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Abstract—In this paper, we present PYTHIA, deadline-aware
admission control for systems that execute jobs from multiple big
data (batch) frameworks using shared resources. PYTHIA adds
support for deadline-driven workloads in resource-constrained
cloud settings, for use by resource negotiators such as Apache
Mesos or YARN. PYTHIA uses histories of job statistics to
estimate the minimum number of CPUs to allocate to a job in
order for it to meet its deadline. PYTHIA admits jobs when
these resources are available. Any job not admitted “fails fast”
and wastes no resources. We implement a PYTHIA prototype
and empirically evaluate it using production YARN traces under
different resource constraints and deadline assignments. Our
results show that PYTHIA is able to meet significantly more
deadlines than fair share approaches and wastes fewer cloud
resources in resource-limited scenarios, for the workloads, cluster
sizes, and deadline assignments that we consider.
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I. INTRODUCTION

Increasingly, developers employ multiple “big data” and
“fast data” frameworks to drive diverse data analysis require-
ments including rich query support, data mining, machine
learning, real-time stream analysis, statistical analysis, and
image processing. These frameworks such as Hadoop [1],
Spark [2], Storm [3], and others, range in terms of analytics
capability, ease of configuration and management, available
tooling and programming support, efficiency, and scale. Be-
cause no single framework works best for all applications and
settings, users commonly deploy multiple frameworks using
the same cloud resources. Given the popularity of such multi-
analytics clouds, resource negotiators such as Mesos [20] and
YARN [40] have emerged to simplify and automate resource
sharing and management.

These multi-analytics deployments, are frequently used in
shared settings (e.g. private clouds) in which more resources
(CPU, memory, local disk) cannot simply be added on-demand
in exchange for an additional charge as they can in a public
cloud setting. Resource-limited deployments pose significant
challenges for resource negotiators and can result in low uti-
lization, poor performance, unfair sharing, deadlock, and hard-
to-predict workload behavior because the big data frameworks
which underly them have been designed for resource-rich
scenarios, and because resource negotiators are framework-
agnostic [11, 47].

In this paper, we investigate a simple, new admission
control strategy for resource negotiators called PYTHIA –
for deadline-driven workloads in resource-constrained settings.

Such workloads represent an important class of big data
applications [25, 27, 43], which are unfortunately not fully
supported in multi-analytic settings. Recent advances optimize
based on framework-specific characteristics [22, 33, 42], de-
pend upon job repetition [6, 14, 36] (which is not always
available), use additional cloud resources to build offline
performance and scalability models [9, 14, 41] or require com-
plicated system extensions such as job pre-emption [18, 31].
Approaches that are framework specific (e.g. for Hadoop [19,
21, 22, 24, 26, 42, 48, 49] or Spark [33, 44] in isolation),
cannot be used directly by resource negotiators. A lack of
deadline support can lead to deadline misses when resources
are constrained. Deadline misses disrupt big data pipeline
processing, lead to inefficient resource utilization, increase the
cost of cloud use, and lead to poor decision making (e.g. when
based on stale information or analysis).

To address these limitations, we design PYTHIA to be
framework-agnostic and to not rely on job repetition or pre-
emption support. Instead, PYTHIA uses histories of job
statistics (resource negotiator log information) to control job
admission. Instead of allocating all or a fair-share of CPUs
to a job, PYTHIA allocates the fraction of this number that
it estimates will enable the job to complete by its deadline.
By “slowing down” the job while still meeting its deadline,
PYTHIA is able to save resources and meet deadlines of
other jobs. PYTHIA does not admit infeasible jobs (those that
are likely to miss their deadlines) and thus, jobs submissions
“fail fast” without wasting cloud resources. Extant systems
admit all jobs and then “react” when a deadline passes by
terminating or pre-empting a running job. PYTHIA uses jobs
performance statistics from completed jobs to compute/update
this allocation fraction online.

We implement PYTHIA for Mesos and empirically eval-
uate it using trace-based simulation of different cloud capac-
ities. We use two real-world, 3-month, Hadoop traces from a
production YARN system (contributed to us by an industry
partner) for our experimentation. We evaluate PYTHIA and
popular fair-share allocators, in terms of deadlines missed and
useful work completed versus an oracle. We also consider both
fixed and random deadline assignments. We find that PYTHIA
achieves performance similar to that of the oracle in terms of
deadlines met and useful work done. In addition, we find that
PYTHIA is able to meet significantly more deadlines than
the fair share allocators for the workloads, cluster sizes, and
deadline assignments that we consider.



