workload, e.g. 3-tier web applications or MapReduce jobs, and computes the

expected power-efficiency for a given platform size.

We configure a virtual cluster of nodes with properties similar to the cluster used as

our real-world test bed, but double their core capacity. The workload is generated from

a lognormal distribution similar to the one we use in our registration experiments (c.f.

Table 3.1). We also set the SLO for not incurring a power-up delay to be 95% (and the

scheduler achieves this SLO in each case). In addition, because the number of nodes

at some point in the parameter sweep may be insufficient to run the offered load (the

cloud is out of resources), we only report results for the cases where at least 99% of the

46

Validated Simulation For Engineering Cloud Schedulers Chapter 3

1.50 2.00 2.50 3.00 3.50 4.00
1 -‐ -‐ -‐ -‐ -‐ -‐
2 -‐ -‐ -‐ -‐ -‐ -‐
3 -‐ -‐ -‐ -‐ -‐ 0.42
4 -‐ -‐ -‐ -‐ 0.50 0.31
5 -‐ -‐ -‐ 0.66 0.40 0.25
6 -‐ -‐ -‐ 0.56 0.33 0.21
7 -‐ -‐ -‐ 0.48 0.28 0.18
8 -‐ -‐ 0.69 0.42 0.25 0.16
9 -‐ -‐ 0.62 0.37 0.22 0.14
10 -‐ -‐ 0.56 0.33 0.20 0.12
11 -‐ -‐ 0.51 0.30 0.18 0.11
12 -‐ 0.78 0.46 0.28 0.17 0.10
13 -‐ 0.72 0.43 0.26 0.15 0.10
14 -‐ 0.67 0.40 0.24 0.14 0.09
15 -‐ 0.63 0.37 0.22 0.13 0.08
16 -‐ 0.59 0.35 0.21 0.12 0.08
17 -‐ 0.55 0.33 0.20 0.12 0.07
18 -‐ 0.52 0.31 0.19 0.11 0.07
19 0.83 0.49 0.29 0.18 0.10 0.07
20 0.79 0.47 0.28 0.17 0.10 0.06

1.50 2.00 2.50 3.00 3.50 4.00
1 -‐ -‐ -‐ -‐ -‐ -‐
2 -‐ -‐ -‐ -‐ -‐ -‐
3 -‐ -‐ -‐ -‐ -‐ 0.42
4 -‐ -‐ -‐ -‐ 0.51 0.39
5 -‐ -‐ -‐ 0.67 0.48 0.38
6 -‐ -‐ -‐ 0.59 0.47 0.38
7 -‐ -‐ -‐ 0.58 0.47 0.37
8 -‐ -‐ 0.71 0.57 0.46 0.37
9 -‐ -‐ 0.67 0.57 0.46 0.36
10 -‐ -‐ 0.66 0.56 0.45 0.36
11 -‐ -‐ 0.66 0.56 0.45 0.35
12 -‐ 0.79 0.66 0.56 0.44 0.35
13 -‐ 0.75 0.65 0.55 0.44 0.35
14 -‐ 0.74 0.65 0.55 0.44 0.34
15 -‐ 0.73 0.65 0.55 0.43 0.34
16 -‐ 0.73 0.64 0.54 0.43 0.34
17 -‐ 0.72 0.64 0.54 0.43 0.33
18 -‐ 0.72 0.64 0.54 0.42 0.33
19 0.84 0.72 0.64 0.53 0.42 0.32
20 0.80 0.72 0.63 0.53 0.41 0.32

Figure 3.5: Parameter-sweep predicts changes in power-efficiency with increasing node
count (y-axis) and workload intensity (Lognormal arrival, µ on x-axis, σ = 1.0) at the
baseline (left) and with power-aware scheduler (right).

simulated VMs were able to run. The power-up delay for a node is again assumed to be

600 seconds.

Figure 3.5 shows the mean power efficiency (as computed in Equation 3.1) for each

combination of intensity and node count. Node counts on the vertical dimension of the

figure correspond to the number of nodes the cloud has configured. The intensity value

(horizontal dimension) show the value of µ used in each lognormal parameterization

(σ = 1.0 in each case). Parameter-combinations that fail to achieve the target SLOs are

marked “-” in the figure. Each entry covers a simulated time-frame of 60 days.

The left-hand table in Figure 3.5 shows power efficiency for different combinations of

intensity and cloud size without the power-optimizing scheduler and the right-hand table

shows the same with the scheduler activated. We use a heat map to color the efficiency

numbers (green for high, red for low) for each combination.

For example, in the left-hand table, the entry for 19 nodes with µ = 1.5 corresponds

to a power efficiency of 0.83 (colored green). Thus a cloud with 19 nodes experiencing

a workload with lognormal inter arrival times (µ = 1.5, sigma = 1.0) and lognormal

durations (µ = 3.8, σ = 1.0 from Table 3.1) for 60 days would achieve a power efficiency

47

Validated Simulation For Engineering Cloud Schedulers Chapter 3

of 0.83 without the power-optimizing scheduler. The same entry in the right-hand ta-

ble shows that with 19 nodes and µ = 1.5 the power-optimizing scheduler achieves an

efficiency of 0.84.

As expected, these results indicate that as the inter arrival time goes down (smaller

values of µ) the efficiencies converge to a high value both with and without the power-

optimizing scheduler. These extreme cases correspond to the cloud being “full” almost

all of the time leaving little efficiency to be gained by powering nodes on and off. At the

other extreme, when inter arrival times are larger (large values of µ) the power-optimizing

scheduler has more of an opportunity to save power. Indeed just looking at the heat map

coloration of both tables shows the trend in efficiency in both dimensions. All green

entries in the regular scheduler are green for the power optimizing scheduler (it does no

harm). In addition, the power-optimizing is “greener” across all entries and never “red.”

With faster-than-realtime simulation we can perform parameter sweeps across large

ranges of configuration parameters, such as cluster size and workload intensity. Due to

the embarrassingly-parallel nature of Monte-Carlo simulation, parameter-sweeps can be

performed anywhere, from a personal laptop to a group of workstations, with a flexible

trade-off between accuracy and wait time. Initial results are available within minutes,

followed by increasing degrees of confidence and minimal convergence. The results for this

experiment total at 450, 000 VM starts and 7, 200 days (about 20 years) of simulated time,

and were generated on commodity laptop hardware within 8 hours. This demonstrates

the practical ability of this approach to quickly estimate the impact of different workloads,

additional hardware or new resource-allocation policies.

A core interest of cloud operators is the trade-off between risking service disruption

due to increases in load or the introduction of new technologies, and unnecessary capital-

and operation-expenses. In our example, the data reveals that the power manager can be

used safely and without negative impacts on availability, independently of the platform

48

Validated Simulation For Engineering Cloud Schedulers Chapter 3

size and workload intensity. At high levels of utilization its impact is marginalized,

however, which can inform decisions based on the expected workload and cluster size.

Another insight that can be gained from the parameter-sweep is the amount of re-

sources required to achieve a specific target utilization of the cluster (which equals cluster

efficiency of the non-power-aware baseline). In our example, a mean utilization target of

50% demands 3 nodes for the light workload (µ = 4.0) and moves up to 4, 7, 12, 19 and

further with increasing workload intensity. Depending on the workload, the non-linear

interactions between utilization and SLO constraints are hard to estimate analytically or

with rules-of-thumb. Accurate simulation overcomes this limitation and helps allocate

resources efficiently inside and around the cloud.

3.5 Conclusion

Simulation plays a key role in performing experimental exploration into large scale

systems. As such, simulation has significant potential for facilitating research and exper-

imentation with cloud computing infrastructures. Cloud research in general is important

for advancing the state of the art in cloud performance, scale, energy efficiency, and fault

tolerance, among other features. However, the wide spread use and commercial viability

of cloud computing requires that simulated results be sufficiently trustworthy (accurate)

to ensure adoption of research results in production settings and to justify the engineer-

ing effort required to achieve production levels of performance and reliability. Extant

simulation systems typically trade off validation and accuracy for configurability and

exploratory power, through the use of ab initio techniques that facilitate comparative

evaluation of cloud components and application behavior.

In this chapter, we presented a new methodology for facilitating trust in the simu-

lation of cloud components through the use of a tool employed in the physical sciences

49

Validated Simulation For Engineering Cloud Schedulers Chapter 3

for simulation called perturbation theory. Using this methodology, we derive a parsimo-

nious model from a real cloud infrastructure (in our case a Eucalyptus private cloud)

for the cloud component under study (in our case a scheduler). We then perturb the

model using statistical sampling to represent unmodeled behavior to facilitate simulation

speed and scaling. We incrementally add parameters (component inputs) to the model

(incorporating key unmodeled behavior) until we achieve an acceptable level of accuracy

for the component, relative to the real system. It requires, however, that we have access

to a production-quality cloud that we can interrogate and validate against.

The perturbation modeling approach achieves high accuracy for simulating an existing

system. We also evaluate the predictive capabilities of validated simulation for modified

clouds by implementing a power-aware scheduler first in simulation and then in a real

cloud for reference measurement. We find strong agreement between prediction and

measurement, encouraging us to apply validated simulation to a number of enterprise

capacity-planning scenarios.

50

Chapter 4

Estimating Job Preemption
Probability in IaaS Clouds

4.1 Introduction

A pre-requisite for independent organizations contemplating participation in a feder-

ation is the guarantee that they ultimately maintain control over their resources. When

adapting “cycle harvesting” to the cloud context, the one cloud executing another cloud’s

workload must be able to preempt (terminate) the foreign workload at any time to ser-

vice locally generated workload should the need arise. This gives rise to a tiered service

structure, with “high priority” instances from local users and “low priority” instances

federated from remote clouds. In this priority scheme, incoming high priority requests can

preempt low priority requests if the cloud runs out of spare capacity, but not vice versa.

That is, federated workload executes opportunistically on intermittent spare capacity.

In the cloud context, the SLA requires that guarantees (SLOs) about the quality of

service be made ahead of time, which is at odds with the potential need to preempt

federated instances after admission. Making open-ended guarantees about the continued

availability (non-preemption) of instances is equivalent to giving up control over the

assigned resources. One way to solve this conflict is to make availability guarantees

51

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

for a limited time period and provide ahead-of-time estimates about the preemption

probability of low-priority instances for this limited window only.

We study such time-limited guarantees for batch workloads with bounded job dura-

tions. Common sources of batch jobs in clouds are big data frameworks, such as Apache

Hadoop [34] and Apache Spark [37], and compute-intensive tasks, such as MPI. In IaaS

clouds, a “job” can be represented as a fixed number of instances executing for a fixed

duration. If we can obtain an estimate of the availability of preemptible capacity during

the expected execution period of a job at admission time, we can estimate the job’s pre-

emption probability before launch and thus enable job federation on preemptible capacity

while still providing an ahead-of-time availability SLO.

In practice, the preemption probability of a federated job depends on many factors,

including the properties of the user’s request, other active workload and the state of the

cloud as a whole. Intuitively, jobs with long durations seem more likely to encounter

preemption than jobs with short durations, and similarly, jobs requiring many instances

in parallel more likely than jobs requiring few. Furthermore, as federated workload

executes opportunistically on spare capacity, the current utilization level of the executing

cloud may also affect this probability. A cloud with a large user base makes manual

determination of these complex dependencies impractical, and thus must be able to make

estimates autonomously and adapt to changes over time.

Assuming that the expected duration of a federated job is provided by the user,

we can estimate its preemption probability if we know the amount of time until the

executing cloud reaches capacity and triggers preemption. An estimate of this “time-to-

preemption” can be obtained from the historic utilization trace of the cloud by taking

advantage of a validated simulation model of the cloud (c.f. Chapter 3). Even with the

precise job duration unknown to the user, an upper bound on job duration is sufficient

to calculate an equivalent upper bound on a job’s preemption probability.

52

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

In addition to supporting a federation scheme later on, an estimate of the time-to-

preemption for preemptible instances can still provide benefits on a stand-alone cloud.

In private clouds, preemptible instances allow enterprise users to exceed their respective

quotas by taking advantage of otherwise unused capacity. Because a preemptible instance

will be terminated if the capacity is needed to run a regular instance, users can run

preemptible instances without a charge to their respective quotas. That is, the capacity

for preemptible instances is “scavenged” and then reclaimed when it is needed for regular

instances similar to “cycle harvesting” in Condor workstation pools.

Our approach uses on-line simulation to predict the time-to-preemption of instances

based on the recent history of cloud activity. In particular, we use a Monte-Carlo style

simulation (run every few minutes) to estimate the distribution of the possible lifetimes

of preemptible instances from requests in the recent past. We use this non-parametric

approach to compute the quantiles (i.e. percentiles) of the empirical distributions of in-

stance lifetimes until preemption that are conditioned on the capacity currently available

in the cloud. These quantiles then serve as a probabilistic lower bound on the time-to-

preemption of future instances which the user can interpret as a statistical “guarantee”

of preemptible instance lifetime. For example, the lower 0.05 quantile indicates the min-

imum instance lifetime that as user can expect with probability 0.95.

In summary, we examine the feasibility of improving the utilization of a single cloud by

using predictions of the time-to-preemption of jobs (groups of instances) to perform care-

ful admission control and provide an ahead-of-time SLO on the availability of preemptible

resources. We accept two tiers of workloads – regular “high priority” and preemptible

“low priority” jobs – on a single cloud to achieve greater resource utilization while still

providing ahead-of-time availability guarantees for both tiers as a stepping stone to im-

plementing a cross-cloud federation architecture (c.f. Chapter 5). In particular we

53

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

• demonstrate that it is possible to provide statistical guarantees on the availability

of preemptible instances for a bounded time window using production private cloud

workload traces, and

• detail the effectiveness of co-scheduling regular workloads with preemptible work-

loads with these guarantees to utilize otherwise unused resource capacity.

We evaluate our method via simulation, replaying synthetic and recorded production

traces from Eucalyptus [78, 19] IaaS clusters deployed in production systems [76]. We

use the synthetic workload traces to demonstrate the theoretical efficacy of our approach

and the steps required to produce accurate time-to-preemption estimates via Monte-Carlo

simulation. We then apply this method in a cloud scheduler that is capable of maintaining

an configurable SLO on the maximum preemption probability of preemptible instances

in an IaaS cloud even when facing irregular real world traces from commercial production

environments.

4.2 Related Work

Preemptible instances in public IaaS clouds were first employed in 2009 as part of

Amazon Web Services (AWS) [79]. These “spot instances” are typically available at

a rate significantly lower than that of regular “on-demand” instances as they allow

providers to opportunistically manage capacity. Spot instances do not, however, pro-

vide a guarantee (SLO) on their lifetime: spot instances can be preempted at any time,

whereas on-demand instances provide a 99.95% SLO on their availability once started.

Amazon distributes available spot capacity via a spot market, where users submit

bids for unused capacity on an hourly basis. Amazon keeps the specifics of their market

making mechnism as a trade secret. It is commonly assumed that the latest price of

54

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

spot instances depends on current supply and demand [80, 81], although the authors in

[82] argue that spot instance prices are generated from a bounded random process with

a dynamic hidden reserve price most of the time. The authors in [83] model pricing as

a mixture of multiple Gaussian distributions and reveal the challenges with modeling

analytically, empirically observed phenomena in the cloud. Zhao et al. [84] finds poor

predictability of spot prices using ARIMA time-series methods.

Google recently introduced a preemptible tier of instances [85] for their public IaaS

offering. In contrast to Amazon’s “spot instances” the pricing of Google’s preemptible

instances is fixed (albeit still lower than regular) and comes with the caveat of guaranteed

preemption every 24 hours.

The availability of preemptible resources in large-scale systems has been studied be-

fore. Effective performance of Condor depends on the availability of workstations and

duration of jobs which determines the probability that a job will be preempted due to a

user reactivating an idle workstation or rebooting it. Wolski et al. [86] explore the fitting

of long-tail distributions to describe the properties of the workstations’ availability dis-

tribution for dedicated and desktop Condor pools. They further investigate parametric

models to represent IaaS workload behavior in [77]. Brevik et al. [87] develop methods to

automatically estimate quantile bounds on the lifetime of machines and jobs on pools of

workstations. A number of studies [88, 89, 90] characterize the workload of cluster traces

published by Google [91]. Similarly, several studies [92, 93] investigate the properties of

Hadoop workloads in large production systems at Carnegie Mellon University, Facebook

and others.

Some studies investigate optimizations in IaaS clouds when instance lifetimes are

known ahead of time. [94] optimizes power-consumption by carefully scheduling instances

with known duration.

Due to their unreliability but low cost preemptible instances in IaaS clouds are typi-

55

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

cally used as opportunistic accelerators for batch workloads. Chohan et al. [80] uses spot

instances to speed up Haddop jobs by leveraging built-in fault tolerance to task failures.

SpotMPI [95] takes advantage of spot instances for executing MPI jobs and uses a dynam-

ically adjusted checkpointing interval to minimize losses due to preemption. The authors

of [96] investigate cost-optimization on spot instances via application-specific scheduling

and checkpointing. Mattess et al. [97] compare bidding heuristics for executing batch

workloads on spot instances. Menache et al. [98] develop an online learning algorithm

trading off between on-demand and spot execution for batch workloads.

