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Abstract

This paper reports on an application of artificial in-
telligence to achieve demand-based scheduling within
the context of a network-computing infrastructure. The
described Al system uses tool-specific, run-time input
to predict the resource-usage characteristics of runs.
Instance-based learning with locally weighted polyno-
maial regression 1s employed because of the need to si-
multaneously learn multiple polynomial concepts and
the fact that knowledge is acquired incrementally in this
domain. An innovative use of a two-level knowledge
base allows the system to account for short-term varia-
tions in compute-server and network performance and
exploit temporal and spatial locality of runs. Instance
editing allows the approach to be tolerant to noise and
computationally feasible for extended use. The learning
system was tested on three tools during normal use of
the Purdue University Network Computing Hubs. Re-
sults indicate that the described instance-based learn-
g technique using locally weighted regression with a
locally linear model works well for this domain.

1. Introduction

A demand-based computing system can be charac-
terized by its universal accessibility and its ability to
make automatic cost/performance tradeofl decisions at
run-time. Universal accessibility can be provided via a
widely-used networked interface such as the world-wide
web. Run-time cost/performance tradeoff decisions re-
quire that the infrastructure be able to decide how
(which implementation - e.g., sequential versus paral-
lel) and where (which platform) to run a tool. This pa-
per presents an application of artificial intelligence to
achieve demand-based scheduling within the context of
a network-computing infrastructure (the Purdue Uni-
versity Network Computing Hubs, or PUNCH [6, 7])
that allows users to access and run existing software

tools via standard world-wide web browsers.

Cost/performance tradeoff decision are based on
run-specific resource requirements and tool-specific
portability information. While portability information
is usually available a priori, run-specific resource re-
quirements generally depend on the run-time input to
the tool. Although it may sometimes be possible to ob-
tain analytical expressions that describe the relation-
ship between the run-time input and the correspond-
ing resource usage (e.g., matrix-manipulation codes),
in general, tools tend to exhibit complex behavior that
make such analytical expressions nearly impossible.
Even when it is possible to determine an analytical ex-
pression, the resource-usage characteristics cannot be
computed from an expression that simply describes the
computational complexity of the algorithm; the appro-
priate architecture-specific constants must also be de-
termined.

To our knowledge, this is the first system to use tool-
specific, run-time inputs to predict the resource usage
characteristics of runs. Other work on resource-usage
prediction (e.g., [3, 4, 9, 10, 11]) utilizes tool-specific
analytical expressions or statistical data obtained from
past runs (e.g., average execution time) to predict fu-
ture resource usage. Results show that such heuristics
can be used to identify better schedules. These ap-
proaches were not used here because the resource-usage
characteristics of the tools in our domain are highly
dependent on run-specific parameters (e.g., a Monte
Carlo simulation may execute for anywhere from a few
minutes to several days, depending on the inputs).

The Al system described here uses instance-based
learning to predict the CPU time and the network data-
transfer time for a given run on the basis of the asso-
ciated run-time input.’ An innovative use of a two-
level knowledge base allows the system to account for

'Memory and disk-space requirements are not predicted at
the moment. These parameters will be predicted once the ongo-
ing development of a monitoring system is complete.
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short-term variations in compute-server and network
performance and exploit temporal and spatial locality
of runs. Instance editing allows the approach to be
tolerant to noise and computationally feasible for ex-
tended use. The learning system was tested on three
semiconductor simulation tools during normal use of
PUNCH in Fall 1997, and on four synthetic datasets
(off-line). Locally weighted polynomial regression with
a locally linear model was found to perform well for all
the datasets tested.

2. PUNCH

The Purdue University Network Computing Hubs
(PUNCH)? is a distributed network-computer that pro-
vides geographically dispersed users with universal,
web-based access to tools [6, 7]. Functionally, it allows
users to: a) upload and manipulate input-files, b) run
programs, and c) view and download output - all via
standard WWW browsers. Currently, PUNCH consists
of four discipline-specific hubs that contain tools from
semiconductor technology, VLSI design, computer ar-
chitecture, and parallel processing. A fifth hub is
devoted to tools that were developed with support
from the Semiconductor Research Corporation (SRC).
These hubs contain over thirty tools from eight univer-
sities and four vendors and serve more than 500 users
from within Purdue, across the US, and in Europe.