Algorithm 1 Job Completion Monitoring

1: function TRACK JOB(compTime, requestedTasks,
deadline)

2: deadlineCPUs = compTime/deadline
3: maxCPUs = min(requestedTasks, cloud capacity)
4: minReqRate = deadlineCPUs/maxCPUs
5: if minReqRate > CPUFrac then
6: CPUFrac = minReqRate
7: end if
8: end function

II. PYTHIA

PYTHIA is a deadline-aware resource allocator with ad-
mission control for resource negotiators that manage the exe-
cution of batch applications with deadlines, using resource-
constrained, shared clouds. PYTHIA employs a black-box,
framework-agnostic technique, to estimate the minimum num-
ber of CPUs (parallelism) that a job requires to meet its
deadline. To enable this, PYTHIA employs a simple yet effec-
tive approach that does not require job clustering, modeling,
sampling, or complex simulation.

A. Admission Control

To design PYTHIA, we make a number of simplifying
assumptions. First, we assume that the number of tasks for a
job (the division of its input size and the HDFS block size) is
the maximum parallelization possible for the job. We refer
to this number as the requestedTasks for the job. To
determine how many CPUs to allocate to a new job, PYTHIA
uses performance data from past jobs. PYTHIA analyzes each
job when it completes and uses this information to estimate
the number of CPUs that the job would have needed to have
finished by its deadline (deadlineCPUs). PYTHIA also
assumes that there is perfect parallelism (speedup per CPU).

PYTHIA tracks the maximal global fraction, which
we call CPUFrac, which is deadlineCPUs over
requestedTasks for jobs that complete. It multiplies this
fraction by the number of tasks requested by frameworks
for new jobs, to compute the number of CPUs to allocate to
each job. Moreover, PYTHIA is proactive in that it prevents
infeasible jobs (jobs likely to miss their deadlines according
to PYTHIA’s predictions) from ever entering the system
and consuming resources wastefully. In this way, PYTHIA
attempts to maximize the number of jobs that meet their
deadline even under severe resource constraints (i.e. cloud
capacity).

B. Algorithm

To bootstrap the system, PYTHIA sets CPUFrac to
−1 and admits all jobs regardless of deadline; it allocates
requestedTasks CPUs to the job. For any job for which
there are insufficient resources for the allocation, PYTHIA
allocates the number of CPUs available. When a job com-
pletes (either by meeting or exceeding its deadline), PYTHIA
invokes the pseudocode function TRACK_JOB shown in Alg. 1
to potentially update CPUFrac.

TRACK_JOB calculates the minimum number of CPUs
required (deadlineCPUs) if the job were to complete by

its deadline, using its execution profile (available from the
resource negotiator logs). Line 2 in the function is derived
from the equality:

numCPUsAllocd ∗ jobET = deadlineCPUs ∗ deadline

On the left is the actual computation time by individ-
ual tasks, which we call compTime in the algorithm.
numCPUsAllocd is the number of CPUs that the job used
during execution and jobET is its execution time without
queuing delay. The right side of the equation is the to-
tal computation time consumed across tasks if the job had
been assigned deadlineCPUs, given this execution profile
(compTime). deadline is the time (in seconds) specified in
the job submission. By dividing compTime by deadline,
we extract deadlineCPUs for this job.

Next, PYTHIA divides deadlineCPUs by the maxi-
mum number of CPUs allocated to the job. The resulting
minReqRate is a fraction of the maximum that PYTHIA
could have assigned to the job and still have it meet its
deadline. PYTHIA compares deadlineCPUs against the
global CPUFrac and updates CPUFrac if the former is larger.
PYTHIA then uses CPUFrac as a prediction for this fraction
for future jobs. CPUFrac is always less than or equal to 1.
The tighter the deadline, the more conservative (nearer to 1)
PYTHIA’s resource provisioning will be.