Previous research has also studied pricing models and user experience (Quality of Ser-

vice) for services built entirely on preemptible instances. Andrzejak et al. [99] model the

trade-offs between spot instance bids and realized execution time to achieve probabilis-

tic deadline guarantees for long-running jobs with check-pointing. In [100] the authors

investigate a hypothetical service provider running a QoS-sensitive web service purely

on spot instances, with a focus on revenue maximization. Similarly, [81] investigates a

service running purely over spot instances and finds that existing SLOs quoted by public

clouds capture only part of the variables relevant to service performance and user expe-

rience. Sharma et al. [101] investigates the availability of a virtual cloud built entirely

on preemptible instances. Yank [102] is a snapshot server that enables state persistence

for preemptible VMs with advance termination warning. Mao [103] studies startup and

teardown times for instances of different public IaaS providers and points out significant

added overhead for preemptible instances in practice.

In our work, we also investigate production workloads with preemptible instances, but

side-step manual analytical modeling via Monte-Carlo simulation to provide a powerful

new type of SLO on job preemption probability for jobs with bounded lifetime. While

revenue and user experience depend on the specifics of the end-application, guarantees

on preemption probability simplify reasoning about the system as a whole and allow

56

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

providers to use it as foundation for custom SLA models. It further serves as a stepping

stone for distributed scheduling of jobs across a federation of clouds.

4.3 Methodology

The goals of our methodology are to define a method

• for predicting the minimum time a preemptible instance can remain active in the

system before being preempted with configurable confidence bounds, and

• for using these predictions in scheduler-level admission control to ensure that all

accepted preemptible instances meet their target duration with a fixed probability.

This latter requirement is consistent with current cloud abstractions in that requests are

either accepted by the cloud (and thus subject to the SLOs advertised in the SLA) or

rejected ahead of time because the pre-defined SLO on preemption probability cannot be

met.

We base our estimates of this “time-to-preemption” on historical observations of

previous instance behavior in the cloud. The major challenge lies in the fact that it

is insufficient to track the realized lifetimes of preemptible instances in the past. First

the realized lifetimes of preemptible instances do not help us determine the upper bound

of the duration they could have executed for before preemption. That is, instances with

short durations may run to completion without encountering preemption, even though

they would have been preempted in the future, had they been longer. Second, unless

the system already has an extensive history of (sufficiently long-running) preemptible

instances we face a problem of small sample size. In order to make reliable estimates of

the future time-to-preemption we need numerous observations of instances preemptions.

To make this even more challenging, the preemption probability depends on various

57

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

external factors, such as the utilization level of the cloud at instance launch, which

require us to observe preemption in different circumstances.

To overcome these limitations, we rely on a validated simulation model (c.f. Chap-

ter 3) to construct empirical distributions of the lifetimes until preemption as instances

would have experienced them. We further condition the lifetimes on the available cloud

capacity at instance launch and obtain a sufficient sample size via Monte-Carlo style sim-

ulation. We extract the quantiles from these lifetime distributions associated with the

SLO offered by the IaaS cloud for preemptible instances (e.g. a 0.95 or 0.99 confidence

bound on the likelihood that the instance will not be preempted) to predict minimum

lifetime for each level of available capacity.

Note, that our availability guarantee – similar to a “survival” or “job completion”

guarantee – is different from availability SLOs commonly advertized by commercial IaaS

providers. For example, Amazon EC2’s SLA [104] guarantees reachability of at least

one instance per availability zone (past the first) for a fixed fraction (0.9995 or 0.99,

minus exclusions) of a one month time frame. That is, multiple service interruptions

are acceptable if the aggregate downtime does not exceeded the threshold. Our method

provides a guarantee that the requested capacity will be available continuously, from

request acceptance, for at least the time-to-preemption with a fixed probability (e.g.

0.99). That is, a job executing for (less than) the requested guarantee period has at least

a 0.99 chance of doing so without interruption.

For admission control, we assume that preemptible requests are accompanied by a

user-specified duration (maximum) when submitted. Our IaaS scheduler uses (a) the

quantile estimates for the SLO generated by the simulation, (b) the instance size (also

specified per request) and maximum duration from the user, and (c) the currently avail-

able capacity of the system, to decide whether to admit a preemptible request. The

scheduler preempts instances if/when a regular instance request is made and the cloud

58

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

has insufficient capacity to service the request.

4.3.1 Scheduling Model

Instance requests (to either start or stop an instance) are routed to a scheduler (as

implemented by IaaS infrastructures such as Eucalyptus [78], Open Stack [18], and Cloud

Stack [20]) which handles admission control and placement of instances on physical re-

sources in a cluster of “nodes”. IaaS clouds typically define “instance types” that describe

the resources that an instance will consume (CPU cores, memory, ephemeral disk stor-

age, etc.). In the Eucalyptus systems (production and research) that we investigate in

this work, we observe that the memory footprint associated with each instance type is

such that the instance placement decision by the scheduler can be made strictly on core

count.

When an instance is admitted, the scheduler makes a placement decision by selecting

a node on which the instance will run. In this study, we use simple first-fit placement in

favor of more complex approaches to highlight the impact SLA-aware admission control.

If a regular instance is requested, and the scheduler cannot find a node with available

capacity, the scheduler selects one or more preemptible instances to preempt (terminate)

so that the regular instance can be scheduled.

Further, our scheduler (like other Eucalyptus schedulers) assumes that the instance

type definitions nest with respect to their core counts. For example, an empty 4-core

node node is seen by the scheduler as having 1x 4-core slot, 2x 2-core slots, 4x 1-core

slots, or 1x 2-core, 2x 1-core slots. The distinction between available cores and available

slots is important when generating time-to-preemption estimates for different instance

sizes and different cluster load levels.

59

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

4.3.2 Preemption Policy

The preemption policy affects the preemptible instance lifetime distributions gener-

ated by the simulation (but not the correctness of the method). Many policies are possible

but each has an impact on user experience. In this thesis we chose a simple “Youngest-

Job-First” (YJF) preemption policy. Choosing the “youngest” (i.e. the preemptible

instance that has started most recently) to preempt among the candidate preemptible

instances is an attempt to minimize the “regret” associated with an preemption in this

online decision making problem [105]. That is, the amount of work that is lost because

of an preemption is minimized.

4.3.3 Predicting Preemption

Past work has shown that cloud workloads can be highly variable and may not be

easily described by single well-known distributions [106]. To address this problem we run

a Monte-Carlo-style simulation on-line to generate the empirical distribution of observed

instance lifetimes before preemption. However, we note that the time-to-preemption is

affected by the capacity of the cloud that is occupied by regular (non-preemptible) work-

load and other preemptible instances. Intuitively, if the cloud is relatively “empty”, a

preemptible-instance that is introduced will likely live longer than if the cloud is close to

“full” capacity. Thus, our Monte-Carlo simulation produces a set of empirical distribu-

tions, one conditioned on each level of possible occupancy.

The Monte-Carlo simulator generates a sample of “fictitious” preemptible instance

requests with “infinite” requested duration using the recent cloud load history. It re-

peatedly chooses a random point in the history and simulates the arrival and (eventual)

preemption of a preemptible instance, recording the occupancy level at he time the pre-

emptible instance starts and its time-to-preemption. Running faster than real time, it

60

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

generates a fixed number of such samples (e.g. 10000 samples) and divides them into

empirical distributions based on occupancy level.

For example, a cloud with 100 cores has 101 possible occupancy levels: from 0 cores

occupied to 100 cores occupied and each level of occupancy corresponds to a different

distribution of preemptible instance lifetimes. We use quantiles of these distributions to

quote the expected lifetime to the scheduler during the admission control phase based

on the current occupancy level at the time the preemptible instance request is made.

If the instance (based on its maximum duration specified by its user) is expected to be

preempted with a higher probability than specified by the target probability (quoted as an

SLO) for the cloud, it is rejected (not admitted). The cloud administrator is responsible

for setting the SLO on preemption probability that is advertised to all cloud users.

4.3.4 Evaluation Metrics

To evaluate the system we use trace-based simulation with both synthetic and pro-

duction traces taken from private Eucalyptus IaaS clouds. We replay each trace in its

entirety and we log each individual state change in the simulated system. In each case,

the simulator uses separate traces for preemptible instance and regular instance requests.

We then generate summary statistics and evaluate our solution using two metrics:

• preemption fraction of preemptible instances

preempted = preemptions/admissions

• admission fraction of preemptible instances

admitted = admissions/requests

The enforcement of the target SLO probability has highest priority. After the SLO

is fulfilled, a high number of completed preemptible instance requests is desirable to

maximize utilization.

61

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

Table 4.1: Parameters of synthetic log-normal regular and preemptible instance workloads
VM arrival VM duration VM cores mean util.

regular µ = 4, σ = 1 µ = 6, σ = 1.5 1 21.77
preemptible µ = 4, σ = 1 µ = 6, σ = 1.5 1 21.95

4.4 Results

Our experiments are run in simulation, based on our previous work on validated sim-

ulation of private IaaS clouds. We use both, synthetic traces and anonymized production

traces obtained from Eucalyptus IaaS cloud installations. For reproducibility we assume

instant start and stop of instances in the traces and rely on a publicly available set of

anonymized commercial production traces [76]. Our traces contain data about instance

arrival times, duration and core counts.

Prediction with synthetic traces

To outline our approach and show its basic behavior we compare a scenario with an

SLA-unaware scheduler and the SLA-aware scheduler using multiple different preemption

SLO targets using 10-day synthetic traces (Parameters in Table 4.1). Our initial setup

uses a single platform (IaaS cluster configuration) and synthetic regular and preemptible

request traces. The platform contains 8 nodes with 4 cores each, for a total of 32 cores.

As a rough estimate based on mean utilization the platform should be able to support the

regular trace plus half the preemptible instance trace. We use a log-normal distribution

to approximate the long-tailed empirical distribution of instance interarrival times and

durations. Furthermore, we uniformly use a fixed core count of 1 per instance in the

synthetic trace.

Note that there is a trade-off between the probabilistic guarantee given to the user

and the fraction of preemptible instance requests that can be accepted by the scheduler.

Greater “certainty” associated with a preemption SLO (in the form of a lower preemption

62

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

0.
70
3	

0.
60
5	

0.
49
8	

0.
42
9	

0.
30
2	 0.
39
1	

0.
09
1	

0.
02
7	

0.
01
2	

0.
00
2	

0.000	

0.250	

0.500	

0.750	

baseline	 0.25	 0.1	 0.05	 0.01	

admission	 (preemp:ble)	 preemp:on	

Figure 4.1: Fraction of admitted and preempted instances with synthetic log-normal traces.

probability) implies that fewer preemptible instance requests can be accepted (to decrease

the possibility that an preemption will be necessary).

To illustrate this trade-off, we show the fraction of admitted preemptible instances,

as well as the preemption fraction of preemptible instances in Figure 4.1. The x-axis

shows different SLO probabilities, starting with the no-guarantees baseline on the left

and then increasingly stringent SLOs of 0.25, 0.10, 0.05 and 0.01. The y-axis shows

the fraction of admitted preemptible instance requests instances in gray and the frac-

tion of preempted instances in black. The SLA-aware scheduler meets the SLO in all

cases (the preemption fraction is less than the advertised guarantee level), at the cost

of preemptively rejecting an higher fraction of preemptible instances for stricter SLOs.

The measured quality of service (the fraction of preempted instances) are in fact stricter

than the target SLO, showing that the predictions of time-to-preemption made by the

simulation are conservative.

The most visible improvement is the step from the no-guarantees baseline to the 0.25

preemption SLO. While the baseline admits 70% of all requested preemptible instances,

39% of the admitted preemptible instances are preempted before completion. The 0.25

SLO in contrast admits 60% of all requested preemptible instances, but only 9% of the

admitted preemptible instances are preempted. Subsequent decreases in the demanded

63

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

0	

2000	

4000	

6000	

8000	

10000	

12000	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	

Figure 4.2: Number of time-to-preemption samples per available-slots bucket for a
synthetic log-normal simulation run. Frequently encountered load levels (left) have
many samples, corner cases (right) have few. The shape of the histogram depends on
the historic workload.

maximum preemption fraction of preemptible instances decrease the number of admitted

preemptible instances as well, but consistently (conservatively) achieve the preemption

probability set forward in the SLA.

This experiment outlines the setup of our simulation driven approach to enforce fixed

levels of preemption probability in a controlled environment. In the next section we

discuss the simulation method in-depth.

4.4.1 Conditional Distributions and Sample Size

The scheduler computes conditional distributions for all possible core counts on a

fixed duty schedule (every 6 hours of trace time in the previous experiments) based on

the history of regular and preemptible instance behavior it has observed so far. This

gives rise to the property that the sample sizes for “rarely” occurring conditions may be

small. For example, if the cloud is moderately loaded, the number of examples where all

but one of the cores is busy might occur infrequently or not at all.

To provide an in-depth insight in the behavior of the Monte-Carlo simulation, we

provide an exemplary intermediate results at the 9 day mark of our synthetic trace ex-

periment for single-core instance slots. Figure 4.2 shows the number of samples generated

64

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

0	

2500	

5000	

7500	

10000	

0	 5	 10	 15	 20	 25	

q	 0.25	 q	 0.05	 q	 0.01	

Figure 4.3: Quantiles of time-to-preemption per available-slots bucket for a synthetic
log-normal simulation run. Predictions for common load levels (left) can be made
with high confidence, predictions for infrequent ones (center) are rough estimates
that become increasingly erratic for corner cases (right).

on the y-axis for each condition on the x-axis (available slot count). In our specific ex-

ample, 2 to 4 open slots are encountered the most frequently, with about 10000 samples

each. High open slot counts, which correspond to low cluster utilization, are increas-

ingly uncommon. Based on the number of samples we expect predictions for common

cases to be highly accurate, while infrequently occurring cases will be based on empirical

distributions estimated from small samples.

Figure 4.3 shows the quantiles of the conditional distribution of times-to-preemption.

The x-axis again shows the condition, while the y-axis indicates the time-to-preemption

as estimated by a quantile. The estimates to the left correspond to the buckets with

high sample count in Figure 4.2, whereas the estimates to the right decrease in sample

count. The 0.25 quantile lies above the 0.10 quantile, followed by the 0.01 quantile. These

quantiles estimate the minimum time a preemptible instance is expected to survive with

the corresponding probability. For example, from the figure, 0.01 of the instances that are

started when there are 15 free slots run for 900 seconds or less before being preempted.

In the same column (for 15 free slots), 0.05 of the time-to-preemption samples are 1500

seconds or less, and 0.25 of them are 3200 seconds or less.

A combined look on the counts per bucket in Figure 4.2 and the corresponding quan-

65

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

tiles in Figure 4.3 also provides an insight into the reliability of conditional estimates.

Buckets 0 to 14 each have over 1000 samples each to determine quantiles from. This

is generally enough for stringent preemption probabilities, such as 0.05 or 0.01. With

increasing slot count (decreasing cluster utilization) a smoothly changing, and mostly

increasing estimate of the time-to-preemption can be observed. Buckets 15 to 20 still

have over 200 samples each, which is enough for rough estimates, but a look back at the

quantiles shows that changes from bucket to bucket already become erratic. Estimates

for 21 available slots and over appear extremely infrequently in our synthetic trace. Their

samples are mostly artifacts from the initial warm-up period and as such, their estimated

quantiles are not reliable (but also hardly used).

Since we are using a synthetic trace based on log-normal distributions for arrival

time and instance duration, this specific example could be described analytically as well.

However, for arbitrary traces, as found in production environments, this is challenging to

impossible depending on the typical usage of the cluster. Monte-Carlo simulation offers

a way to estimate arbitrary empirical distributions and can be tailored to achieve the

desired degree of prediction accuracy.

4.4.2 Prediction with Production Traces

To study the utility of Monte-Carlo-based probability estimation in a more real-

istic setting, we use four different traces obtained from independent Eucalyptus IaaS

production installations for our experiments. The origin of these traces is documented

in [77, 106, 107]. and the traces themselves are available as part of a collection from [76].

Table 4.2 shows the mapping of data sets from the collection to experiments in this paper,

together with a short description of their workload and platform properties.

Compared to synthetic traces there are a number of important differences. First,

66

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

Table 4.2: Mapping of recorded commercial production traces and their original hard-
ware platforms from the data set collection [76] to experiments in this paper.

Name Source Organization Workload Nodes
A DS2 Medium bursts 7 x 8 cores
B DS3 Medium bursts 7 x 12 cores
C DS5 Large variable 31 x 32 cores
D DS6 Large constant 31 x 32 cores

instance starts show temporal auto-correlation. These “bursts” of instance starts are

more extreme than ones observed in synthetic log-normal traces. Second, the behavior of

users changes over time and causes change points which the empirical distribution derived

via Monte-Carlo simulation only picks up over longer time frames. Third, instance sizes

are no longer uniform in size as the traces contain instances with slot sizes between 1

and 30 cores.