PUNCH allows on-demand management of exist-
ing software and hardware resources by delaying the
binding of a user’s command to a specific implemen-
tation and machine until run-time, at which point the
requirements of the given run can be analyzed. The
resource-requirements of a particular run are deter-
mined by PUNCH’s Al sub-system, which qualifies
the user-supplied tool-input with available tool-specific
scalability and portability information. The output of
the Al system is used to match a user’s request with
the underlying network-accessible tools and resources.

3. Domain Characterization
3.1. Tool Characteristics

The tools available on PUNCH come from a wide
variety of environments and disciplines. Each tool re-
quires its own set of features and a separate knowledge
base. In general, establishing the correct (i.e., relevant)
features for a given tool is a difficult problem - realistic
tools tend to use sophisticated algorithms whose be-
havior cannot be easily correlated to the user-supplied

2The Purdue University Network Computing Hubs can be ac-
cessed at “http://www.ecn.purdue.edu/labs/punch/”. Courtesy
accounts are available.

input values. Another problem associated with the fea-
ture vector is that the range of values that a given fea-
ture can assume is generally not known a priori, par-
ticularly in a research environment. In terms of the
artificial intelligence system, these issues require that
the system be able to: a) ignore irrelevant features,
b) detect inadequate feature vectors, and ¢) work with
unscaled features.3

The relationship between the n inputs supplied
to a program and the corresponding resource-usage
characteristics is defined by a set of polynomials in
n-dimensional space. Thus, the learning algorithm
used for this domain must be able to capture con-
cepts described by (possibly multiple) polynomial func-
tions. Moreover, this relationship often has a non-
deterministic component with respect to the available
inputs. For example, the convergence rate of an itera-
tive matrix-manipulation algorithm is likely to depend
on the distribution of the eigenvalues of that matrix,
which are difficult to compute in advance. This effec-
tively implies that the learning algorithm will have to
work with an incomplete or noisy description of the fea-
tures that determine the resource-usage characteristics
of the program.

3.2. Run-Time Environment

When a request for a run is received by PUNCH, it
extracts the values of the administrator-specified fea-
tures from the user-supplied input and uses them to
predict the resource-usage characteristics. The pre-
diction is then used to determine how and where to
schedule the request. After the run completes, PUNCH
provides the true resource-usage characteristics to the
artificial intelligence system, allowing the learning al-
gorithm to incorporate the new information into its
knowledge base. Because this process happens in real-
time and during normal use of the system, an incremen-
tal learning approach is needed. The run-time environ-
ment is also interactive, which requires the predictions
to be made in real-time. This in turn implies that the
resources used by the artificial intelligence system can-
not grow monotonically with time.

The final issue that affects learning is short-term
variations in the performance of computer systems.
Short-term variations in performance can occur due to
unpredictable events such as a file-server or network
router becoming overloaded. The learning algorithm
must be able to quickly tailor its predictions to such
short-term variations without being unduly affected by
them in the longer term.

3“Unscaled” in this context implies that the system cannot
use a constant scaling factor that has been determined a priori;
it can still scale features on the fly.
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4. The Artificial Intelligence System
4.1. Algorithm Selection

Instance-based learning (IBL) algorithms approxi-
mate the target concept by dividing the input space
into many partitions, each of which is approximated
by an independent function y; = fi(x,6;) [8]. IBL al-
gorithms do not require an explicit training phase, and,
because of their localized nature, they are relatively in-
sensitive to the structural complexity of the function to
be learned [8].

There are many instance-based learning algorithms,
including nearest neighbor, weighted average (kernel
regression), and locally weighted regression techniques.
Locally weighted regression (LWR) fits a surface to
nearby points, typically via a locally linear (LLWR) or
quadratic (QLWR) model.* With a linear (quadratic)
model, the target concept is locally approximated by
a linear (quadratic) surface. Recall that global regres-
sion [12] constructs a surface that minimizes the sum of
the squares of the errors. In contrast, locally weighted
regression [2] minimizes a weighted sum of the squares
of the errors. The weights are local in the sense that
they are (re)computed for each query, and the weight-
ing function is chosen so as to eliminate the effects of
remote datapoints. The size of the local neighborhood
(i.e., the region in which the weights are non-zero) is
called the kernel width or bandwidth.