Once CPUFrac has been initialized (from −1), PYTHIA
employs it for admission control. To do so, PYTHIA mul-
tiplies CPUFrac by the number of tasks requested in the
job submission (rounding to the next largest integer value).
It uses this value (or the maximum cloud capacity, whichever
is smaller) as the number of CPUs to assign to the job for
execution. If this number of CPUs is not available, PYTHIA
enqueues the job. PYTHIA performs this process each time a
job is submitted or completes. It also updates the deadlines for
jobs in the queue (reducing each by the time that has passed
since submission), recomputes the CPU allocation of each
enqueued job using the current CPUFrac value, and drops
any enqueued jobs with infeasible deadlines.

PYTHIA admits jobs from the queue based on a plug-
gable priority policy. We have considered various policies for
PYTHIA and use deadline maximization for the results in this
study. In this policy, PYTHIA gives priority to jobs with a
small number of tasks and greatest time-to-deadline. However,
all of the policies that we considered (including shortest time-
to-deadline) perform similarly. Once PYTHIA has selected a
job for submission, it allocates the CPUs to the job and admits
it to the system for execution. Once a job enters the system,
its CPU allocation does not change.

III. EXPERIMENTAL METHODOLOGY

In this section, we describe the experimental methodology
that we use to evaluate PYTHIA. We overview the trace-based
simulation system, define our performance metrics, and present
the deadline types that we consider.

We implement a discrete event simulator to empirically
evaluate clouds under different resource constraints (number of
instance cores available). Our system is based on Simpy [35]
and replicates the execution behavior of production traces of



big data workloads (cf Section IV). It supports multiple allo-
cators that implement different policies for resource allocation
and admission control. In this paper, we consider:

NoDrop FS: This allocator employs a fair sharing policy [4,
15, 16, 37, 45] without admission control. Its behavior is
similar to that of the default allocator in Mesos and YARN. Its
goal is to share the cluster resources fairly among frameworks
and it is unaware of deadlines. Therefore, it never drops jobs
even when there are insufficient resources to meet the deadlines
or if the deadlines have passed.

Reactive FS: This allocator extends NoDrop FS and has
no admission control. When a job exceeds its deadline, this
allocator “reacts” and terminates the job, freeing resources in
the cloud for use by other jobs.

Oracle: This allocator allocates the minimum number of
resources that a job requires to meet its deadline. If sufficient
resources are unavailable, the Oracle queues the job until the
resources become available or until its deadline has passed (or
is no longer achievable). This allocator is an oracle in the sense
that it has future knowledge of actual execution time of jobs
and thus will not admit jobs that will not meet their deadlines.
However, it does not have a global view (i.e. ideal schedule).
For the queued jobs, Oracle gives priority to jobs with fewer
required resources and longer time until the deadline.

PYTHIA: As described in Section II, this allocator proactively
drops, enqueues, or admits jobs submitted. It estimates the
number of resources to allocate using the global CPUFrac
which it computes from job performance histories. For the
queued jobs, PYTHIA gives priority to jobs with fewer
required resources and longer computation times. PYTHIA
drops any jobs that are infeasible based on their deadlines.

Deadline Types. We evaluate the robustness of our approach
by running experiments using different deadline types as is
done in prior related work [14, 28, 42, 43, 50]. In particular,
we assign deadlines that are multiples of the optimal execution
time of a job (which we extract from our workload traces).
We use two types of multiples: Fixed and variable. With fixed
deadlines, we use a deadline of 2 times the optimal execution
time as is done in [28, 50]. For variable deadlines, we compute
deadline multiples by sampling distributions. We randomly
pick a deadline between two possible values as is done in
the Jockey study [14] from the sets with values (1, 2) and
(2, 4), which we refer to as Jockey1x2x and Jockey2x4x. We
also experiment with deadline multiples that are uniformly
distributed in the intervals [1, 3] and [2, 4] as used in Aria [42,
43]; we refer to these experiments as Aria1x3x and Aria2x4x,
respectively.