To facilitate the experiments with real world traces, two modifications are made to

the Monte-Carlo simulation. First, we expect that our randomization approach may

not generate starting points needed for all conditional core-utilization levels needed, es-

pecially in the beginning of the experiment where data samples are scarce. To avoid

rejecting preemptible instances unnecessarily due to a perceived lack of information, we

linearly approximate quantiles of unobserved conditional distributions between observed

“neighboring” distributions.

For example, if the empirical distributions conditioned over 20 slots and 18 slots are

available, while there are no samples for 19 slots, the quantiles for 19 available slots are

generated by linear approximation between the the matching quantiles of the neighbors.

For example, the 0.01 quantile for 19 slots would then be calculated as q(0.01|19) =

(q(0.01|18) + q(0.01|20))/2. In the case where multiple conditions are missing, we fit

a line to the two endpoints in the range of missing values and use it to approximate

the quantiles between. Additionally, the extreme points of zero and full utilization need

67

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

0	

1	

0	 50	 100	 150	 200	 250	 300	

Ca
pa

ci
ty
	 (%

)	

Time	 (days)	

U(liza(on	

Figure 4.4: Production trace A as exe-
cuted on its native platform shows con-
stant load interleaved with bursts of large
requests.

0	

1	

0	 50	 100	 150	 200	 250	 300	

Ca
pa

ci
ty
	 (%

)	

Time	 (days)	

U(liza(on	

Figure 4.5: Production trace B as exe-
cuted on its native platform shows highly
variable load and bursts of large requests
as well.

0	

1	

0	 5	 10	 15	 20	 25	 30	 35	

Ca
pa

ci
ty
	 (%

)	

Time	 (days)	

U(liza(on	

Figure 4.6: Production trace C as ex-
ecuted on its native platform shows a
mixed pattern of load with constant
plateaus and periods with higher variabil-
ity.

0	

1	

0	 5	 10	 15	 20	 25	 30	 35	

Ca
pa

ci
ty
	 (%

)	

Time	 (days)	

U(liza(on	

Figure 4.7: Production trace D as ex-
ecuted on its native platform shows a
mostly constant load with a few spikes.

to be populated with useful data. We chose a zero value for expected lifetime before

preemption if there are no slots available for a given capacity and conservatively use the

quantiles for the lowest known cluster utilization as values for zero utilization as well.

Second, we start the real world traces after a delay of 24 hours as we do for the

synthetic traces. Such a delay allows the scheduler to “warm up.”

A visual inspection of the real-world traces shown in Figures 4.5 and 4.6 shows sig-

nificant spikes at irregular intervals. If a spike in non-preemptible load appears in an

environment already loaded with preemptible instances, we expect to see a high number

of correlated preemptions, possibly leading to a violation of the SLO in the short-term.

68

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

If these correlated preemptions are not compensated for in the long-term by conserva-

tively maintaining a capacity buffer, these short-term violations will sum up to an SLO

violation over the course of the whole trace. We try to capture this auto-correlation

by replaying the actual observed trace in our Monte-Carlo simulation rather than re-

sampling the input distribution. That is, we choose random locations in the trace, but

then replay the trace from those periods to include auto-correlation effects.

We take the same approach to handling change points in the production time series

traces. In our experiments, the Monte-Carlo simulation that computes the empirical

conditional distributions is re-run every 6 hours of trace time to capture changes that

may have occurred in the underlying dynamics. Note that the choice of this interval is

arbitrary and can be a configuration parameter in a production system. It should be

large enough to accommodate a full rerun of the Monte-Carlo simulation – which merely

takes 300 seconds (5 minutes) in our setup – and short enough to react to changes in

overall workload and user behavior – which occurs over timeframes of days and weeks.

In practice, the computation will temporarily consume instance capacity in the cloud,

hence there is an economic aspect to the choice of parameter as well.

The third difference of real-world traces over to our synthetic ones are non-uniform in-

stance core counts. This has two major implications: first, Monte-Carlo simulation must

consider different instance sizes and second, placement decisions for regular instances

made at any time may have consequences later in the trace. Because the scheduler at-

tempts to find space for a regular instance and only preempts when there is insufficient

capacity, the presence of preemptible instances can change where the scheduler places

regular instances. As a result, because an instance cannot span nodes, it could be that

the introduction of preemptible instances increases the “fragmentation” of the available

core capacity and, hence, affects the ability to run regular instances. However, while pre-

emptible instances might cause the scheduler to reject a regular instance it would have

69

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

otherwise accepted (due to fragmentation effects) all of the regular instances that are ac-

cepted experience the same quality of service that they would have without preemptible

instances present. This effect (detailed in Subsection 4.4.4) is small for the production

workloads we study but grows as the cloud runs closer to capacity.

The conditional distribution of expected lifetimes therefore effectively becomes con-

ditioned over instance capacity (taking into account fragmentation effects) in addition

to available slot count. The conditioning over instance capacity does not increase the

amount of data required for accurate estimates as we can re-run the same recorded trace

with different virtual instance sizes. An increasingly diverse population of instance types

therefore leads to a linear increase in computational effort for Monte-Carlo simulations,

but not to a relative reduction of estimation accuracy. In practice, we do not expect

this to be a severe problem due to the embarrassingly parallel nature of Monte-Carlo

simulation.

4.4.3 SLA-Aware Co-Scheduling of Production Traces

Having addressed the issues associated with generating predictions for production

traces the question remains whether these modifications allow effective admission control

for varying types of production workloads. In this section we investigate the efficacy of

our approach for co-scheduling different production workloads while maintaining an SLO

for both, regular and preemptible instances.

We perform the evaluation with production traces in two parts and pair up our

production traces based on similar platform sizes. The first combination uses highly

variable workloads, “A” as regular trace and “B” as preemptible instance trace. The

specifications of the physical cloud platform are taken from “A”, which contains 7 nodes

with 12 cores each. We refer to this configuration as “A-B”. We use the inverse notation

70

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

Table 4.3: Results of co-scheduled workloads with production traces without SLA
enforcement. In all cases the preemption fraction is greater than 0.01.

Baseline A-B B-A C-D D-C
admitted (regular) 0.977 1.000 1.000 0.997
admitted (preemptible) 1.000 0.850 0.943 0.963
preempted 0.013 0.024 0.016 0.013

Table 4.4: Results of co-scheduled workload with production workloads with
SLA-aware scheduler, fulfilling the 0.01 preemption fraction SLO (equivalent to a
0.99 survival fraction)

SLA-aware A-B B-A C-D D-C
admitted (regular) 0.977 1.000 1.000 0.999
admitted (preemptible) 0.884 0.757 0.491 0.278
preemption 0.009 0.000 0.002 0.006

“B-A” to describe co-scheduling of “A” as preemptible instances in addition to “B” as

regular trace and “B”’s physical platform, which contains 7 nodes with 8 cores each. In

both cases, we set the SLO to 0.01 preemption fraction and we compare the results of

the SLA-aware scheduler (“sla”) with the SLA-unaware baseline scheduler (“base”).

The second combination investigates the co-scheduling of the more constant workloads

“C” and “D” with larger platforms of 31 nodes each. The experiments are defined

analogously to the first part and we refer to them as “C-D” and “D-C”.

An important side-note is that A contains a number of instances requiring 12 cores

each, while the platform of B only provides a maximum of 8 cores per node. This

practically lowers the load impact of A as preemptible trace over its impact as regular

trace on its native platform, as high-core-count instances are rejected by the scheduler

due to the physical limits of the platform.

The results are summarized in Table 4.3 for the baseline, while the results for the

SLA-aware scheduler are presented in Table 4.4. The SLA-aware scheduler meets the

threshold, while the baseline scheduler misses in all cases. The modifications discussed

in the previous section allow the SLA-aware scheduler to successfully handle production

71

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

traces. The results are, however, close due to low overall utilization of the underlying

cluster hardware. In fact, the mean utilization of regular and preemptible traces combined

is 26.62 cores. This compares to a platform capacity of 84 cores for A and 56 cores for

B. This degree of under-utilization is typical for clouds over-provisioned to meet peak

demand. Reducing the under-utilization is a prime goal of co-scheduling. In order to

demonstrate the efficacy of our approach in more resource constrained scenarios, we

perform a platform down-scaling experiment in simulation in the next section.

4.4.4 SLA-Aware Co-Scheduling with Platform Scaling

In this section we stress-test our approach to computing the conditional quantiles

for preemptible instance lifetimes in increasingly resource constrained environments. We

use setups “A-B” and “C-D” again, but vary the size of the underlying platform from

N to N − 3 nodes for “A-B” and from N to N − 15 in steps of 5 nodes for “C-D”.

This corresponds to a reduction in node count by about half while the request rate stays

constant and SLO target on preemption remains at 0.01. The inverse experiments “B-A”

and “D-C” show similar results and are skipped for brevity.

Figures 4.8 and 4.9 show the results for scaled-down platforms of A-B and C-D,

respectively. This experiment demonstrates the robustness of the approach in fulfilling

its target SLO. While the baseline scheduler does not meet the SLO in any single case,

the SLA-aware approach works consistently with visible differences in behavior.

Thus, while regular instance requests cannot completely be fulfilled in increasingly

constrained environments, the regular rejection fractions for the production traces are

small. In each figure, the column labeledN represents a replay of the production workload

using the number of nodes and cores that were present when the trace was gathered

(i.e. the production scenario). In the cases where our methodology offers an SLO on

72

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

0.
01
3	

0.
00
9	

0.
00
6	

0.
00
7	

0.
00
8	

0.
97
7	

0.
97
7	

0.
93
1	

0.
91
4	

0.
78
8	

1.
00
0	

0.
88
4	

0.
81
9	

0.
76
7	

0.
70
8	

0.000	

0.250	

0.500	

0.750	

1.000	

N	 (base)	 N	 (sla)	 N-‐1	 N-‐2	 N-‐3	

admission	 (regular)	 admission	 (preemp?ble)	 preemp?on	

Figure 4.8: Admission and preemption fractions of regular and preemptible instances
for A-B down-scaled. Non-SLA base, marked ‘N (base)’ for N = 7 nodes in the first
column compared with 0.01 SLO with full and reduced node counts N = [7, 6, 5, 4] in
the other columns.

0.
01
6	

0.
00
2	

0.
00
2	

0.
00
4	

0.
00
2	

1.
00
0	

1.
00
0	

1.
00
0	

0.
96
8	

0.
93
8	

0.
94
3	

0.
49
1	

0.
43
7	

0.
46
3	

0.
49
0	

0.000	

0.250	

0.500	

0.750	

1.000	

N	 (base)	 N	 (sla)	 N-‐5	 N-‐10	 N-‐15	

admission	 (regular)	 admission	 (preemp?ble)	 preemp?on	

Figure 4.9: Admission and preemption fractions of regular and preemptible instances
for C-D down-scaled. Non-SLA base, marked ‘N (base)’ for N = 31 nodes in the first
column compared with 0.01 SLO with full and reduced node counts N = [31, 26, 21, 16]
in the other columns.

preemptible instance lifetime in the same environment, the fraction of admitted regular

instances is equal to the baseline.

As a result, we conclude that the success of the predictions for the real-world pro-

duction traces is not due to a lack of utilization (i.e. an abundance of extra capacity)

in over provisioned production clouds. Shrinking these clouds does cause some of the

observed production workload to be rejected, but the generated predictions of the time-

to-preemption remain valid.

An additional observation is that for the down-scaling experiments the fraction of

admitted preemptible instances may increase as the cluster size decreases (e.g. “C-D

73

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

N − 3). An in-depth look at the simulation reveals that the rejected regular instances

come in batches and with high core counts per instance. Their rejection due to capacity

constraints leaves some additional capacity for preemptible instances. Furthermore, the

inopportune placement of a preemptible instance does indeed lead to fragmentation and

at times blocks the placement of large regular instances later on. While in our synthetic

workloads the regular trace was completely unaffected by the preemptible trace, real-

world traces are measurably (albeit minimally) impacted by the presence of preemptible

instances.

4.5 Conclusion

In this chapter, we presented a novel approach to estimating the preemption proba-

bility of jobs with bounded duration. This allows us to provide ahead-of-time availability

SLOs on preemptible instances by estimating their time-to-preemption given the current

state of the cloud. We derive these state-dependent time-to-preemption estimates from

simulations based on the cloud’s historical utilization trace.

To overcome sample limitation, we leverage our previous work on validated simula-

tion of IaaS clouds to perform a Monte-Carlo style simulation of preemptible instance

behavior. We simulate how preemptible instances would have experienced execution un-

der different load conditions in the past. By tabulating and extracting quantiles on the

simulated lifetimes of preemptible instances, we are able to provide probabilistic bounds

on the lifetime of such instances in the future.

We test the accuracy of our predictions by developing a cloud scheduler that uses

time-to-preemption estimates to perform admission control of preemptible instances with

bounded duration. For evaluation, we simulate the consolidation of different production

workload traces onto a single cloud via co-scheduling of high-priority regular and low-

74

Estimating Job Preemption Probability in IaaS Clouds Chapter 4

priority preemptible instances. Admission control performs within expectations, increas-

ing the utilization of the cloud while simultaneously maintaining a configurable upper

bound on the preemption fraction of preemptible instances.

Besides for the improvement the utilization of a single cloud, ahead-of-time availability

SLOs serve as a stepping stone for the implementation of cloud federation by enabling

schedulers to provide immediate feedback about the expected quality of service for jobs

executing on preemptible capacity.

75

Chapter 5

IaaS Cloud Federation Using
Preemptible Resources

5.1 Introduction

This chapter builds on our work on validated simulation and the estimation of job

preemption probabilities to investigate how a preemptible service class can serve as the

basis for federating jobs across independent IaaS clouds. We use time-to-preemption

estimates (c.f. Section 4.3) to provide probabilistic ahead-of-time availability guarantees

while preserving the local cloud’s ability to preempt federated workload at will.

Our goal is to provide additional SLA-covered capacity to clouds participating in a

federation “for free”. We cycle harvest idle capacity that would have gone to waste and,

through preemption, do not require any kind of persistent resource commitments from

clouds.

A complete solution to workload federation in the IaaS cloud context, however, must

overcome additional practical challenges. First, the offloading of jobs between remote

clouds incurs additional overheads for transfer input and output data not resident in the

remote cloud. Additionally, startup delays for instance launch may be different from the

original cloud as well. Second, execution times of the compute workload itself may vary

76

IaaS Cloud Federation Using Preemptible Resources Chapter 5

across different platforms and thus, estimates for job execution duration by the user must

be robust to estimation error. Third, cloud federation should increase overall efficiency

with the number of clouds participating in a federation. A solution must further make

joining a federation easy and minimize risks associated with required changes to existing

infrastructure. Finally, federation capabilities add complexity to existing infrastructure

that must be justified with a measurable increase in system efficiency under real-world

conditions.

We develop and implement an architecture for workload federation of batch jobs across

independent IaaS clouds that overcomes these challenges. Our prototype can be evaluated

end-to-end on “live” cloud deployments with workload traces recorded from production

systems. A “good” solution that ties together our previous work into a complete solution

to the IaaS cloud federation problem must fulfill the following requirements:

• Local control must supersede remote control. Cloud infrastructure is costly and

runs mission critical services. Any federation member must be able to preempt

at will federated jobs running on local resources to retain its independence. The

absence of local control can harm cloud providers and discourage them from joining

a federation in the first place.

• Availability guarantees must be made ahead of time. The cloud’s SLA allows users

to reason about the expected quality of service before they deploy an application

or send a request. While open-ended guarantees about resource availability are at

odds with the potential need to preempt remote workload eventually, jobs with

bounded duration should receive guarantees. Additionally, such guarantees must

adapt to changes in system (and user) behavior over time.

• The solution must avoid a single point of failure. The dependency on centralized

infrastructure threatens the reliability of the federation as a whole. Even without

77

IaaS Cloud Federation Using Preemptible Resources Chapter 5

failure, a centralized point of contention limits severely the scalability of the archi-

tecture. The resulting distributed control over resources, especially for scheduling

and resource allocation, creates the potential for contention via concurrent requests

for the same resources which must be addressed.

• The solution must integrate with existing cloud infrastructure. A practical im-

plementation must operate at the level of production quality IaaS frameworks.

Modifications to the internal structure of these frameworks, even if theoretically

possible in open-source, can impact the reliability of the entire system and requires

extensive testing and quality assurance efforts that should be avoided.

• The solution must be complete end-to-end. In addition to implementing scheduling

control and SLO enforcement, a complete solution must include facilities to monitor

relevant cloud behavior, transfer data dependencies of federated jobs, and offer

robustness to job duration estimation errors.

• Workload federation must improve the utilization of clouds in a federation under

real-world conditions. The added complexity of federation capabilities must be

justified via clear evidence of a benefit to each federation member. This requires

end-to-end evaluation of the cloud federation system with workloads recorded from

production systems.