In addition to being able to reproduce linear sur-
faces without error, locally weighted regression algo-
rithms can reproduce peaks and are insensitive to un-
symmetrically distributed data [1, 8]. This makes lo-
cally weighted regression an ideal choice for the given
domain. The locally linear model is chosen over the
locally quadratic model for two reasons: a) it learns
faster (for a locally linear surface), and b) it requires
less time to make a prediction [5].

4.2. Learning Issues

The basic LLWR learning algorithm addresses the
following issues: a) learning sets of polynomial func-
tions, b) incremental learning, and ¢) support for irrel-
evant and unscaled features. Modifications are required
to address: a) detection of inadequate feature vectors,
b) short-term variations, c) noisy features, and d) scal-
ability of the knowledge base during extended use. The
scalability issue is the most critical because the basic
IBL algorithms do not scale well enough for extended
use in the PUNCH environment (the size of the knowl-
edge base and the average per-prediction lookup time
increase monotonically with the number of runs).

4Higher-order local models are generally not used because of
the associated computational cost.

The subsequent sections present solutions for each of
the mentioned problems. Detection of inadequate fea-
ture vectors is addressed by storing appropriate meta-
information about the instances in the knowledge base
[5]. Sensitivity to short-term variations without an as-
sociated loss in longer-term performance is obtained
by using a two-level knowledge base, which also helps
the IBL algorithms scale better. Finally, scalability
and noise issues are addressed by: a) not adding all
instances to the knowledge base, and b) allowing in-
stances to be discarded from the knowledge base.

4.3. Knowledge-Base Organization

A two-level knowledge-base organization is selected
on the basis of the two considerations outlined below;
the first level of the knowledge base acts as a fixed-size
cache, representing the short-term memory of the sys-
tem. The considerations are: a) short-term variations
in the behavior of computing resources, and b) tempo-
ral and spatial locality of runs. For this domain, the
principle of temporal locality can be stated as follows.
If a run with a given feature vector is invoked at some
time ¢, it is likely to be invoked again at some time
t + At. This is especially true in an academic envi-
ronment, where a relatively large number of students
tend to work concurrently on any given assignment.
Similarly, the principle of spatial locality can be stated
as follows: if a run with a given feature vector is in-
voked at some time t, runs with similar feature vectors
are likely to be invoked in the near future. This as-
sumption applies to users who, for example, need to
characterize a system by perturbing a few parameters
at a time (characteristic of a research environment).

4.4, Knowledge Retrieval

In order to retrieve the resource-usage characteris-
tics of a given feature vector, the learning algorithm
scans the two-level knowledge base in the following
manner. It first looks in the cache for an exact match
to the query in terms of the feature vector. If a match
is found, the algorithm makes its prediction on the ba-
sis of the precomputed characteristics associated with
that feature vector. If a match is not found, the pro-
cess 1s repeated with the second level of the knowledge
base. The time-associated performance advantages of
the two-level organization are based on the supposition
that a match will be found in the cache for a significant
number of requests.

If an exact match is not found in either level of the
knowledge base, the learning algorithm retrieves the
2x (n+1) feature vectors (n is the length of the feature
vector) that are closest to the query and uses them for
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the locally weighted regression analysis. Recall that
a linear polynomial with n unknowns contains n + 1
terms. This implies that, at a minimum, n + 1 fea-
ture vectors are required to obtain a unique solution
to the query (with linear LWR). Using twice as many
instances provides a degree of tolerance for noisy and
“linearly dependent” (e.g., datapoints that have iden-
tical values in a given dimension do not provide any
information about that dimension) datapoints. The
closeness of feature vectors is evaluated in terms of Eu-
clidean distances in a co-ordinate system that is nor-
malized with respect to the query point. The normal-
ization is necessary because of the unpredictable nature
of the range and distribution of the feature values.