Evaluation Metrics. Our goal with PYTHIA is to maximize
the number of satisfied deadlines and to avoid wasting re-
sources on infeasible jobs. We assess the quality of PYTHIA
using Satisfied Deadlines Ratio (SDR) and Productive Time
Ratio (PTR). SDR is the fraction of the jobs that completed
before their deadline to the total number of submitted jobs.
For the set of all the submitted jobs J1, J2, ..., Jn, let m
be the subset of successful jobs J1, J2, ...Jm. Then SDR is:∑m

i=1 Ji∑n
j=1 Jj . PTR is the fraction of the total computation time

(across tasks) spent for jobs that satisfied their deadlines over
the total computation time of all the jobs in the trace, regardless

Trace CPUs Jobs Comp.
Time
(Hours)

1-Task
Pct

1-Task
Time Pct

TR1 9345 159194 8585673 58% 0.1%

TR2 24721 1140064 13301659 62% 0.3%

TABLE I: Summary of Traces. Columns are trace name, peak
cloud capacity, total number of jobs, total computation time in
hours, percentage of 1-task jobs, and percentage of 1-task job
computation time.

of whether they completed their execution. For the set of all
the submitted jobs J1, J2, ..., Jn with corresponding runtimes
T1, T2, ..., Tn we consider the subset of m successful jobs
J1, J2, ...Jm. PTR then is:

∑m
i=1 Ti∑n
j=1 Tj .

IV. WORKLOAD CHARACTERIZATION

To evaluate PYTHIA, we use two 3-month traces from
production Hadoop applications executing over different
YARN system. The traces were recently donated to our re-
search lab by an Industry partner. Each trace contains a job ID,
job category, number of map and reduce tasks, map and reduce
time (computation time across tasks), job runtime, among other
data. We have no information about the scheduling policy
or HDFS configuration used in each cluster. Thus we use
and assume a minimum of one CPU per task and use this
minimum to derive cloud capacity; we are considering sub-
portions of CPUs (vcores) as part of future work. PYTHIA
uses the number of map tasks (as requestedTasks) and
map time (as compTime) from the traces for simplicity; map
task count and time dominate reduce task count and time for
most jobs in both traces.

Table I summarizes the job characteristics of each trace.
The table shows the peak cloud capacities (maximum number
of CPUs in use), the total number of jobs, the total computation
time across all tasks in the jobs, the percentage of jobs that
have only one task, and the percentage of computation time
that single-task jobs consume across jobs. We refer to the trace
with 159194 jobs as TR2 and the trace with 1140064 jobs as
TR2. The peak observed capacity (total number of CPUs) for
TR1 is 9345 and for TR2 is 24721.

The table also shows that even though there are many
single-task jobs, they consume a small percentage of the total
computation time in each trace. To understand this characteris-
tic better, we present the cumulative distribution of number of
tasks per job in Figure 1 on a logarithmic scale. Approximately
60% of the jobs have a single task and 70-80% of the jobs have
fewer than 10 tasks, across traces. Only 13% of the jobs in
TR1 and 3% of the jobs in TR2 have more than 1000 tasks.

The right graph in the figure compares job execution
time with the number of tasks per job (both axes are on a
logarithmic scale) for the TR2 trace (TR1 exhibits a similar
correlation). In both traces, 80% of the 1-task jobs and 60%
of the 2-10 task jobs finish in fewer than 100 seconds. Their
aggregate computation time is less than 1% of the total
computation time of the trace. Jobs with more than 1000
tasks account for 98% and 94% of the total computation time
for TR1 and TR2, respectively. Finally, job computation time
varies significantly across jobs.



(a) CDFs of the number of tasks per job in TR1 and TR2 (b) Job computation time vs number of tasks in TR2

Fig. 1: Workload Characteristics: Number of tasks per job and computation time relative to jobs size (in number of tasks).
Small jobs are large in number but consume a very small proportion of trace computation time.

We have considered leveraging the job ID and number of
map and reduce tasks to track repeated jobs, but find that for
these real-world traces such jobs are small in number. In TR1,
18% of the jobs repeat more than once and 12% of the jobs
repeat more than 30 times. In TR2, 25% of the jobs repeat
more than once and 16% of the jobs repeat more than 30 times.
Moreover, we observe high performance variation within each
job class. Previous research has reported similar findings with
production traces [14].

V. EMPIRICAL EVALUATION

We evaluate PYTHIA using the production traces for dif-
ferent cloud capacities (number of CPUs) to evaluate its impact
in both resource-constrained and resource-rich scenarios. Our
cloud capacities range from 2250 and 15000 CPUs. We com-
pare PYTHIA against different fair share schedulers, using
two different deadline strategies, a random multiple (Jockey)
and a uniform multiple (Aria) of the actual computation time,
as described in Section III. We have also implemented a
prototype of PYTHIA as an allocation module [29] on Apache
Mesos 0.27.2 which will make available on Github following
publication.