Computational grids owe a major part of their success to the primary design principle

of leaving the resource owner in control at all times. We adopt this design choice for

our cloud federation architecture and strictly prioritize local workload over federated

workload. We implement this prioritization by executing federated jobs exclusively on

preemptible capacity. Furthermore, every cloud makes admission decisions locally while

users are responsible for coordination across clouds, if desired.

78

IaaS Cloud Federation Using Preemptible Resources Chapter 5

We make availability guarantees about preemptible resources for jobs with bounded

duration by leveraging our work on validated simulation and the prediction of job time-

to-preemption. These guarantees are enforced at runtime through careful admission

control, by comparing jobs’ predicted time-to-preemption to a user-provided job duration

estimate. As a consequence, our approach to workload federation dynamically adapts to

the specific user request, the historic utilization pattern of each individual cloud, and the

current state of the destination cloud.

Specifically, our method provides an upper bound on the preemption fraction (the

fraction of preempted instances relative to accepted instance requests) for federated work-

load with a user-specified execution time bound (duration). Consequently 1.0 minus this

preemption fraction serves as a proxy for the probabilistic “guarantee” that a user’s job

will execute for the requested duration once accepted by the cloud. The cloud will not

accept a request (i.e. the request will “fail fast”) if the total lifetime (the time a job

is active and preemptible) cannot be assured probabilistically. Further, cloud adminis-

trators can set the target fraction (i.e. the maximum probability of a preemption) for

the preemptible service class so that users can reason about the use of this service class

based on its SLO.

Our architecture avoids a centralized controller or broker that represents as single

point of failure. We bundle instances and data transfers into a single request on a

per job basis. In our architecture, each IaaS cloud within a federation is considered

to be a single entity (multiple availability zones would be considered separate clouds).

Preemptible instances related to a single job are requested in a single, atomic transaction

and come with a user-defined estimate about the maximum job duration and the minimal

acceptable availability (the probability the job will execute for at least this duration).

Finally, users seeking federated capacity use a randomization approach in determining

the federation target to prevent crowding.

79

IaaS Cloud Federation Using Preemptible Resources Chapter 5

We implement our prototype on top on the Eucalyptus IaaS framework by introducing

an additional abstraction layer to the server API and client-side tools. We take advan-

tage of our work in on generating time-to-preemption estimates and extend it here to

account for additional overheads. Our approach avoids any modifications to Eucalyptus’

API or internal code, thus keeping in tact the framework’s production-quality reliability

properties. The management of resources is still performed by Eucalyptus and its tool

chain, while users can take advantage of the additional federation capabilities through

the new interface. While our prototype builds on Eucalyptus, the techniques layed out

in this chapter are general and can be applied to (and across) other IaaS frameworks as

well.

While we aim to maximize the transparency of the federation mechanism, it still

introduces API extensions and requires some additional inputs from users who want to

take advantage of federation capabilities. Our prediction mechanism requires an a-priori

estimate of the maximum job duration (more specifically, the desired duration of SLO-

coverage) if the user wants to use preemptible capacity with availability guarantees. We

automate the remaining federation process in out tool chain and automatically adapt the

user estimate to consider site-specific overheads. Additionally, our prototype transfers

specified job input data to the federation target and transfers outputs (if any) back to

the source cloud.

We evaluate our cloud federation prototype end-to-end via faster-than-realtime and

smaller-than-realworld replay of several computationally intensive and data analytics

workload traces recorded from production systems. We deploy the system across multiple

geographically distributed sites and analyze its performance and reliability properties.

In summary, to make a preemptible service class practically useful as a cloud federa-

tion technique, our method

80

IaaS Cloud Federation Using Preemptible Resources Chapter 5

• prioritizes local control over remote control by federating jobs on preemptible ca-

pacity exclusively,

• provides an availability SLO on preemptible resources within a bounded time win-

dow,

• relies on de-centralized scheduling and resource allocation,

• does not interfere with the tested, internal structure of existing open-source IaaS

frameworks, and

• is complete and testable end-to-end in live cloud deployments,

Our evaluation shows that our approach to IaaS cloud federation is able to maintain

a probabilistic SLO on the preemption fraction of federated instances across a broad

spectrum of workloads even under tight capacity constraints. We show that our approach

scales with additional capacity, adapts to changes in cloud configurations, and is robust

to seasonality in workload and inaccuracies in user-specified job durations.

5.2 Related Work

Celesti et al. [108] make a distinction between two types of cloud federation archi-

tectures: “inter-cloud” federation that moves jobs between vertically integrated clouds

and “cross-cloud” federation that allows service-granularity mashups between different

clouds. Grozev and Buyya [109] survey a corpus of work in the “inter-cloud” context.

InterCloud [110] proposes an architecture for cloud federation using a network of bro-

kers on an exchange that schedules jobs across different clouds based on QoS constraints.

The design is evaluated in simulation trading-off cost and runtime when executing jobs

across private and public clouds. The authors of [111] hypothesize a transition from

81

IaaS Cloud Federation Using Preemptible Resources Chapter 5

today’s “monolithic” cloud architectures to a “horizontal” federation model and design a

step-by-step process for federating resources between clouds. The authors of [112] study

a layered composition of cloud services for a specific use-case that enables inter-operation

of multiple clouds executing a single applications. [113] is a representative for studies of

cost-models trading off between executing workloads with local resources, out-sourcing

to other providers and in-sourcing.

Some contemporary inter-cloud federation designs rely on centralized “brokers” to

facilitate communication between providers and consumers and optimize various perfor-

mance metrics. Azam et al. [114] use a broker to match customers and providers and

predict resource usage for cost optimization. Similarly, [115, 116, 117, 118, 84, 119] use

brokers to optimize cost by trading off between reserved and on-demand capacity based

on expected future demand. Yao et al. [120] explore broker-based cost optimization for

batch jobs with completion deadlines.

Several works implement software frameworks to connect real-world clouds and ad-

dress challenges that an end-to-end implementation of cloud federation faces. Simarro et

al. [121] develop a broker that schedules resources across different real-world providers

based on dynamic pricing schemes. Superclouds [122] use nested paravirtualiztion in Xen

to provide a consistent foundation for VM hosting across multiple providers. RESER-

VOIR [123] uses a peer-to-peer approach to negotiating resources in a federation of

clouds at job-level granularity. Platforms such as Apcera [124] and the recently ac-

quired ClusterK [125] facilitate the deployment of applications across multiple clouds

and preemptible service classes via cost-aware scheduling and autonomous handling of

instance preemption.

Our approach follows the “inter-cloud” federation design with job-level granularity.

In contrast to existing work, our approach allows the executing cloud to remain in control

of its own resources at all times (i.e. no open-ended guarantees), while still giving users

82

IaaS Cloud Federation Using Preemptible Resources Chapter 5

a probabilistic guarantee on job completion probability. Guarantees are made ahead-of-

time, based on a user-specified maximum job execution time. Thus, we primarily aim to

ensure that guarantees on the job preemption fraction are met consistently for a variety

of workloads, rather than to optimize a monetary “profit” function. We further use a

de-centralized, user-focused approach to federation similar to Condor’s “direct flocking”.

Finally, we evaluate our approach with a “live” implementation replaying scaled-down

production workloads on real cloud systems.

5.3 Methodology

To represent the combination of computing and storage requirements in a workload,

we define a job as a homogeneous group of instances and an associated data set in the

cloud’s object store. The goal, then, is to predict whether each job that is launched in

the preemptible service class will

• transfer its inputs to the target execution site,

• execute for a duration specified with the job, and

• transfer any results back to its originating site

before locally generated work at the target site preempts it. The method must ensure

that the fraction of incorrect predictions (i.e. the prediction error) is below a threshold

set by the cloud administrators for the service class.

We define the preemption fraction of federated jobs as P
A

, where A is the number

of jobs submitted and admitted to a remote cloud for federation, and P is the number

of jobs in A that are preempted (terminated) by the remote cloud before completion.

Thus, the quantity 1.0 − P serves as the “success probability” associated with a the

execution of a federated jobs. Note that in contrast to existing systems implementing

83

IaaS Cloud Federation Using Preemptible Resources Chapter 5

preemption [24, 126], our model allows a user to reason about the how long each instance

will execute before it can be preempted (with a specific probability estimate). Thus,

the user’s trade-off between preemptible and non-preemptible service tiers is quantifiable

ahead-of-time.

We further assume that all clouds in a federation may request to federate work to

other clouds and agree to accept federated work themselves. That is, there are no “free

riders”. Finally, we assume that each cloud serves as the “primary” cloud for some set of

users and that cloud receiving a “native” job request from its own users will attempt to

satisfy it locally, before forwarding to it a remote cloud for federated execution. Any job

accepted from a “foreign” remote cloud (under the constraints of the admission control

mechanism) can be preempted by a new local request for instances if there is insufficient

capacity available to satisfy the locally generated request.

To enable ahead-of-time certainty for federated jobs, we introduce admission control

that employs a predictive model for deciding whether to accept a request for a preemptible

job (a group of instances and data). Admission control is tasked with accepting or

rejecting incoming native and foreign job requests based on available capacity without

queuing. Native jobs must be accepted as long as (a) sufficient spare capacity is available

or (b) local capacity can be made available by terminating federated jobs. Federated

jobs are admitted only if sufficient spare capacity is available (a) to fit the requested

job and (b) to guarantee probabilistically that the remaining spare capacity is sufficient

to absorb future native requests without triggering preemption. We assume that each

foreign job requires inputs from the originating cloud’s object store and that outputs

from the job must be returned to the originating cloud. Further, we assume that there is

sufficient storage in the object store of the cloud accepting a federated job to hold that

jobs’ inputs and outputs temporarily. As a consequence, preemptions are only triggered

due to instance capacity constraints, not storage shortfall.

84

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Key to our approach is that federated job requests come with a user-specified min-

imum duration for the job’s computational needs until completion. A cloud only ac-

cepts a federated job (admits a preemptible job) if its lifetime (the job’s duration plus

system-specific launch overheads) is shorter than the lower bound estimate of the job’s

time-to-preemption, subject to a confidence level defined in the cloud’s SLO. SLOs in

our system are defined upon job submission and are immutable for the entire execution

of the job.

Our implementation of this model system uploads input data to the object store

of the remote cloud prior to job execution. It downloads results (output data), if any,

upon job completion and deletes the inputs and outputs once they have been successfully

transferred back to the requesting site. Our model accounts for predicted data transfer

and management times in its estimates of the actual amount of time a job spends in

the system and remains preemptible – which we refer to as the job’s total “lifetime”.

As such, users need only specify the minimum duration that suits their applications’

computational needs, while the system accounts for overheads internally.

5.3.1 Federation Architecture

In our architecture, a cloud federation consists of one or more IaaS clouds (or cloud

availability zones). Each cloud operates an additional Web-API that can be accessed by

clients wishing to take advantage of federation capabilities. Clouds within the federation

allow remote access to their object store to enable data transfer in and out for federated

jobs. Additionally, all clouds are assumed to provide compatible instance images and

sizes that fulfill a pre-agreed set of minimum requirements. These images and instance

sizes are defined and named per federation and may translate to different (but compat-

ible) implementations within each participating clouds. That is, a “federation” consists

85

IaaS Cloud Federation Using Preemptible Resources Chapter 5

of a standardized API for job submission with SLO requirements and a collection of

compatible API endpoints and mappings for instance types and images.

Users obtain credentials from each cloud individually and manage their own configura-

tion, similar to “direct flocking” in Condor [32]. A federation’s “config file” is distributed

to users and contains information about the endpoint URLs for each cloud, the image

types, and the standardized sizes. For example, the cloud administrators within the

federation may agree on providing a “Hadoop-2.6” image that provides Apache Hadoop

version 2.6.x on CentOS 7. Equally, instance sizes for federation-enabled jobs must agree

on minimum specifications. For example, a “large” instance may be required to have

at least 8 cores, 4 GB of RAM, and 50 GB of local storage – the rough equivalent of

the default “m2.4xlarge” in Eucalyptus 4.2. Users later augment this configuration with

their cloud-specific credentials and can expand “their” federation with further endpoints

and mappings, if so desired.

Depending on the users’ affiliation (or negotiation abilities) their credentials are as-

signed either “high-priority” or “low-priority” access on a per cloud basis. High-priority

requests execute jobs on regular instances and have the ability to preempt running in-

stances from low-priority users should capacity run out. Low-priority requests rely on

preemptible instances and are subject to admission control based on the user-specified

SLO target. Typically, users are expected to be associated with exactly one “primary”

high-priority cloud within their own organization while using low-priority requests on

all other clouds. Cloud administrators can safely give low-priority access to users from

external organizations as their resources can be reclaimed transparently by local users

via preemption.

Our federation mechanism safely “bursts” load to remote destinations when local

capacity runs out, rather than performing load balancing or cost optimization between

individual clouds. When a user submits a federated job, we first route the request to the

86

IaaS Cloud Federation Using Preemptible Resources Chapter 5

user’s primary cloud before reaching out to other clouds within the federation. If the

cloud has sufficient capacity – or can make sufficient capacity available by preempting

low-priority jobs – the job launches and executes on the primary cloud. If there is

insufficient capacity (or the user voluntarily uses a low-priority request) we send the

request to another randomly selected cloud in the federation. If the remote cloud can

provide the requested capacity subject to the minimum availability constraints, it accepts

and launches the job on preemptible capacity. If the remote cloud rejects the request, we

forward the request to the next candidate cloud. Should all clouds reject the request, we

inform the user who may then decide to modify the request or wait for capacity to free

up. This randomized approach consistently guarantees the requested quality of service

while avoiding the need for centralized coordination.

5.3.2 Instance Lifetime Guarantees

When a user makes a request for a preemptible job, given the current state of the

potential target cloud, the admission control algorithm must predict the minimum time

until native workload on that cloud will cause a resource shortfall if the requested job is

admitted.

The system predicts bounds (described below) on possible future required capacity

for native jobs and uses this information to create a schedule for possible increases in

non-preemptible utilization in the near future, starting from the current utilization level.

It augments this schedule with load decreases from the expected completion of foreign

jobs, based on these jobs’ remaining lifetimes. Admission control admits a new foreign job

only if the predicted total utilization of the cloud does not exceed the available capacity

for the entire projected lifetime of the requested job.

Note that the admission of additional preemptible jobs does not affect the time-to-

87

IaaS Cloud Federation Using Preemptible Resources Chapter 5

preemption of active preemptible jobs, as we use a “Youngest-Job-First” preemption

policy (c.f. Section 4.3.2). All preemptible jobs active before the admission of a new

preemptible job are relatively higher priority and will only be preempted after the new

job has been preempted. That is, as a federated job spends more time executing on a

cloud and additional preemptible jobs are admitted, the original job becomes less likely

to be preempted in the event preemption occurs on the cloud.

To account for job startup and teardown (instance starts and terminations, job input

and output data migration), admission control continuously monitors and tracks the

histories of hypervisor overheads and transfer bandwidths between clouds in a federation.

Thus the methodology requires a “training period” during which gathers information to

make its initial estimates.

In summary, to construct a schedule, we must

• estimate possible increases in the non-preemptible utilization in the near future,

• estimate the overhead associated with transferring a job to the cloud where it will

be executed,

• combine these estimates into a joint estimate of the lower bound on the time avail-

able to each job before it could be preempted, where the estimate error is less than

or equal to the SLO target probability, and

• solve algorithmically a dynamic capacity planning problem using these estimates

starting from the present state of the cloud.

If no schedule can be generated, the federation request is rejected, but no terminations

of existing jobs are triggered. Thus only the arrival of new native requests can preempt

foreign jobs if the cloud is at full capacity. We detail this methodology in the following

subsections.

88

IaaS Cloud Federation Using Preemptible Resources Chapter 5

5.3.3 Estimating Native Utilization

The intuition behind our admission control mechanism is that the job preemption

probability depends on the current load level of the cloud as well as predictable changes

of the load level in the near future. For example, when the cloud’s load is near capacity,

new native workload is more likely to cause a preemption of foreign workload than if the

cloud is relatively under utilized. Notice that it is only the arrival of new native instances

that can trigger the termination of preemptible instances – admission control ensures that

new foreign instances will be rejected if there is no spare capacity to host them. Moreover,

it is an increase in native load (and not a decrease) that causes preemption.

As such, the admission control algorithm considers a new federated job request, it

requires a prediction of the time until spare capacity is exhausted and at least one

additional native instance is requested, i.e. a preemption is triggered. For example, if

the a federated request is for 10 instances, the admission control algorithm requires the

time until the cloud only has 9 available slots (or fewer) remaining for run instances on.

We refer to this time estimate as the “time-to-preemption” (c.f. Section 4.3).