4.5. Knowledge Management Policies

Basic local learning techniques incorporate all in-
stances into the knowledge base. This results in a
monotonically increasing knowledge base, making the
Al system unscalable. There are two ways to address
this problem. The first option is to selectively incor-
porate only incorrectly predicted feature vectors into
the knowledge base. The second option is to discard
knowledge associated with feature vectors that have
been consistently used to make incorrect predictions.

The first option can be expected to work well in
situations where the learning algorithm is able to cap-
ture the target concept. Note that the concept only
has to be locally linear for LLWR, to capture it; its
global structure can be much more complex. Selec-
tively incorporating knowledge could have a negative
impact on the learning rate of the system. For exam-
ple, in some cases, an instance that was discarded in
the past could have resulted in a better prediction for
the current query. Although this problem cannot be
completely eliminated, it is partially addressed by the
two-level knowledge base. All instances are incorpo-
rated into the cache regardless of the current policy.
When the cache overflows, instances are incorporated
into the second level according to the current policy.

With the second option, knowledge associated with
feature vectors that have consistently (more than 50%
of the time, say) been used to make incorrect (off
by more than 10%) predictions is discarded. The
keep/discard decisions are made periodically; feature
vectors that do not have adequate use statistics asso-
ciated with them are allowed to retain their history
for the next time-frame (the history is reset once a
keep/discard decision is made). In practice, the de-
scribed policy is not enforced until after a certain num-
ber of runs have been observed, to allow for errors be-
fore the concept 1s learned.

Finally, to account for situations in which these two

heuristics fail, the size of the knowledge base has a hard
upper bound associated with it. When the size exceeds
a specified threshold, a LRU policy is used to discard
feature vectors. In the experiments described in this
paper, the upper bound (100) was never reached.

5. Experimental Evaluation

In this application, there are three performance cri-
teria: a) the prediction error, b) the time required for
prediction, and c¢) the growth-rate of the knowledge
base. The learning system was tested on three semi-
conductor simulation tools (T-Suprem3, Minimos, and
S-Demon) during normal use of PUNCH in Fall 1997.
Runs consisted of simulations for class projects and
homework assignments. The learning instances col-
lected for T-Suprem3, Minimos, and S-Demon com-
prised of 3398, 966, and 131 runs, respectively. The
system was also tested with four synthetic datasets.

This paper presents detailed results for T-Suprem3
(a commercial device-fabrication simulator from Tech-
nology Modeling Associates, Inc.); results for the other
datasets showed similar trends. The features associ-
ated with T-Suprem3 characterize aspects of the fabri-
cation process of a semiconductor device. Specifically,
the feature vector was made up of the following: a)
number of grid points, b) total diffusion time, ¢) cu-
mulative epitaxial growth (in terms of thickness), d)
minimumimplant energy, €) number of deposit steps, f)
number of etch steps, and g) number of implant steps.

5.1. Results

The results in this section focus on the errors asso-
ciated with the prediction of CPU time because of its
importance in terms of scheduling. For convenience,
the different policies described earlier are named as fol-
lows. The basic IBL approach using LLWR is called
basic. The policy that does not add accurately pre-
dicted feature vectors into the knowledge base is called
noadd. The policy that deletes feature vectors that
consistently result in bad predictions from the knowl-
edge base is called noisetol. Finally, the combined
application of noadd and noisetol is called combined.

The cumulative prediction error plots associated
with the basic policy (Figure 1) confirm that the AI
system 1s able to learn the relationship between the
run-time inputs and the resource-usage characteristics
of T-Suprem3. Error prediction plots for the other poli-
cies show similar trends; the final cumulative errors for
all policies are shown in Table 1. Observe that discard-
ing feature vectors that consistently result in incorrect
predictions (noisetol and combined policies) consid-
erably improves the prediction accuracy. Also note
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T-Suprem3 Data-Set; Basic LLWR Algorithm
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Figure 1. Prediction error - basic policy.