A. Fixed Deadlines

Figure 2 presents the deadline satisfaction ratio (SDR)
for each allocator and multiple cloud capacities, when we
employ deadlines that are 2 times the job runtime for TR1 (left
graph) and TR2 (right graph). For both traces, PYTHIA meets
significantly more deadlines than both of the fair share policies
and performs similarly to the Oracle. Under tight resource
constraints (the smallest cloud capacities), PYTHIA satisfies
295% more deadlines than NoDrop FS and and 143% more
deadlines than Reactive FS.

As described previously, the Oracle does not have perfect
information (i.e. it does not have a global optimal sched-
ule) but it does know the actual job total computation time
(compTime). Thus, it is able to assign the minimum number
of CPUs to each job to satisfy its deadline. SDR for Oracle
is not 100% because it must drop (refuse to admit) jobs for
which there is insufficient capacity to meet their deadline.

We next evaluate the useful work (PTR) that each allocator
enables. PTR is the fraction of total computation time across
all jobs, that is due to jobs that are admitted and that meet
their deadlines. Figure 3 shows these results.

For PTR, PYTHIA results are similar to those of the
Oracle and PYTHIA outperforms both fair share allocators
across cloud capacities. In particular, PYTHIA facilitates up
to 93% more productive time than to Reactive FS. With limited
capacity, almost no useful work is achieved using NoDrop FS.

This pair of results shows that as resources become scarce,
techniques without intelligent admission control for workloads
with fixed deadlines lead increasingly to missed deadlines and
wasted resources. This occurs because fair share allocators
assign all or most CPUs (depending on their fair share fraction)
required for the tasks requested. Because there is no deadline-
awareness, these allocators do so regardless of whether or not
the job is likely to meet its deadline. Jobs that miss their
deadlines result in wasted (unproductive) work for the duration
of the job for NoDrop FS and until the point the deadline is
reached for Reactive FS.

In constrained clouds, the fair share allocators satisfy
deadlines without contributing much to PTR. For example,
NoDrop FS successfully completes approximately 20% of the
jobs in the TR1. Yet, its PTR is near zero. In constrained
settings, fewer resources are shared between jobs, leading to
a smaller fair share per job. For larger jobs, this fair share
is insufficient to meet their deadlines. For jobs with a small
number of tasks, this smaller fair share is still sufficient to
meet deadlines. However, these jobs contribute minimally to
PTR. As a result, the productive time achieved from the fair
share allocators degrades rapidly as cloud capacity decreases
even while meeting some deadlines.

The results from the PYTHIA allocator indicate that even a
simple allocation and admission control strategy can restore the
number of satisfied deadlines and useful work to near optimal.
For unconstrained scenarios, all allocators perform similarly
for both deadlines satisfied and productive computation time.
Thus, PYTHIA can be used in either scenario to achieve the
greatest deadline satisfaction.



(a) TR1 (b) TR2

Fig. 2: Satisfied Deadline Ratio (SDR) with Fixed Deadlines for TR1 (left graph) and TR2 (right graph). All jobs have deadline
multiples of 2.

(a) TR1 (b) TR2

Fig. 3: Productive Time Ratio (PTR) with Fixed Deadlines for TR1 (left graph) and TR2 (right graph). All jobs have deadline
multiples of 2.

B. Variable Deadlines

Next we consider the variable deadline assignments de-
tailed under Deadline Types in Section III. Due to space con-
straints, we present results only for constrained cloud settings
(2250 and 4500 cores) and for TR1. Our results for TR2 are
similar to TR1 results and our results for unconstrained clouds
show that all allocators behave similarly to each other.

Figure 4 shows the SDR for each allocator when we
employ variable deadlines for two resource-constrained clouds.
Using this deadline assignment, PYTHIA satisfies a similar
number of deadlines as the Oracle allocator in both cases. In
the worst case, PYTHIA is within 5% of the oracle. PYTHIA
satisfies up to 177% more deadlines than Reactive FS on the
2250 CPU cloud and up to 58% more deadlines than Reactive
FS on the 4500 CPU cloud.