However, for scalability reasons, rather than making this estimate on a per-request

basis, our system continuously computes the time until there will be a capacity shortfall

for different possible federated job sizes. To do so, we sample the history of total capacity

utilization of native instances at regular intervals. From each sample, we trace forward to

identify the point at which the aggregate utilization of non-preemptible instances (native

instance starts without compensating native instance terminations) increases by a fixed-

size step (e.g. one instance slot). We repeat this tracing procedure for each possible

magnitude of load change (two slots, three slots, and so on) and tabulate the results as

a set of empirical distributions. This database of predictions is constantly updated but

queried asynchronously by the admission control system. When the admission control

89

IaaS Cloud Federation Using Preemptible Resources Chapter 5

system considers a new request for a federated job, it computes the time-to-preemption by

retrieving the distribution corresponding to the load increase that is equal to the current

level of available spare capacity (including the new job) plus one (the hypothetical native

instance triggering preemption) from the table and uses a quantile corresponding to the

SLO from this distribution as the estimate.

For example, at the time of a request, there are 10 available slots to run native

instances, and a federated request requires 2 instances, the admission control system will

extract the size distribution of previous time windows corresponding to increase in native

workload of 10− 2 + 1 = 9 instances. If the target bound on job preemption probability

is 0.05, then it will use the 0.05 quantile from this empirical distribution as an estimate

of the least amount time until the newly added federated job might be preempted.

To manage seasonality (which we observe in numerous production IaaS workload

traces), we assume (based on our experience with these traces) that different time peri-

ods during the day experience varying arrival rates of native requests and thus a different

time-to-preemption for federated jobs. Our framework spreads time-to-preemption sam-

ples from historical tracing across different time-of-day bins, e.g. 2-hour bins such as 8:00

to 10:00. When making predictions for a newly arriving request, we serve a distribution

of only those time-to-preemption samples specific to the request’s time-of-day bin. Bin

size can be set by cloud administrators and we find that a window of 1 to 3 hours is

sufficient for the workloads we have considered.

5.3.4 Estimating Federation Overheads

To arrive at an effective job “lifetime” estimate, the overhead associated with launch-

ing a job on a remote cloud must be considered. This overhead is added to the minimum

duration specified in the federated job request to determine if the request can be satisfied.

90

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Job execution on a remote cloud can only start when instances are fully setup up

and all required input data has been transferred to the executing cloud’s object store.

Note that with our federation design instance setup and in-bound data transfer occur

in parallel, as do instance teardown and out-bound transfer. As a consequence, job

preemption is possible during a job’s setup phase, but not during teardown, as the job

does not retain any active instance capacity.

Federation overheads consist of two components: system-specific instance startup

time and the time required to transfer inputs. We record the instance startup delays

for each cloud (available from the cloud logs) as empirical distribution which facilitates

our extraction of arbitrary quantiles. We can refine further the method to account for

instance attributes (i.e. not all instances may incur the same startup delay); we do not

do so in this paper but will consider doing so as part of future work. Second, we account

for data transfer times between two IaaS clouds in the federation case. We monitor

aggregate data transfer bandwidth between source and destination clouds over time and

store them similarly as an empirical distribution.

When combining the user-specified job duration with overhead estimates and compar-

ing their sum to the estimated time-to-preemption, the probability that the comparison

is incorrect must be less than or equal to the SLO preemption probability. We treat the

distribution of overheads for instance startup and teardown as being independent of the

distribution of time-to-preemption. As such, we choose the quantile to use as a bound

on the overheads and the quantile to use as a bound on the time-to-preemption so that

their product is less than or equal to the SLO preemption probability.

We address seasonality in overheads by binning similar to our time-to-preemption

distributions. Such time slicing however can introduce error in our estimates for bins

that contain differing numbers of samples. This makes quantile estimates from empirical

distributions unreliable, especially in the tails which are critical to make SLO guarantees.

91

IaaS Cloud Federation Using Preemptible Resources Chapter 5

We address this issue by using the Binomial distribution to construct 95% confidence

intervals around the quantiles as done by QBETS, a queue-bound predictor for time

series [60]. Moreover, we test the impact of such binning in the empirical evaluation of

our prototype.

5.3.5 Admission Control

For every admission decision, admission control solves a capacity planning problem

using bounds estimates of native load increases and expected foreign job completions (the

latter coming from minimum duration specifications accompanying each foreign job). It

generates a prediction of the available spare capacity over time (in the near future)

that takes into account the remaining lifetimes of the current foreign job set and makes

admission decisions based on whether new requested foreign instances will “fit” within

the available capacity for their entire lifetime.

Intuitively, the admission control system runs a discrete-event simulation in which

there are two types of events: the termination of a foreign job, and the increase in

occupancy of the cloud by native workload. The simulation runs at the time a new

foreign job is to be considered for admission. The system discretizes cloud into “slots” –

units of cloud allocation – that each job occupies.

For example, often administrators configure each node in a private cloud to host, at

most, as many virtual machines as it has cores, with each virtual machine occupying a

single core. In such an example, the cloud would have as many slots as it has cores it

can devote to virtual machines. Further, in this example, the number of cores used by a

job defines the number of slots it requires.

Note, that in contrast to to our generic implementation for estimating the time-to-

preemption in Chapter 4 we only allow a single instance type (slot size) in this imple-

92

IaaS Cloud Federation Using Preemptible Resources Chapter 5

mentation. The admission control algorithm below can be extended to support multiple

types, but as a consequence requires explicit scheduling control over the underlying cloud

framework. With multiple instance sizes, we need control over instance placement and

preemption to make accurate predictions about the the consequences of an admission

decision. This is related to the asymmetric nesting behavior of instances on nodes. For

example, assuming a cloud with two nodes – one with 2 free cores and another with 4

free cores – admits a 1-core instance, the future availability of a 4-core slot then depends

on the 1-core instance’s placement. If the instance launches on the first node, a 4-core

instance can still be placed on the second node. If the 1-core instance launches on the

second node, no space remains for a 4-core instance. Thus, if a native 4-core request ar-

rives, the probability of triggering a preemption on the cloud depends on the placement

decision made before. Thus, the placement policy affects the preemption probability of

instances and must be known to the simulation.

93

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Listing 5.1: Admission control algorithm for enforcing an 0.05 upper bound SLO
on the preemption fraction of federated jobs.

1 // Configuration and user request, example

2 psla ← 0.05

3 capacity ← 32

4 requested← {(′m1.medium′, 3600, ...)}

5

6 // Choose any ppre, such that ppre ∗ pdur ≥ psla

7 ppre ← sqrt(psla)

8 pdur ← psla/ppre

9

10 fed← get preemptible instances() ∪ requested

11 native← get nonpreemptible instances()

12

13 Qfed ← {est time remaining(s, 1− pdur)|s ∈ fed}

14

15 remaining ← |fed|

16 for(tdur ← sort(Qfed)){

17 cspare ← capacity − |native| − remaining

18 tpre ← est time to increase(cspare + 1, ppre)

19

20 if(tpre < tdur)

21 REJECT

22

23 remaining ← remaining − 1

24 }

25

26 ADMIT

94

IaaS Cloud Federation Using Preemptible Resources Chapter 5

The number of slots in a cloud is determined by how the administrators choose to

define its virtual machine types in terms of core count, memory occupancy, and local disk

allocation. However these values are fixed when the cloud is configured and published to

the user community. Our admission control system uses this information to determine

how many slots a cloud can support.

When the system considers admitting a new foreign job, it first computes the number

of slots that are occupied by the current set of foreign jobs running in the cloud, and the

number of slots that are occupied by native workload. If there are enough free slots to

host the new foreign job, it then, hypothetically, adds the job to the set of foreign jobs

in the cloud (otherwise the job is rejected).

We next predict a lower bound on the time until the number of unused slots (+1) will

be consumed by native work with probability 1.0 minus the SLO preemption probability

(e.g. 0.95 for a preemption probability of 0.05). If the new foreign job’s lifetime (i.e. its

duration plus startup and teardown overheads) is greater than or equal to this bound,

the job is rejected.

Otherwise the system sorts the foreign jobs by their termination times (which were

computed when the jobs were admitted) and “rolls” time forward from one job completion

to the next. Each time a foreign job terminates the admission control system again

predicts the bound on the time until native workload will exhaust available slot capacity.

If the remaining lifetime of the new job, at each of these termination points, is greater than

the prediction, the new job is rejected. If there is no point in time at which the system

predicts that native workload will exhaust capacity (and thereby cause a preemption)

between the time the new foreign job is submitted and the end of its lifetime, the new

foreign job is admitted. Because we estimate load changes and their time-to-preemption

using lower bound quantiles (determined by the SLO), admission control decisions will

be probabilistically correct if the estimation mechanism is robust.

95

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Listing 5.1 shows the capacity planning algorithm as pseudocode for an SLO proba-

bility of 0.05, a capacity of 32 slots, and a requested m1.medium foreign job requiring a

single slot over a 3600 seconds duration.

Lines 1 through 13 initialize the discrete event simulation by computing the current

“state” of the cloud in terms of the free and available slot capacity. Lines 16 through 23

are the main simulation loop in which the state of the cloud is reconsidered when each

federated foreign job terminates. The function est time to increase invoked on line 18

returns the lower bound on the time-until-preemption with probability ppre. Because the

foreign job lifetime is determined by the job’s duration and its startup and teardown

overheads (each of which must be estimated probabilistically) ppre is set to the square

root of the SLO probability. Similarly, the probability associated with the startup and

teardown overhead (pdur in the listing) is also set to the square root of the SLO probability.

We assume that the overhead distributions and the time-to-preemption distributions are

independent so that the product of ppre and pdur equals the SLO probability (psla in the

listing).

Note that the simulation makes a single pass through all federated jobs in sorted

order. Since the system computes the bounds predictions asynchronously, the time to

furnish an estimate to the admission control algorithm is constant. Thus the complexity

of the admission control algorithm is O(nlogn) where n is the number of admitted foreign

jobs.

5.3.6 Evaluation Traces

Our evaluation uses three groups of anonymized, real-world traces recorded from

production systems. Each represents two separate sub-traces with jobs recorded from

two “big data” clusters. They span multiple months in real time and contain mixed

96

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Table 5.1: Production traces. Types are batch (B), batch pipelined (P), batch seasonal
(S), long-running service (L), and mixed (M).

num num total trace average work
reqs insts data dur inst dur type

segment (TB) (wks) (hours)
DS-A 1 2.3k 3.0k 1100 2 2.2 B, S
DS-A 2 1.5k 2.0k 50 2 2.9 B, S
DS-B 1 1.3k 4.2k 80 12 2.2 B, P
DS-B 2 1.5k 2.4k 180 12 9.3 M
DS-C 1 1.2k 2.8k – 30 10.0 M
DS-C 2 0.5k 1.9k – 30 45.5 B, L

workloads from multiple cloud users and software frameworks. For our replay we extract

long-running jobs over 1 hour in real-time duration, scale them to fit our testbed and

use separate parts of the traces for model training and evaluation. We summarize these

traces in Table 5.1. We set up our experiments with two clouds which are running a

native workload each and, in case of overload, attempt to offload rejected native jobs

to the other cloud as preemptible jobs with a 0.05 upper bound SLO on preemption

probability (i.e. a 95% success guarantee).

Data set A (DS-A) covers a 5-month period and multiple Hadoop clusters used by

a medium-size Internet business. For our evaluation, we extract workloads from two

large clusters with a strong seasonal workload patterns as visualized in Figures 5.1 and

5.2. The source clusters typically execute jobs with hundreds of concurrent tasks. We

extract a 2-week period for training and a consecutive 2-week period for evaluation, using

a speedup of 50x for a total runtime per experiment of approximately 7 hours.

DS-B occurred over a 7-month period and includes multiple big data frameworks

running on Apache YARN [36] on multiple clusters of another medium-sized Internet

business. Part of the workload arrives in bursts as the clusters are used for interactive

data analysis, while another part of the workload stems from periodically scheduled tasks.

We use a replay speedup of 50x for a total experiment runtime of 39 hours.

97

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Figure 5.1: Partial visualization of seg-
ment DS-A cluster 1 showing strong sea-
sonality in utilization over time.

Figure 5.2: Partial visualization of seg-
ment DS-A cluster 2 showing erratic uti-
lization with some seasonality.

DS-C covers a 9-month workload recorded from IaaS clouds used mainly for high

performance computing tasks. The majority of requests arrive in irregular bursts, while

part of the capacity is used for long-running services. This data set is extracted from a

larger collection of publicly available private IaaS traces [76]. We replicate the original

size of jobs in terms of core counts, but the jobs’ data sizes were unavailable. We use a

constant data size of 100 MB per job to simulate load on the storage backend and use a

replay speedup of 100x for a total experiment runtime of 67 hours.

For DS-A and DS-B data sets, we scale down the size of the data inputs and outputs

for each job by the same factor that we use for execution times. That is, we assume that

the size of the data is proportional to the execution time for jobs executed by these big

data frameworks. In our experiments, we transfer the data across the wide area between

different cloud sites (e.g. UC Santa Barbara and CloudLab Utah) for federated jobs

only. Thus, the total amount of data that we transfer over the Internet depends upon

the speed up factor and the realized job federation fraction.

During our development, DS-C was available for testing and should be considered in-

sample (train-train). Part of DS-A was available during development as well, while the

evaluation uses a more recent trace segment that was unavailable during our development.

98

IaaS Cloud Federation Using Preemptible Resources Chapter 5

DS-B was available only after we completed the development of our prototype and thus

represents a true out-of-sample test (train-test).

5.3.7 Evaluation Metrics

We consider three metrics to evaluate our method: the preemption fraction of fed-

erated jobs, the rejection fraction of requests, and the federation fraction of work. Pre-

emption fraction measures the effectiveness of SLO enforcement:

preemption =
|federated jobs preempted|
|federated jobs accepted|

This metric captures the fraction of pre-mature terminations of federated jobs (groups

of instances) that have been accepted by the admission controller and launched in the

system. It is intended to illustrate the degree to which the estimation methods and

asynchronous capacity planning implementation is able to correctly implement the SLO.

Rejection fraction measures the efficacy of federation in accepting incoming user re-

quests:

rejection =
|jobs rejected|
|jobs requested|

A rejected request has been rejected by the local cloud due to a lack of capacity and by

the remote clouds in the federation due to the inability to guarantee the requested SLO

preemption fraction. We only count jobs that are rejected first as native requests and

subsequently as federated requests once.

This metric is intended to reflect the user experience with respect to rejected workload.

When an unfederated cloud runs short of capacity, new user requests must be rejected.

Federation should enable lower rejection rates by allowing some of the otherwise rejected

workload to be run as federated workload thus improving user productivity.

99

IaaS Cloud Federation Using Preemptible Resources Chapter 5

The federation fraction represents the overall mutual gain from federation and mea-

sures the amount of work that results from access to remote capacity (completed jobs on

remote, preemptible instances):

federation =
work(federated jobs completed)

work(jobs completed)

The fraction uses the aggregate time spent by instances of successfully completed jobs.

It divides the aggregate time of completed federated jobs by the aggregate time of all

completed jobs (including federated jobs). This time includes the amount of time spent

to set up instances, wait for data transfers, execute the actual computation tasks, and

tear down the instances. Time spent by preempted jobs is not included.

5.4 Results

Our evaluation attempts to answer three primary questions about this new approach

to cloud federation, which provides an ahead-of-time guarantee on the preemption prob-

ability of federated jobs executed on preemptible resources:

• Is it feasible to enforce an upper bound SLO on the preemption fraction of federated

jobs with real-world workloads?

• Does the method scale with additional capacity to a federation of clouds while

maintaining its guarantees?

• How sensitive is the method to inaccuracies and changes in inputs and how are

guarantees affected?

To answer these questions, we emulate various federation settings via faster-than-

realtime and smaller-than-production replay of workloads recorded from production clouds,

100

IaaS Cloud Federation Using Preemptible Resources Chapter 5

using private cloud deployments equipped with our federation extensions. We choose this

methodology over a purely simulated approach so that the experiments take into account

the overheads (modeled and unmodeled) of working clouds. That is, while the workload

is a replay of production workloads (sped up from their original durations), the systems

are real.

In the experiments that follow, we implement a “burst capacity” model as described

in Section 5.3.1. We assume that in response to a rejection from the primary cloud the

user will forward the job immediately to another cloud and tacitly accept the preemption

probability associated with federated execution which is set to 0.05 in all experiments.

Note, that the experiments also require that the user also knows the maximum duration

of the job ahead of time and provides this data with her request. We test the impact of

inaccurate lifetime estimates on the SLO enforcement in Subsection 5.4.5.

Our traces include a mix of workloads from big data analytics applications (mostly

execution traces from Apache Hadoop [34] ecosystems) and high-performance computing

tasks, which we obtained from industry collaborators (c.f. Section 5.3.6). Our replay

scales the duration, instance capacity and data size proportionally to fit our prototype

cloud testbed. The emulation includes the launch and termination of actual cloud in-

stances and the transfer of data to and from the cloud’s object store. It does not, however,

execute original user code or access original files as this information has been purged from

the traces for privacy reasons. Instead, we transfer similarly sized files with random data

and “execute” jobs by launching instances and waiting for their recorded time to pass.

We have designed admission control as an independent component that can be used as

part of any IaaS system that exports the measurement in information necessary to form

the empirical distributions that the methodology requires. To test it, we implement our

admission control in Python 2.7 and integrate it with the open-source Eucalyptus IaaS

framework [78] version 4.1. Our extension complements existing API functionality on

101

IaaS Cloud Federation Using Preemptible Resources Chapter 5

both the server and client side and extracts monitoring data from the cloud system logs.