Table 1. Cumulative prediction error.
Cache Size = 0 | Cache Size = 20

Policy Abs | Percent | Abs | Percent

basic 9.77 | 131.97 | 9.77 131.97

noadd 9.36 | 126.93 | 9.06 119.68
noisetol || 5.78 46.58 5.72 45.01
combined || 6.37 62.46 6.26 50.77

that the prediction error associated with the noadd
policy is essentially the same as that of the basic pol-
icy, indicating that discarding feature vectors did not
have a negative impact on the system’s overall abil-
ity to learn. Finally, the data in the table shows that
caching reduces the prediction error for the noadd and
combined policies, which do not add (to the knowledge
base) feature vectors whose resource-usage characteris-
tics can be predicted accurately. More detailed analysis
of the results shows that this is especially true for short
runs [5].
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T-Suprem3 Data-Set; Modified LLWR Algorithm ("combined" Policy)
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Figure 3. System scalab ility - combined policy.

The top plots in Figures 2 and 3 show the growth
rate of the knowledge base for the basic and combined
policies, respectively. As expected, the knowledge base
grows monotonically for the first policy and is bounded
for the second one. The oscillations in the size of
the knowledge base (combined policy) are caused by
the periodic deletion of noisy feature vectors from the
knowledge base. Also observe that the size of the
knowledge base i1s dramatically smaller than that for
the basic policy and that the short-term memory does
not significantly affect the overall size of the knowledge
base. The lookup time shown in the middle plots is a
function of the size of the knowledge base, and conse-
quently tracks the top plots. The plots show the ben-
eficial effects of the two-level knowledge base in terms
of reduced lookup times. The analysis time shown in
the bottom plots is equal to the time required to com-
pute the regression matrices if a matching feature vec-
tor is not found in the knowledge base. If a match is
found, the analysis time is zero. The average analy-
sis time is only dependent on the number of feature
vectors used for regression, which is a bounded value.
Consequently, once an adequate number of feature vec-
tors are available, the analysis time is approximately
constant. For the combined policy, caching also helps
reduce the analysis time. This is a consequence of a
smaller number of interpolated queries, which, in turn,
is an indication of the temporal locality of runs. (A
reduction in the number of interpolated queries is ac-
companied by a corresponding increase in the number
of exact matches.)

6. Conclusions

Our results indicate that the described instance-
based learning approach using locally weighted regres-
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sion works well for the domain considered in this paper.
Selectively adding feature vectors into the knowledge
base and discarding feature vectors that consistently
result in inaccurate predictions make the described
learning approach scalable and tolerant to noise. Ex-
perimental data collected during normal use of PUNCH
validates the assumptions of temporal and spatial lo-
cality. The use of a two-level knowledge base, which ex-
ploits these assumptions, results in reduced prediction
error, faster retrieval of feature vectors, and smaller
(average) analysis time.

The ideas behind the multi-level knowledge base and
instance editing are not limited to locally weighted re-
gression; they can be applied to any local learning algo-
rithm to address scalability and noise tolerance issues.
Ongoing work is directed at evaluating the benefits of
caching and instance editing for nearest-neighbor and
weighted-average learning algorithms.

7. Future Work

The logical extension to the described work is to
apply it to a larger number of tools. The described
prediction techniques do not make any domain-specific
assumptions with respect to tools. Consequently, it
should be possible to apply them to any tool for which
there is a correlation between the input parameters and
the corresponding resource usage.

The measured network data-transfer time currently
consists of the time required to move data to and from
the execution platform and the associated file servers.
The completion of the ongoing development of a moni-
toring system will allow the CPU and message-passing
times for individual tasks of parallel programs to be
measured and predicted.

The current implementation of the Al system does
not account for the heterogeneity of hardware re-
sources. In order to do this, the system will have to
learn (tool-specific) scaling factors for each architec-
ture, in addition to the resource usage characteristics.

Yet another goal is to exploit the predictability of
long-term resource-usage trends. Demands on compu-
tational resources tend to follow patterns that can be
learned (certain resources tend to be heavily loaded
during the late afternoon hours, for example). An Al-
based approach to resource allocation could exploit this
fact and learn an anticipatory scheduling policy.
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