Figure 5 presents the PTR for these scenarios. Although
PYTHIA meets significantly more deadlines than Reactive FS,
it outperforms its PTR only for a subset of the deadline classes.
This difference results because PYTHIA must be conservative

(i.e. over-provisioning or dropping more jobs) to ensure that
they meet their deadlines. That is, PYTHIA computes the
minReqRate for jobs that now have deadlines that range
from very strict (e.g. multiple of 1 which means the deadline
is the same as its optimal runtime) to very loose (3 times
this value). To ensure that as many jobs as possible meet their
deadline and there is no wasted work, PYTHIA conservatively
chooses a CPU allocation that will likely enable jobs with strict
deadlines to succeed. For jobs with loose deadlines, this results
in over-provisioning, preventing other jobs from sharing the
cloud. In contrast, the Oracle knows the minReqRate that
each job requires to satisfy its deadline and thus enables more
free capacity on the cluster that can be used by other jobs.
For cloud capacities of 2250 and 4500 CPUs, Reactive FS
introduces from 24% to 30% and from 12% to 30% wasted
work (computation time spent for jobs that miss their deadlines
and are terminated midstream) respectively for the different
deadlines of the evaluation. NoDrop FS, wastes 99% of the
computation time on the cloud with 2250 CPUs and from 84%
to 93% on the cloud with 4500 CPUs for the different deadline



(a) Cloud Capacity: 2250 CPU cores (b) Cloud Capacity: 4500 CPU cores

Fig. 4: Satisfied Deadline Ratio (SDR) with Variable Deadlines for TR1 for cloud capacities of 2250 CPUs (left graph) and 4500
CPUs (right graph). Experiments denoted as ’Jockey’ have deadline multiples picked randomly from a set with two values (1, 2)
and (2, 4). Experiments denoted as ’Aria’ have deadline multiples drawn from uniformly distributed intervals [1, 3] and [2, 4].

(a) Cloud Capacity: 2250 CPU cores (b) Cloud Capacity: 4500 CPU cores

Fig. 5: Productivity Time Ratio (PTR) with Variable Deadlines for TR1 for cloud capacities of 2250 CPUs (left graph) and 4500
CPUs (right graph). Experiments denoted as ’Jockey’ have deadline multiples picked randomly from a set with two values (1, 2)
and (2, 4). Experiments denoted as ’Aria’ have deadline multiples drawn from uniformly distributed intervals [1, 3] and [2, 4].

types because it doesn’t drop jobs even after their deadline has
passed. In contrast, PYTHIA keeps the wasted work near 0%
for all the different deadlines and cluster capacities, because
it adapts every time it encounters a stricter deadline. As part
of future work, we are investigating ways to adapt PYTHIA’s
CPUFrac over time to improve its PTR performance.

VI. RELATED WORK

Performance prediction: In order to allocate the required
resources and meet job deadlines, much related work focuses
on exploiting historic [7, 9, 21, 26, 42, 43, 48, 50], and run-
time [9, 19, 21, 22, 31, 42, 43, 49, 50] job information, while
other research [9, 14, 24, 38, 41, 49] focuses on building job
performance profiles and scalability models offline Although,
effective in many situations, we show that approaches similar
to these suffer when used under resource constrained settings.

Strategies that depend solely on repeated jobs, by defini-
tion, do not guarantee performance of ad-hoc queries. While

approaches that use runtime models, sampling, simulations,
and extensive monitoring, impose overheads and additional
costs. Moreover, trace analysis in this paper and other re-
search [14] shows that some production clouds have small ratio
of repeated jobs and these jobs have often large execution times
dispersion. Therefore, approaches based on past executions
might not have the required mass of similar jobs over a
short period of time in order to predict with high statistical
confidence. Furthermore, the vast number of jobs have very
short computation times [6, 14, 28, 30, 32]. Thus, approaches
that adapt their initial allocation after a job has already started
might be ineffective. Lastly, most of these approaches require
task-level information, for the specific framework they target,
either Hadoop [19, 21, 22, 24, 26, 31, 38, 42, 43, 48, 49, 50]
or Spark [33, 44]. For this reason, they cannot be used on top
of resource managers like Mesos.

PYTHIA in contrast, does not depend on job repetitions
and can therefore target clouds with more diverse workloads;



it does not impose overheads to perform extensive runtime
monitoring or use job sampling or offline simulations to
predict performance. PYTHIA is also framework-independent
because it does not require modeling of the different stages of
any particular big data framework.