We install the system from repository packages on CentOS 6.7 and rely on Eucalyptus’

default access control to manage user access rights. Due to the long-running nature of

the experiments we concurrently use several different clusters located at CloudLab [5]

APT Utah, CloudLab Clemson, and UC Santa Barbara with 4-8 physical hosts each.

5.4.1 Federation Baseline

Figure 5.3 shows six baseline experiments, replaying our three production data sets

on two different cloud configurations each – without SLA-enabled admission control (i.e.

without prediction or capacity planning). In these experiments, admission of federated

jobs is based purely on available spare capacity (i.e., all foreign job requests are accepted

if, at the time of their arrival, there is sufficient capacity to host them). Each group of

columns on the x-axis represents one experiment, executing the sub-traces of a data set

concurrently on two clouds linked via two-way federation. The category names describe

the experimental setup for each data set, e.g. “DS-A”, and the size of the clouds in the

federation, e.g. “32-32” which indicates that each cloud employs 32 cores each.

We replay the three production data sets on two different cloud configurations. The

first constrains resources for the workload while the second provides some additional

total capacity. For DS-A we use 32-32 for the constrained scenario and 48-48 for the less

constrained scenario. For DS-B we use 16-16 and 24-24, and for DS-C we use 24-24 and

32-32 for each respective scenario. On the y-axis we plot our three performance metrics:

preemption fraction of federated requests(red), the rejection fraction of requests overall

(blue), and the fraction of successfully federated (additional completed) work (green).

The figure shows how the relationship between workload and capacity impact each

metric. DS-A shows a high preemption fraction (near 0.4) in the constrained scenario

102

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Figure 5.3: Federation between two ca-
pacity-constrained clouds without SLA
enforcement for 3 production traces on
different configurations. Federation en-
ables more jobs at the price of frequent
preemption.

Figure 5.4: Federation between two ca-
pacity-constrained clouds with SLA en-
forcement enabled. Admission control re-
jects some jobs to provide a guarantee on
preemption fraction, but still allows fed-
eration.

(32-32) while adding only 5% additional work as a result of federation (this work without

federation would have been rejected). DS-A on the 48-48 configuration reduces preemp-

tion fraction by a factor of three, down to 0.12, and the rejection fraction to near zero.

The fraction of successfully federated work remains the same as in the constrained sce-

nario, as the additional capacity is used proportionally for native and foreign workload.

DS-B has a preemption fraction of 0.27 in the constrained and 0.19 in the less constrained

configuration. DS-C starts out with a 0.12 preemption fraction, which decreases to 0.07

with additional capacity.

The degree to which additional capacity affects federation activity and the preemp-

tion fraction depends on the workload. DS-A has a similar federated work fraction in

both configurations. As such, extra capacity is devoted relatively equally to federated

and native jobs. For DS-B, extra capacity hosts more native workload (the rejection frac-

tion and the federation fraction both decrease). For DS-C, the added capacity is used

primarily to host federated workload (the rejection fraction decreases but the federation

fraction increases).

103

IaaS Cloud Federation Using Preemptible Resources Chapter 5

5.4.2 Federation with SLA Guarantees

Figure 5.4 shows the results for the same experiments as the previous section when

we employ our SLA-enforcing admission control. Our method reduces the number of

jobs admitted in order to meet its preemption fraction guarantees (using the 0.05 upper

bound). As in Figure 5.3 for the baseline results, the x-axis shows the workload trace

name and the size of the each cloud in the federation. Similarly, on the y-axis, we plot the

preemption fraction (red) of federated jobs, the rejection fraction (blue) of requests, and

the fraction of successfully completed federated work (green). The results show that our

method maintains a preemption fraction below 0.05 for all experiments indicating that

ahead-of-time guarantees on the preemption fraction of federated instances are possible.

This result holds for differing levels of capacity constraints across production traces.

Compared to the baseline results, our method increases rejection fractions in all ex-

periments which leads to less work completed overall. The native work (not shown) is

unaffected, but the work performed by federated instances decreases. That is, our method

trades off a small amount of the total federated work completed to provide an SLO on pre-

emption fraction for federated jobs. These results also indicate that our method changes

the way additional capacity is used for federation. Because our admission decisions for

federated jobs depend on the absolute amount of available spare capacity at the time of

the request, our system is less sensitive to workload characteristics and achieves higher

federation fractions with larger cloud configurations.

We also observe that under SLO constraints, DS-B federates few jobs compared to

DS-A and DS-C. The reason for this is that for both sub-traces (one per cloud in the

federation), DS-A and DS-C contain large numbers of small and short-running jobs, with

DS-C also containing a few long-running, service-like requests in sub-trace two. DS-B

is different in that sub-trace one contains primarily short jobs with a large number of

104

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Figure 5.5: DS-A on multiple configura-
tions without SLA enforcement. As ca-
pacity is added (left to right), preemption
and rejection fractions decrease while the
federation fraction increases.

Figure 5.6: DS-A on multiple cloud con-
figurations with SLA enforcement en-
abled. Preemption fractions remains be-
low the 0.05 upper bound, while federa-
tion fractions increase with capacity.

instances per request and sub-trace two contains many long jobs with a small number of

instances per request. This mismatch in workload characteristics between the two clouds

in the federation, makes it more challenging to federate jobs in DS-B compared to DS-A

and DS-C.

5.4.3 Federation with Platform Scaling

We next evaluate the method’s ability to scale federation activity when adding ca-

pacity to the underlying clouds while keeping workload intensity constant. In particular,

we investigate the capacity scaling behavior of our admission control for DS-A and DS-

B. These data sets are of special interest as DS-A contains strong daily seasonality and

DS-B when highly resource constrained appears ill-suited for federation. When a feder-

ation of clouds has sufficient capacity to accommodate all requests at any given time,

SLA enforcement becomes unnecessary and may impose overhead. If our method scales

gracefully with capacity, it will admit additional federation requests as the total capacity

of the federation increases. Asymptotically, with increased capacity, our method should

complete a similar amount of work as the no-guarantees baseline. In contrast to the base-

105

IaaS Cloud Federation Using Preemptible Resources Chapter 5

line, users of the SLO-enabled federation experience a preemption fraction that meets

the SLO targets, even as the workload of the clouds changes over time.

Figures 5.5 and 5.6 show the results of our capacity scaling experiments for DS-A

for the baseline and SLA-enabled admission control, respectively. Figures 5.7 and 5.8

show the results for DS-B. The categories on the x-axis describe the size of the clouds in

the federation, e.g. “32-48” identifies a pair of federated clouds, one with 32 cores and

the other with 48 cores. The left graph in each pair shows federation statistics without

SLA-enforcement, the right with SLA-enforcement enabled with an upper bound of 0.05

preemption fraction of federated instances. The y-axis is the preemption fraction (red),

rejection fraction (blue) and federated work fraction (green).

Federation capacity increases from left to right in each graph. While the size of the

cloud running sub-trace 1 is fixed at 32 cores for DS-A and 16 for DS-B, the size of the

cloud running sub-trace 2 increases in steps of 16 cores, for a total federation capacity of

112 cores for DS-A and 80 cores for DS-B.

The baseline results for DS-A has a preemption fraction of near 0.4 for the 32-32

configuration. As the available capacity in cloud 2 increases, the preemption fraction

and the rejection fraction decrease gradually. Inversely, the fraction of successfully fed-

erated work increases and levels off near 20% in the 32-80 configuration. For the largest

configuration, the rejection fraction is at 0% indicating that every request sent to the

system was accepted. Based on the rejection ratio, a capacity of 64 for cloud 2 provides

sufficient capacity to accept 99% of all job requests sent to the clouds, although the pre-

emption fraction of jobs is just above 0.05. If we manually enforce a 0.05 preemption SLO

via static overprovisioning, we find that the optimal capacity of cloud 2 lies somewhere

between 64 and 80 cores.

When we employ SLA-enabled admission control for this experiment (Figure 5.6) for

DS-A, the preemption fraction of federated jobs drops to near zero across clouds. The

106

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Figure 5.7: DS-B on multiple configura-
tions without SLA enforcement. As ca-
pacity is added (left to right), preemption
and rejection fractions decrease while the
federation fraction increases.

Figure 5.8: DS-B on multiple cloud con-
figurations with SLA enforcement en-
abled. Preemption fraction remain below
the 0.05 upper bound, while federation
fractions increase with capacity.

admission controller achieves the target 0.05 upper bound on preemption fraction at the

cost of higher rejection fractions, while increasing the federation fraction with added

capacity. That is, rather than seeing a gradual reduction in preemption fractions and

rejection fractions as capacity increases, the admission controller virtually removes the

risk of preemption. Thus, using our approach, the cloud exhibits a direct relationship

between cloud size and accepted work (as would be the case in an unfederated cloud

setting).

Figure 5.7 represents the baseline for scaling cloud capacity with DS-B. The smallest

configuration (16-16) results in a 0.27 preemption fraction. As the second cloud in the

federation increases in size, the fractions decrease. Concurrently, the federation fraction

increases from 4% to 12%. This trend in decreasing preemption fractions and rejection

ratios, but increasing federation fraction is similar to those for DS-A. With a static,

overprovisioning-based approach to SLA-enforcement we observe an optimal capacity of

cloud 2 to be approximately 48 cores.

Figure 5.8 shows results of using SLA-enabled admission control for DS-B. The small-

est configuration (16-16) results in a preemption fraction near 0 because very few jobs

107

IaaS Cloud Federation Using Preemptible Resources Chapter 5

can be federated. As the federation capacity increases, the rejection fraction decreases

while the federation fraction increases. Moreover, the system maintains a preemption

fraction below 0.05 for all configurations. In contrast to DS-A where most configura-

tions experience no preemptions, the admission method appears less conservative as the

preemption fraction for scaling experiments with DS-B remains in the 0.01 to 0.02 range.

The comparison between baseline experiments for DS-A and DS-B offers an additional

insight into the traces. The federation fractions across configurations indicate that DS-A

has more potential for federation than DS-B. Both have a rejection fraction of near zero

(indicating that most user requests are accepted), yet DS-A in its largest configuration

has a 20% federation fraction while DS-B has 12%. Moreover, DS-A’s higher federation

activity leads to a disproportionately higher preemption fraction across capacities versus

DS-B. DS-C behaves similarly to DS-A (and so we omit it for brevity).

These results show that admission control is able to scale gracefully with capacity and

enables us to quantify the opportunity cost for automatically enforcing an SLO on the

preemption fraction of federated jobs. Our admission control consistently maintains a

preemption fraction below its 0.05 target and increases the amount of admitted federated

work as capacity is added to the clouds. The differences in work completed between the

baseline and the SLA-enabled cases are most visible in resource constrained settings.

As capacity is added to the clouds, admission control accepts additional federated jobs,

reaching federation fractions within 20% of the baseline.

5.4.4 Efficiency Gains at Scale

The utility of cloud federation capabilities should increase with a larger pool of work-

load available for consolidation. This effect should especially hold true for workloads

with un- or anti-correlated user demand. If the efficiency of the federation as a whole

108

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Figure 5.9: Efficiency gains of four clouds (A, B, C, D) with increasing federation
size. Baseline (left), two separate clouds and a federation of two clouds (second), two
federations of two clouds each (third), federation across all four clouds (right). As the
number of federated clouds increases, the aggregate rejection fraction decreases while
federated work increases.

increases with size, it will encourage participation of additional organizations as it grows.

We test this hypothesis of increased utility with scale by comparing the aggregate

utilization of different federation setups with four individual clouds. Specifically, we use

four clouds executing different workload traces and compare federation setups with 4

unconnected clouds, 2 unconnected and two federated clouds, two separate federations

with two clouds each, and a single federation of all four clouds. If federation adds value

with increasing total capacity and workload pool, the setup with four federated clouds

should perform best while the unconnected setup should perform worst.

Our setup is similar to the scaling experiments with DS-A in Section 5.4.3 above.

As cloud configurations, we chose four clouds with a configuration of “32-56-32-56”,

indicating two clouds with 32 cores each and two clouds with 56 cores each. We refer

to these clouds as “A”, “B”, “C”, and “D” respectively. To obtain the 4 different traces

necessary to drive all four clouds, we use a new equal-length trace DS-Ax that was

recorded immediately following the end of the orginal DS-A trace. We “time-shift” this

new trace to simulate a workload executing concurrently with DS-A.

Figure 5.9 shows the increasing benefits of adding opportunities for workload consol-

109

IaaS Cloud Federation Using Preemptible Resources Chapter 5

idation by joining clouds together by federation. We plot four different federation setups

as categories on the x-axis and again plot the preemption fraction, rejection fraction

and federated work fraction on the y-axis. The leftmost setup represents the baseline,

with all four clouds executing their workloads without federation. The next setup allows

federation between clouds “A” and “B”, while “C” and “D” remain separate. The third

setup connects “A” and “B” as well as “C” and “D” within federations of 2 clouds each.

The last setup on the right allows federation across all four clouds, maximizing opportu-

nities for federation. In all setups the clouds execute their same, specific traces and we

aggregate results across all four clouds for comparability.

We observe an incremental improvement in the aggregate amount work accepted by

the clouds, as indicated by a decreasing rejection fraction from left to right. Equivalently,

as the pool of workload and capacity increases by incrementally joining clouds together by

federation, the amount of federated work increases. Admission control performs well in

all scenarios and maintains a preemption fraction well below the 0.05 threshold. The most

relevant result is the improvement from two federations of two clouds each to federation

across all four clouds. Even with constant workload, as the federation grows in total

capacity and user base, the smoothing of demand leads to even greater consolidation

benefits.

5.4.5 Sensitivity to Duration Estimates

One fundamental requirement of our method for providing guarantees on the pre-

emption fraction of federated jobs is the availability of a job duration a-priori, which

flow directly into job lifetime estimates made by our system. A potential threat to the

robustness of the method lies in obtaining inaccurate estimates of these durations. That

is, we wish to investigate how sensitive the methodology is with respect to the degree to

110

IaaS Cloud Federation Using Preemptible Resources Chapter 5

Figure 5.10: DS-A on 32-48 configura-
tion with systematic estimation error of
job durations. Overestimation, accurate
estimation, underestimation and no-SLA
baseline from left to right. Admission
control consistently maintains the 0.05
upper bound on preemption fraction.

Figure 5.11: DS-A on 32-48 configuration
with phase shift of daily seasonality be-
tween the traces on both clouds. While
negative correlation between peak loads
is beneficial (compare original to 12 hours
shift), time remaining until the next peak
matters as well (6 hours to 18 hours).

which requested minimum duration exceeds actual duration of computation for federated

jobs.

Figure 5.10 shows DS-A executing on a 32-48 cloud configuration with admission

control enabled and with different, systematic estimation errors of job durations. The

left-most category executes trace data set DS-A and inflates the duration estimates by a

factor of 2.0, effectively overestimating the duration of federated requests. The following

categories show the results for accurate estimates (a factor of 1.0) and an underestimation

of the runtime at a factor of 0.5. The last category repeats previous results for executing

DS-A without admission control enabled for comparison.

The results indicate that admission control is still able to maintain its 0.05 bound on

the preemption (red) fraction, although systematic underestimation has a negative impact

on the realized preemption fraction. We also observe decreasing rejection fractions (blue)

and increasing federation fractions (green) as runtime estimates become increasingly

optimistic. While this experiment provides some evidence for robustness to variations in

estimates, we expect that the tolerance to estimation errors in job runtime to vary with

111

IaaS Cloud Federation Using Preemptible Resources Chapter 5

the specific workload.

5.4.6 Sensitivity to Seasonality

As another robustness test we investigate the impact of our seasonality correction on

admission control and thus on the amount of federated work. Both sub-traces in DS-A

show a recurring diurnal pattern. The first sub-trace changes the load by an order of

magnitude from peak to trough, whereas the other sees less fluctuation. Notably, the

load in the first cluster is positively correlated with the load in the second. Intuitively,

this should be bad for federation as when available capacity in the local cloud runs out,

the remote cloud also has less spare capacity than at other times. If the correlation was

weaker, or even negative, more work should be federated. To test this hypothesis, we

evaluate the performance of our system when introducing a “phase shift” between the

two traces. We move the start times of jobs in the first cluster by several hours (in trace

time) while leaving the second cluster to execute its original trace. Both clusters are still

configured to enforce a 0.05 SLO on the preemption fraction of federated jobs.

Figure 5.11 shows the results of the 32-48 configuration of DS-A with the original

trace setup on the left, followed by re-runs with the start times shifted in the first trace

by 6, 12 and 18 hours. The results corroborate the hypothesis that negatively correlated

workloads (12 hours phase shift) are better suited for federation than correlated peak

loads (original). Considering that the majority of offloading occurs from cloud 1 to cloud

2, we observe that federated jobs are most likely to be accepted after the peak in cloud 2

has just passed (6 hours). As we get closer to the next seasonal surge in cloud 2 (12 and

18 hours), the federated work fraction (green) decreases and the rejection fraction (blue)

goes up. Thus, correlation of utilization explains part of the federation performance, but

the specifics of the workload matter as well. In all cases the the admission controller

112

IaaS Cloud Federation Using Preemptible Resources Chapter 5

achieves its target SLO of less than 0.05 preemption fraction (red), although the realized

preemption fraction changes with the time offset.

5.5 Conclusion

We present a novel approach to job federation across IaaS clouds that guarantees local

control over resources by exclusively using preemptible instances for federated workload.

To make this practical, we introduce a “predictable” tier of preemptible instances based

on a method to provide an upper-bound SLO on the preemption fraction of federated

jobs. This guarantee is learned statistically, is specific to each cloud participating in

a federation, and dynamically adapts to changes in load and expected data transfer

overheads.

The federation architecture is inspired by direct-flocking in Condor with decentralized

control that avoids a single point of failure. Aiming at robustness, our implementation

also integrates with existing open-source cloud frameworks and eschews invasive changes

to these production-tested systems.

Our solution to job federation across IaaS clouds is complete and testable end-to-end

as we implement a prototype on top of Eucalyptus IaaS to evaluate our approach using

real-world replay of computationally intensive jobs and data analytics workloads recorded

from production systems. Our prototype consistently maintains the upper-bound on the

preemption probability of federated jobs, improves federation efficiency with scale, and

is robust to seasonal patterns in load and systematic underestimation of job durations

by the user.

113

Chapter 6

Conclusion

Cloud computing has changed the way large-scale computing infrastructure is built and

managed. While private IaaS clouds have simplified provisioning of enterprise IT infras-

tructure within organizations, they suffer from inefficiencies due to the need for manual

overprovisioning to meet predefined quality of service guarantees.

In this thesis, we present a method for increasing the resource efficiency of IaaS clouds

via workload federation on preemptible resources. We take inspiration from existing work

on federation and cycle harvesting in computational grids and aim to produce a practical

solution that performs in real-world settings. We develop a validated simulation model for

private IaaS clouds that reduces the engineering effort required to build cloud prototypes

and thus enable rapid development.

Our cloud federation architecture allows multiple independent organizations to share

intermittent spare capacity opportunistically without making long-term commitments.

This sharing reduces the required amount of overprovisioning, while retaining full con-

trol over resources within organizational boundaries. In this way, with minimal invest-

ment clouds can be run closer to capacity without compromising on quality of service

guarantees.

Our architecture preserves the autonomy of federation members by allowing preemp-

tion of federated workload by the executing cloud while still adhering to the fundamental

114

Conclusion Chapter 6

cloud requirement of providing ahead-of-time guarantees by enforcing an SLO on the

preemption probability of federated jobs. For this to be possible we use an a-priori upper

bound on job duration which is provided the user. To make this practical for real-world

batch jobs, we expect this user estimate to be of limited accuracy, so we design our

method to be robust to underestimation but also adapt dynamically to overestimation.

We then make ahead-of-time guarantees on the preemption probability of requested jobs

by comparing job duration bounds with their estimated time-to-preemption. This ap-

proach takes advantage of our validated simulation model and uses the cloud’s historic

utilization trace to generate bounds on the minimum time that similar jobs would have

executed in the past.

For initial evaluation of our federation design, we rely on a validated simulation

model we construct for multiple private IaaS clouds. Specifically, we take inspiration

from perturbation theory and develop a parsimonious top-down model of these clouds

to estimate relevant performance metrics based on historic utilization traces. We use

a Monte-Carlo style simulation and validate the model predictions end-to-end against

measurements taken from live cloud systems. We evaluate our approach to validated

simulation in a scheduler case-study before applying it to cloud federation. We find that

our method proves to be robust to moderate system modification and capacity scaling.

For end-to-end evaluation of our federation architecture we implement a full prototype

of our cloud federation system on top of the Eucalyptus IaaS framework and evaluate it

with faster-than-realtime and smaller-than-realworld replay of computationally-intensive

and data analytics workload traces recorded from production systems. Our prototype

considers various practical aspects of workload federation, such as data transfers between

federating clouds and delays induced by instance startup, and automatically adjusts deci-

sions based on current utilization levels and seasonality in workload patterns to maintain

its availability SLOs in different environments. Our evaluation results corroborate our

115

Conclusion Chapter 6

hypothesis that the our workload federation method can improve the utilization of IaaS

clouds and that ahead-of-time guarantees on job preemption probability can be enforced

in practice.

116

Chapter 7

Future Work

We envision numerous ways of expanding on research in real-world cloud federation. In

this section, we lay out a number of potential directions.

The replacement of the user-provided lifetime estimate with an autonomous predic-

tion based on job attributes has the potential to substantially improve usability and

efficiency. In the current design we expect a job runtime estimate from the user, which

is an unnecessary burden and error prone. As a consequence, we designed the admis-

sion control mechanism to make conservative decisions to correct for potential error in

these estimates. We suggest to replacing (or augment) the user-estimate with automated

prediction of job runtimes which can tighten prediction bounds and as a result allows a

federation to accept additional jobs.

We expect to learn valuable lessons from deploying and using the system in produc-

tion. Besides testing the robustness of the implementation and API, a question about

the impact in user behavior arises. Time-to-preemption estimates are based on historic

utilization traces and the introduction of federation capabilities will undoutably affect

user behavior. While we address part of this issue by using only cloud-native utiliza-

tion data (excluding federated requests), we expect the impact on user-behavior to be

pervasive. Additionally, user behavior may evolve over time which practically makes the

inclusion of change point detection a necessity.

117

Future Work Chapter 7

Another issue is the extension of the prediction to account for limited storage capacity.

The system currently assumes that input and output data, if transferable in time, will fit

in the object store of the destination cloud. In practice the priorities between local and

federated job must be enforced by preempting federated workload that causes a storage

space shortage for native jobs.

The prediction model further requires extension to account for differences in cloud

hardware and infrastructure if federation is performed across a large set of different clouds

– comparable to the issue of resource discovery and classification in computational grids.

Experience from existing literature suggests an approach similar to Condor ClassAds, but

will require additional flexibility to account for malleability of batch jobs in the cloud.

In a similar vein, the elastic trade-off between size and turnaround time for malleable

batch jobs could improve can further improve federation efficiency. In the current design

the non-linear relationship between core count and duration for admission control leads

to differing admission decisions for the same unit of work, based on the exact combination

of these attributes.

Adopting federation for public clouds, we envision augmenting existing service tiers

with a new type of “predictable” preemptible capacity. Two tiers of preemptible in-

stances could be offered within a single cloud, one with and another without availability

guarantees, differentiated by price points. Additionally, federation across multiple public

cloud providers seems feasible with a standardized packaging of jobs and SLOs.

The stateless random load balancer for choosing federation targets represents a scala-

bility bottleneck. If most clouds in the federation are full or unsuitable for user jobs, the

randomization creates unnecessary communication and delays. A solution that reduces

these overheads must, however, ensure that individual clouds are not crowded.

The analytical modeling of the potential gains from federation given a set of clouds

and their workloads could motivate cloud operators to join a federation. Additionally, it

118

could inform the efficient expansion of existing infrastructure, so resources are added to

relevant locations only.

While this work on simulation and federation focuses on IaaS clouds, the methods

may well be applied to other domains. For example, we expect that this method should

adapt well to use with microservices and containers. The method could also be extended

to make a distinction between job preemption and timely “evacuation” via migration

if ahead notice of termination is available, e.g. as is the case with Amazon EC2 spot

instances.

A hybrid approach to “top-down” (parsimonious) and “bottom-up” (compositive)

modeling of large-scale systems promises to provide an effective trade-off between model

simplicity and prediction accuracy, as shown by validated simulation. We believe this

simulation method, combined with (partial) evaluation against empirical results, has the

potential to provide academics and engineers with deeper quantitative insights into the

impact of decisions than extant – purely compositive – simulation models.

119

Bibliography

[1] A. Keller and H. Ludwig, The wsla framework: Specifying and monitoring service
level agreements for web services, Journal of Network and Systems Management
11 (2003), no. 1 57–81.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, et. al., Above the clouds: A berkeley
view of cloud computing, .

[3] I. Foster and C. Kesselman, Globus: A metacomputing infrastructure toolkit,
International Journal of High Performance Computing Applications 11 (1997),
no. 2 115–128.

[4] M. J. Litzkow, M. Livny, and M. W. Mutka, Condor - a hunter of idle
workstations, in Distributed Computing Systems, 1988., 8th International
Conference on, pp. 104–111, IEEE, 1988.

[5] R. Ricci, E. Eide, and The CloudLab Team, Introducing CloudLab: Scientific
infrastructure for advancing cloud architectures and applications, USENIX ;login:
39 (Dec., 2014).

[6] A. I. Avetisyan, R. Campbell, I. Gupta, M. T. Heath, S. Y. Ko, G. R. Ganger,
M. A. Kozuch, D. O’Hallaron, M. Kunze, T. T. Kwan, et. al., Open Cirrus: A
global cloud computing testbed, Computer 43 (2010), no. 4 35–43.

[7] “Eucalyptus 4.0.2 Hybrid Cloud Guide.” http:

//docs.hpcloud.com/pdf/static/Eucalyptus_4.0/hybrid-guide-4.0.2.pdf,
2016. [Online; accessed 21-June-2016].

[8] “Configuring Keystone for Federation.” http:

//docs.openstack.org/developer/keystone/configure_federation.html,
2016. [Online; accessed 21-June-2016].

[9] D. F. Parkhill, Challenge of the computer utility, .

[10] “Amazon Web Services home page.” http://aws.amazon.com/.

120

http://docs.hpcloud.com/pdf/static/Eucalyptus_4.0/hybrid-guide-4.0.2.pdf
http://docs.hpcloud.com/pdf/static/Eucalyptus_4.0/hybrid-guide-4.0.2.pdf
http://docs.openstack.org/developer/keystone/configure_federation.html
http://docs.openstack.org/developer/keystone/configure_federation.html
http://aws.amazon.com/

[11] “Google Cloud Platform.” http://cloud.google.com/. [Online; accessed
01-May-2016].

[12] “Microsoft Azure.” [Online; accessed Jun-2016] "https://azure.microsoft.com/”.

[13] “Rackspace Cloud.” [Online; accessed Jun-2016]
"http://www.rackspace.com/cloud/”.

[14] “IBM SoftLayer.” [Online; accessed Jun-2016] "http://www.softlayer.com/”.

[15] “euca2ools repository.” [Online; accessed Jun-2016]
https://github.com/eucalyptus/euca2ools.

[16] “boto: A python interface to amazon web services.” [Online; accessed Jun-2016]
https://github.com/boto/boto.

[17] C. Krintz, The appscale cloud platform: Enabling portable, scalable web
application deployment, in Internet Computing, IEEE, 2013.

[18] “OpenStack.” [Online; accessed Aug-2014] "http://www.openstack.org/”.

[19] Eucalyptus Systems Inc., http: // www. eucalyptus. com , June, 2013.

[20] “CloudStack.” [Online; accessed Aug-2014] "http://cloudstack.apache.org/”.

[21] D. Milojičić, I. M. Llorente, and R. S. Montero, Opennebula: A cloud
management tool, IEEE Internet Computing 15 (2011), no. 2 11–14.

[22] “Nimbus is cloud computing for science.” [Online; accessed Jun-2016]
http://www.nimbusproject.org/.

[23] I. Foster, Globus toolkit version 4: Software for service-oriented systems, in
Network and Parallel Computing (H. Jin, D. Reed, and W. Jiang, eds.), vol. 3779
of Lecture Notes in Computer Science, pp. 2–13. Springer Berlin Heidelberg, 2005.

[24] D. H. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne, A worldwide
flock of condors: Load sharing among workstation clusters, Future Generation
Computer Systems 12 (1996), no. 1 53–65.

[25] I. Foster and C. Kesselman, The Grid 2: Blueprint for a new computing
infrastructure. Elsevier, 2003.

[26] I. Foster, K. Czajkowski, D. Ferguson, J. Frey, S. Graham, T. Maguire,
D. Snelling, and S. Tuecke, Modeling and managing state in distributed systems:
The role of ogsi and wsrf, Proceedings of the IEEE 93 (2005), no. 3 604–612.

121

http://cloud.google.com/
"
"
"
https://github.com/eucalyptus/euca2ools
https://github.com/boto/boto
"
http://www.eucalyptus.com
"
http://www.nimbusproject.org/

[27] I. Foster, C. Kesselman, and S. Tuecke, The anatomy of the grid: Enabling
scalable virtual organizations, International journal of high performance
computing applications 15 (2001), no. 3 200–222.

[28] R. Wolski, N. T. Spring, and J. Hayes, The network weather service: a distributed
resource performance forecasting service for metacomputing, Future Generation
Computer Systems 15 (1999), no. 5 757–768.

[29] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery,
K. Blackburn, T. Wenaus, W. Frank, et. al., The open science grid, in Journal of
Physics: Conference Series, vol. 78, p. 012057, IOP Publishing, 2007.

[30] C. Team, Condor R© version 7.7. 6 manual, .

[31] D. Thain, T. Tannenbaum, and M. Livny, Distributed computing in practice: the
condor experience, Concurrency and computation: practice and experience 17
(2005), no. 2-4 323–356.

[32] D. Thain, T. Tannenbaum, and M. Livny, Condor and the grid, Grid computing:
Making the global infrastructure a reality (2003) 299–335.

[33] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, Condor-g: A
computation management agent for multi-institutional grids, Cluster Computing 5
(2002), no. 3 237–246.

[34] “Hadoop MapReduce.” "http://hadoop.apache.org/”.

[35] J. Dean and S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (2008), no. 1 107–113.

[36] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler, Apache hadoop yarn: Yet another resource
negotiator, in Proceedings of the 4th Annual Symposium on Cloud Computing,
SOCC ’13, (New York, NY, USA), pp. 5:1–5:16, ACM, 2013.

[37] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark:
Cluster computing with working sets., HotCloud 10 (2010) 10–10.

[38] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, Hive: a warehousing solution over a map-reduce
framework, Proceedings of the VLDB Endowment 2 (2009), no. 2 1626–1629.

[39] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The hadoop distributed file
system, in 2010 IEEE 26th symposium on mass storage systems and technologies
(MSST), pp. 1–10, IEEE, 2010.

122

"

[40] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D. Chen,
G-hadoop: Mapreduce across distributed data centers for data-intensive
computing, Future Generation Computer Systems 29 (2013), no. 3 739–750.

[41] G. Attebury, A. Baranovski, K. Bloom, B. Bockelman, D. Kcira, J. Letts,
T. Levshina, C. Lundestedt, T. Martin, W. Maier, et. al., Hadoop distributed file
system for the grid, in 2009 IEEE Nuclear Science Symposium Conference Record
(NSS/MIC), pp. 1056–1061, IEEE, 2009.

[42] I. Tomašić, J. Ugovšek, A. Rashkovska, and R. Trobec, Multicluster hadoop
distributed file system, in MIPRO, 2012 Proceedings of the 35th International
Convention, pp. 301–305, IEEE, 2012.

[43] M. Cardosa, C. Wang, A. Nangia, A. Chandra, and J. Weissman, Exploring
mapreduce efficiency with highly-distributed data, in Proceedings of the second
international workshop on MapReduce and its applications, pp. 27–34, ACM, 2011.

[44] C.-Y. Wang, T.-L. Tai, S. Jui-Shing, C. Jyh-Biau, and S. Ce-Kuen, Federated
mapreduce to transparently run applications on multicluster environment, in 2014
IEEE International Congress on Big Data, pp. 296–303, IEEE, 2014.

[45] C. Jayalath, J. Stephen, and P. Eugster, From the cloud to the atmosphere:
running mapreduce across data centers, IEEE Transactions on Computers 63
(2014), no. 1 74–87.

[46] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, and Z. Zhang, Moon:
Mapreduce on opportunistic environments, in Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing,
pp. 95–106, ACM, 2010.

[47] C. He, D. Weitzel, D. Swanson, and Y. Lu, Hog: Distributed hadoop mapreduce on
the grid, in High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, pp. 1276–1283, IEEE, 2012.

[48] “RightSclae: Hybrid Cloud.”
http://www.rightscale.com/solutions/problems-we-solve/hybrid-cloud,
2016. [Online; accessed 21-June-2016].

[49] C. Bunch and C. Krintz, Enabling automated hpc/database deployment via the
appscale hybrid cloud platform, in Proceedings of the first annual workshop on
High performance computing meets databases, pp. 13–16, ACM, 2011.

[50] “Perturbation Theory.”
http://en.wikipedia.org/wiki/Perturbation_theory.

[51] “Monte Carlo Method.” http://en.wikipedia.org/wiki/Monte_Carlo_method.

123

http://www.rightscale.com/solutions/problems-we-solve/hybrid-cloud
http://en.wikipedia.org/wiki/Perturbation_theory
http://en.wikipedia.org/wiki/Monte_Carlo_method

[52] R. Wolski and J. Brevik, QPRED: Using Quantile Predictions to Improve Power
Usage for Private Clouds, Tech. Rep. UCSB-CS-2014-06, Computer Science
Department of the University of California, Santa Barbara, Santa Barbara, CA
93106, September, 2014.