Sharing on Multi-tenant resource allocators: Cluster
managers like Mesos [20] and YARN [40] enable the sharing
of cloud and cluster resources by multiple data processing
frameworks. Recent research [12, 17, 34] builds on this
sharing, to allow users to run jobs without knowledge of the
underlying data processing engine. In these multi-analytics
settings, the goal of the resource allocator is to provide
performance isolation to frameworks by sharing the resources
between them [4, 5, 13, 16]. The sharing policies in these
works are deadline-agnostic. To meet deadlines, administrators
currently use dedicated clouds, statically split their clouds
with the use of a capacity scheduler [5], or require users to
reserve resources in advance [8, 39]. Such approaches incur
costs for additional clouds or are inefficient and impractical,
as they limit peak cloud capacity. Moreover, resources are
underutilized when critical jobs are not running.

Another issue encountered in multi-analytics systems, is
that frameworks like Hadoop and Spark that run on top of these
resource allocators have their own intra-job schedulers that
greedily occupy the resources allocated to them, even when
they are not using them [11, 18, 47]. CARBYNE [18] attempts
to address this issue by exploiting task-level resource require-
ments information and DAG dependencies. It also uses prior
runs of recurring jobs to estimate task demands and durations.
Then, it intervenes both at the higher level, on the resource
allocator, and internally, on framework task schedulers. It
withholds a fraction of job resources from jobs that do not use
them while maintaining similar completion times. PYTHIA in
contrast, introduces framework-independent admission control
that these resource allocators can use to support dynamic
sharing of the cloud and deadline driven workflows for either
Hadoop or Spark jobs, without requiring task-level information
or depending on recurring jobs.

Admission control: Admission control has been suggested
as a solution for SaaS providers to better utilize their clusters
and meet Service Level Agreements (SLAs) [23, 46], to
provide map-reduce as-a-service [10], and to resolve blocking
caused by greedy allocations [47]. PYTHIA is similar in that
but targets multi-analytics, resource-constrained clouds. We
design PYTHIA for use by resource managers for deadline-
driven workloads, to be framework and task independent.

VII. CONCLUSIONS AND FUTURE WORK

We present PYTHIA, a novel admission control system
for resource negotiators for big data multi-analytics systems,
such as Apache Mesos and YARN. PYTHIA adds support
for deadlines and facilitates more effective resource use when
resources are constrained due to physical limitations (private
clouds) and cost contraints (when using public clouds), two in-
creasingly common big data deployment scenarios. PYTHIA
is a black box, framework agnostic approach that estimates the
CPU resources that a job requires to meet its deadline, based
on historic deadline and runtime information of completed
jobs. PYTHIA admits jobs when the estimated resources are
available and drops them when their deadlines are no longer

feasible. Thus, any job not admitted “fails fast” and wastes no
resources, enabling more jobs to be admitted and meet their
deadlines.

We empirically evaluate PYTHIA for different cloud ca-
pacities and deadline assignments, using trace-based simula-
tion, driven by production YARN traces. Our results show that
PYTHIA is able to meet significantly more deadlines com-
pared to existing fair-share approaches. Unlike them wasting
a big portion of the computation time for jobs that don’t meet
their deadlines, PYTHIA almosts eliminates resource waste
while maintaining high levels of completed useful work, for
the workloads, cloud capacities, and deadline assignments that
we consider. Moreover, we have implemented a prototype of
PYTHIA as an allocation module [29] for Apache Mesos
0.27.2 which we will make available following publication.

As part of future work, we are exploring how to ex-
tend PYTHIA to adapt to deadline variability and changing
resource constraints. PYTHIA currently is conservative and
only increases its resource provisioning rate (CPUFrac) as it
encounters tighter deadlines. This attempts to minimize wasted
computation, but also leaves room for improvement (e.g. in the
PTR metric). We are currently considering how to decrease
this rate when we discover that it has been over-conservative
using a sliding window and by differentiating between long
and short running jobs. We are also considering an approach
that incentivizes users to assign realistic deadlines to jobs,
both to avoid over allocating resources and to protect from
unnecessary increases on the resource provision rate. Finally,
we are extending PYTHIA to consider overheads that lead
to imperfect parallelization in our calculation of the minimum
resource requirements of jobs, by tracking and incorporating
divergence in observed and estimated job runtimes.
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