[53] J. Gustedt, E. Jeannot, and M. Quinson, Experimental Validation in Large-Scale
Systems: a Survey of Methodologies, Parallel Processing Letters 19 (2009), no. 3
399–418.

[54] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, Load balancing and
unbalancing for power and performance in cluster-based systems, in Workshop on
compilers and operating systems for low power, vol. 180, pp. 182–195, Barcelona,
Spain, 2001.

[55] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,
Managing energy and server resources in hosting centers, in ACM SIGOPS
Operating Systems Review, vol. 35, pp. 103–116, ACM, 2001.

[56] X. Fan, W.-D. Weber, and L. A. Barroso, Power provisioning for a
warehouse-sized computer, ACM SIGARCH Computer Architecture News 35
(2007), no. 2 13–23.

[57] L. A. Barroso and U. Holzle, The case for energy-proportional computing,
Computer 40 (2007), no. 12 33–37.

[58] R. Brown et. al., Report to congress on server and data center energy efficiency:
Public law 109-431, 2008.

[59] A. Beloglazov, J. Abawajy, and R. Buyya, Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing, Future
Generation Computer Systems 28 (2012), no. 5 755–768.

[60] D. Nurmi, J. Brevik, and R. Wolski, Qbets: queue bounds estimation from time
series, in Job Scheduling Strategies for Parallel Processing, pp. 76–101, Springer,
2007.

[61] H. Casanova, Simgrid: A toolkit for the simulation of application scheduling, in
Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM
International Symposium on, pp. 430–437, IEEE, 2001.

[62] R. Buyya and M. Murshed, Gridsim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing, Concurrency
and computation: practice and experience 14 (2002), no. 13-15 1175–1220.

124

[63] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. D. Rose, and R. Buyya,
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms, Software: Practice and
Experience 41 (2011), no. 1 23–50.

[64] S. K. Garg and R. Buyya, Networkcloudsim: Modelling parallel applications in
cloud simulations, in Utility and Cloud Computing (UCC), 2011 Fourth IEEE
International Conference on, pp. 105–113, IEEE, 2011.

[65] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, Cloudanalyst: A
CloudSim-based visual modeller for analysing cloud computing environments and
applications, in Advanced Information Networking and Applications (AINA), 2010
24th IEEE International Conference on, pp. 446–452, IEEE, 2010.

[66] M. Silva, M. Hines, D. Gallo, L. Qi, R. K. Dong, and D. D. Silva, CloudBench:
Experiment Automation for Cloud Environments, in Cloud Engineering (IC2E),
2013 IEEE International Conference on, pp. 302–311, March, 2013.

[67] D. Kliazovich, P. Bouvry, and S. U. Khan, GreenCloud: a packet-level simulator
of energy-aware cloud computing data centers, The Journal of Supercomputing 62
(2012), no. 3 1263–1283.

[68] “NS-2 Network Simulator.” http://www.isi.edu/nsnam/ns/.

[69] R. N. Calheiros, M. A. Netto, C. A. D. Rose, and R. Buyya, EMUSIM: an
integrated emulation and simulation environment for modeling, evaluation, and
validation of performance of cloud computing applications, Software: Practice and
Experience 43 (2013), no. 5 595–612.

[70] D. Citron and A. Zlotnick, Testing large-scale cloud management, IBM Journal of
Research and Development 55 (2011), no. 6 6–1.

[71] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, DCSim: A data centre simulation
tool for evaluating dynamic virtualized resource management, in Network and
service management (cnsm), 2012 8th international conference and 2012
workshop on systems virtualiztion management (svm), pp. 385–392, Oct, 2012.

[72] S. K. S. Gupta, R. Gilbert, A. Banerjee, Z. Abbasi, T. Mukherjee, and
G. Varsamopoulos, GDCSim: A tool for analyzing Green Data Center design and
resource management techniques, in Green Computing Conference and Workshops
(IGCC), 2011 International, pp. 1–8, July, 2011.

[73] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, MDCSim: A
multi-tier data center simulation, platform, in Cluster Computing and Workshops,
2009. CLUSTER’09. IEEE International Conference on, pp. 1–9, IEEE, 2009.

125

http://www.isi.edu/nsnam/ns/

[74] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Carretero,
and I. M. Llorente, icancloud: A flexible and scalable cloud infrastructure
simulator, Journal of Grid Computing 10 (2012), no. 1 185–209.

[75] I. K. Kim, W. Wang, and M. Humphrey, Pics: A public iaas cloud simulator, in
2015 IEEE 8th International Conference on Cloud Computing, pp. 211–220, June,
2015.

[76] R. Wolski and J. Brevik, http: // www. cs. ucsb. edu/ ~ rich/ workload , June,
2013.

[77] R. Wolski and J. Brevik, Using Parametric Models to Represent Private Cloud
Workloads, IEEE Transactions on Services Computing 4 (October, 2014) 714–725.

[78] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov, The eucalyptus open-source cloud-computing system, in Cluster
Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM International
Symposium on, pp. 124–131, IEEE, 2009.

[79] “Announcing Amazon EC2 Spot Instances.” [Online; accessed Aug-2014]
"http://aws.amazon.com/about-aws/whats-new/2009/12/14/announcing-
amazon-ec2-spot-instances/”.

[80] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and C. Krintz, See
spot run: Using spot instances for mapreduce workflows, in Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, (Berkeley,
CA, USA), pp. 7–7, USENIX Association, 2010.

[81] J. Chen, C. Wang, B. B. Zhou, L. Sun, Y. C. Lee, and A. Y. Zomaya, Tradeoffs
between profit and customer satisfaction for service provisioning in the cloud, in
Proceedings of the 20th International Symposium on High Performance Distributed
Computing, HPDC ’11, (New York, NY, USA), pp. 229–238, ACM, 2011.

[82] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
Deconstructing amazon ec2 spot instance pricing, ACM Transactions on
Economics and Computation 1 (2013), no. 3 16.

[83] B. Javadi, R. Thulasiram, and R. Buyya, Statistical modeling of spot instance
prices in public cloud environments, in Utility and Cloud Computing (UCC), 2011
Fourth IEEE International Conference on, pp. 219–228, Dec, 2011.

[84] H. Zhao, M. Pan, X. Liu, X. Li, and Y. Fang, Exploring fine-grained resource
rental planning in cloud computing, IEEE Transactions on Cloud Computing 3
(July, 2015) 304–317.

126

http://www.cs.ucsb.edu/~rich/workload
"

[85] P. Nash, Introducing Preemptible VMs, a new class of compute available at 70%
off standard pricing, May, 2015.

[86] R. Wolski, D. Nurmi, and J. Brevik, An analysis of availability distributions in
condor, in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, pp. 1–6, IEEE, 2007.

[87] J. Brevik, D. Nurmi, and R. Wolski, Automatic methods for predicting machine
availability in desktop grid and peer-to-peer systems, in Cluster Computing and
the Grid, 2004. CCGrid 2004. IEEE International Symposium on, pp. 190–199,
IEEE, 2004.

[88] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, Towards characterizing
cloud backend workloads: insights from google compute clusters, ACM
SIGMETRICS Performance Evaluation Review 37 (2010), no. 4 34–41.

[89] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis, in
Proceedings of the Third ACM Symposium on Cloud Computing, SoCC ’12, (New
York, NY, USA), pp. 7:1–7:13, ACM, 2012.

[90] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, Analysis and lessons from
a publicly available google cluster trace, EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2010-95 (2010).

[91] “Google cluster traces.” http://code.google.com/p/googleclusterdata.

[92] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, Hadoop’s adolescence: an
analysis of hadoop usage in scientific workloads, Proceedings of the VLDB
Endowment 6 (2013), no. 10 853–864.

[93] Y. Chen, S. Alspaugh, and R. Katz, Interactive analytical processing in big data
systems: A cross-industry study of mapreduce workloads, Proceedings of the
VLDB Endowment 5 (2012), no. 12 1802–1813.

[94] T. Knauth and C. Fetzer, Spot-on for timed instances: Striking a balance between
spot and on-demand instances, in Cloud and Green Computing (CGC), 2012
Second International Conference on, pp. 105–112, Nov, 2012.

[95] M. Taifi, J. Y. Shi, and A. Khreishah, Spotmpi: a framework for auction-based
hpc computing using amazon spot instances, in International Conference on
Algorithms and Architectures for Parallel Processing, pp. 109–120, Springer, 2011.

[96] S. Khatua and N. Mukherjee, Application-centric resource provisioning for
amazon ec2 spot instances, in Proceedings of the 19th International Conference on
Parallel Processing, Euro-Par’13, (Berlin, Heidelberg), pp. 267–278,
Springer-Verlag, 2013.

127

http://code.google.com/p/googleclusterdata

[97] M. Mattess, C. Vecchiola, and R. Buyya, Managing peak loads by leasing cloud
infrastructure services from a spot market, in Proceedings of the 2010 IEEE 12th
International Conference on High Performance Computing and Communications,
HPCC ’10, (Washington, DC, USA), pp. 180–188, IEEE Computer Society, 2010.

[98] I. Menache, O. Shamir, and N. Jain, On-demand, spot, or both: Dynamic resource
allocation for executing batch jobs in the cloud, in 11th International Conference
on Autonomic Computing (ICAC 14), (Philadelphia, PA), pp. 177–187, USENIX
Association, June, 2014.

[99] A. Andrzejak, D. Kondo, and S. Yi, Decision model for cloud computing under sla
constraints, in Modeling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS), 2010 IEEE International Symposium
on, pp. 257–266, Aug, 2010.

[100] M. Mazzucco and M. Dumas, Achieving performance and availability guarantees
with spot instances, in High Performance Computing and Communications
(HPCC), 2011 IEEE 13th International Conference on, pp. 296–303, Sept, 2011.

[101] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy, Spotcheck: Designing a
derivative iaas cloud on the spot market, in Proceedings of the Tenth European
Conference on Computer Systems, EuroSys ’15, (New York, NY, USA),
pp. 16:1–16:15, ACM, 2015.

[102] R. Singh, P. Sharma, D. Irwin, P. Shenoy, and K. K. Ramakrishnan, Here today,
gone tomorrow: Exploiting transient servers in datacenters, IEEE Internet
Computing 18 (July, 2014) 22–29.

[103] M. Mao and M. Humphrey, A performance study on the vm startup time in the
cloud, in Cloud Computing (CLOUD), 2012 IEEE 5th International Conference
on, pp. 423–430, IEEE, 2012.

[104] “Amazon ec2 service level agreement.” [Online; accessed Jun-2016]
https://aws.amazon.com/ec2/sla/.

[105] Y. Mansour, Regret minimization and job scheduling, in SOFSEM 2010: Theory
and Practice of Computer Science (J. van Leeuwen, A. Muscholl, D. Peleg,
J. Pokorn, and B. Rumpe, eds.), vol. 5901 of Lecture Notes in Computer Science,
pp. 71–76. Springer Berlin Heidelberg, 2010.

[106] R. Wolski and J. Brevik, Using parametric models to represent private cloud
workloads, Tech. Rep. UCSB-CS-2013-05, University of California, Santa Barbara,
August, 2013.
http://128.111.41.26/research/tech_reports/reports/2013-05.pdf.

128

https://aws.amazon.com/ec2/sla/
http://128.111.41.26/research/tech_reports/reports/2013-05.pdf

[107] A. Pucher, E. Gul, C. Krintz, and R. Wolski, Using Trustworthy Simulation to
Engineer Cloud Schedulers, in Cloud Engineering (IC2E), 2015 IEEE
International Conference on, March, 2015.

[108] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, How to enhance cloud
architectures to enable cross-federation, in Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pp. 337–345, IEEE, 2010.

[109] N. Grozev and R. Buyya, Inter-cloud architectures and application brokering:
taxonomy and survey, Software: Practice and Experience 44 (2014), no. 3
369–390.

[110] R. Buyya, R. Ranjan, and R. N. Calheiros, Intercloud: Utility-oriented federation
of cloud computing environments for scaling of application services, in Proceedings
of the 10th International Conference on Algorithms and Architectures for Parallel
Processing - Volume Part I, ICA3PP’10, (Berlin, Heidelberg), pp. 13–31,
Springer-Verlag, 2010.

[111] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, Iaas cloud
architecture: From virtualized datacenters to federated cloud infrastructures,
Computer 45 (2012), no. 12 65–72.

[112] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda, L. Fong,
S. M. Sadjadi, and M. Parashar, Cloud federation in a layered service model,
Journal of Computer and System Sciences 78 (2012), no. 5 1330–1344.

[113] I. Goiri, J. Guitart, and J. Torres, Characterizing cloud federation for enhancing
providers’ profit, in Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pp. 123–130, July, 2010.

[114] M. Aazam and E. N. Huh, Broker as a service (baas) pricing and resource
estimation model, in Cloud Computing Technology and Science (CloudCom), 2014
IEEE 6th International Conference on, pp. 463–468, Dec, 2014.

[115] W. Wang, D. Niu, B. Li, and B. Liang, Dynamic cloud resource reservation via
cloud brokerage, in Proceedings of the 2013 IEEE 33rd International Conference
on Distributed Computing Systems, ICDCS ’13, (Washington, DC, USA),
pp. 400–409, IEEE Computer Society, 2013.

[116] K. Liu, J. Peng, W. Liu, P. Yao, and Z. Huang, Dynamic resource reservation via
broker federation in cloud service: A fine-grained heuristic-based approach, in
2014 IEEE Global Communications Conference, pp. 2338–2343, Dec, 2014.

[117] O. Rogers and D. Cliff, A financial brokerage model for cloud computing, Journal
of Cloud Computing: Advances, Systems and Applications 1 (2012), no. 1 1–12.

129

[118] X. Jin, Y. K. Kwok, and Y. Yan, Competitive cloud resource procurements via
cloud brokerage, in 2013 IEEE 5th International Conference on Cloud Computing
Technology and Science, vol. 2, pp. 355–362, Dec, 2013.

[119] Y. Song, M. Zafer, and K.-W. Lee, Optimal bidding in spot instance market, in
INFOCOM, 2012 Proceedings IEEE, pp. 190–198, March, 2012.

[120] M. Yao, P. Zhang, Y. Li, J. Hu, C. Lin, and X. Y. Li, Cutting your cloud
computing cost for deadline-constrained batch jobs, in Web Services (ICWS), 2014
IEEE International Conference on, pp. 337–344, June, 2014.

[121] J. L. L. Simarro, R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente,
Dynamic placement of virtual machines for cost optimization in multi-cloud
environments, in High Performance Computing and Simulation (HPCS), 2011
International Conference on, pp. 1–7, July, 2011.

[122] D. Williams, H. Jamjoom, and H. Weatherspoon, Plug into the supercloud, IEEE
Internet Computing 17 (Mar., 2013) 28–34.

[123] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, et. al., The reservoir model
and architecture for open federated cloud computing, IBM Journal of Research
and Development 53 (2009), no. 4 4–1.

[124] “Apcera.” [Online; accessed Jun-2016] "http://www.apcera.com”.

[125] “ClusterK.” [Online; accessed Apr-2015] "http://www.clusterk.com”.

[126] J. Barr, Amazon EC2 Spot Instances And Now How Much Would You Pay?,
Dec., 2009.

130

"
"

	Curriculum Vitae
	Abstract
	Introduction
	Thesis Statement
	Challenges
	Methodology
	Contributions
	Permissions and Attributions

	Background
	Federation in Large-Scale Computing
	Globus
	Condor
	Hadoop

	Federation in IaaS Clouds

	Validated Simulation For Engineering Cloud Schedulers
	Introduction
	Related Work
	Methodology
	Model Construction
	Discrete Event Simulation
	Adding Perturbations
	Scheduler Operation

	Results
	Simulation Registration
	Power-Aware Scheduler at Scale
	Capacity Planning
	Capacity Planning for Scale-Out Workloads

	Conclusion

	Estimating Job Preemption Probability in IaaS Clouds
	Introduction
	Related Work
	Methodology
	Scheduling Model
	Preemption Policy
	Predicting Preemption
	Evaluation Metrics

	Results
	Conditional Distributions and Sample Size
	Prediction with Production Traces
	SLA-Aware Co-Scheduling of Production Traces
	SLA-Aware Co-Scheduling with Platform Scaling

	Conclusion

	IaaS Cloud Federation Using Preemptible Resources
	Introduction
	Related Work
	Methodology
	Federation Architecture
	Instance Lifetime Guarantees
	Estimating Native Utilization
	Estimating Federation Overheads
	Admission Control
	Evaluation Traces
	Evaluation Metrics

	Results
	Federation Baseline
	Federation with SLA Guarantees
	Federation with Platform Scaling
	Efficiency Gains at Scale
	Sensitivity to Duration Estimates
	Sensitivity to Seasonality

	Conclusion

	Conclusion
	Future Work
	Bibliography

