
Tamper-Proof Annotations, By Construction

Michael Franz
�

Dept. of Information and Computer Science
University of California, Irvine, CA 92612

franz@uci.edu

Vivek Haldar
Dept. of Information and Computer Science

University of California, Irvine, CA 92612

vhaldar@ics.uci.edu

Chandra Krintz
Dept. of Computer Science

Univ. of California, Santa Barbara, CA 93106

ckrintz@cs.ucsb.edu

Christian H. Stork
Dept. of Information and Computer Science

University of California, Irvine, CA 92612

cstork@ics.uci.edu

ABSTRACT
Current mobile-code formats require veri�cation by the code
recipient to guard against potentially malicious actions of an
incoming mobile program. Such veri�cation is needed even
when a mobile program originated in a \safe" language such
as Java, because the transmission might have been corrupted
by an adversary.

We describe an alternative approach based on a family of
mobile code formats that simply don't allow illegal programs
to be represented in the �rst place. In such an inherently
safe format, any given bit-sequence of suÆcient length is
guaranteed to map back to a legal program in the original
encoding domain, which in our prototype is Java. Hence,
any incoming program that meets trivial well-formedness
criteria is guaranteed to be legal and no code veri�cation is
necessary.

Our method enables the tamper-proof transport of perfor-
mance enhancing annotations along with the program. In
our current implementation, we are able to perform escape
analysis at the code producer's side and can encode the
results of this analysis in a manner that cannot be falsi�ed
in transit. Interestingly, adding annotations increases
encoding density since it reduces the number of valid choices
that need to be represented, so that the addition of the
annotations comes at almost no space cost.

While our current implementation focuses on Java, the
method is completely generic and can be adapted easily to
other domains. To demonstrate this point, we were able to

�authors are listed in alphabetical order

build an additional encoder for Oberon in less than a week.

1. INTRODUCTION
Most mobile-code deployment scenarios involve a veri�er at
the code consumer's site that ascertains that the recipient
system is not corrupted by a potentially malicious incoming
program. Such veri�cation is necessary even when the
mobile code originated in a \safe" language such as Java,
because an adversary might have corrupted the mobile
program during transit.

The most common form of veri�cation, as typi�ed by the
bytecode veri�er for the Java Virtual Machine (JVM),
essentially encompasses a symbolic execution of the program
along all of its data paths. This is complex and time
consuming, and hence ill-suited for scenarios involving
interactive users or limited-resource environments such as
handheld devices. Another problem is that the need for
veri�cation rules out many of the optimizations that one
could otherwise apply at the code producer's site, but that
the veri�er would not be able to distinguish from malicious
modi�cations [3].

An alternative to full-scale veri�cation at the code con-
sumer's site is the use of proof carrying code (PCC) [38,
35, 36]. This approach shifts much of the workload of
the veri�cation task to the code producer, simultaneously
reducing the size of the trusted code base needed at the code
consumer's site, as well as the veri�cation e�ort required
there. For example, Sun's KVM virtual machine [31] uses
a form of PCC to enable veri�cation of JVM bytecode in
linear time.

In this paper, we describe a third alternative whose main
idea is to prevent the transport of \illegal" programs in the
�rst place, by making it impossible to encode them in the
transport format1. The basis of our scheme is a mapping

1This is similar to the idea described in Orwell's classic
Nineteen Eighty-Four [39] in which the language Newspeak
is derived from Oldspeak (English) by deleting all the
words that could be used to express heretical thought.
The general question whether it is possible to \think the



between \legal programs" (de�nition to follow) and \bit
sequences of arbitrary length exceeding a certain threshold"
that is invertible, surjective, but not necessarily injective.
Hence, several di�erent bit patterns might map back to a
single original program, but every bit pattern of suÆcient
length, including your favorite GIF of the Mona Lisa [13], is
guaranteed to correspond to some program that is legal in
the original domain. Bit patterns that aren't long enough
to represent a legal program can be rejected trivially2 .

Our method is based on adaptive grammar-based com-
pression of the program being encoded, in such a manner
that \illegal" constructs cannot be expressed. Somewhat
surprisingly, such a compression scheme need not necessarily
be restricted to modeling only the underlying language
grammar, but can also include static semantics, even beyond
those de�ned at the source-language level. As an example,
we have been able to successfully incorporate the results of
escape analysis into our encoding, in a manner that cannot
be falsi�ed.

Our current implementation focuses on Java. In particular,
a \legal" program in our de�nition is one that would parse
in the the javac compiler. This de�nition is more restrictive
than simply requiring syntactic correctness; in particular,
we are able to provide Java binary compatibility semantics
at the code receiver's site. As can be expected, our format
is much denser than either source code or JVM bytecode,
since the encoding domain of \legal Java programs" is much
smaller than domains such as \all possible source texts" or
\all possible JVM class �les". In fact, we know of no denser
encoding for Java at this time.

In the following, we describe the basic concepts behind
grammar-based encoding (Section 2), and how this leads to
safety by construction (Section 3). We then explain (Section
4) how code annotations are used to boost performance.
Section 5 describes how these two techniques come together
to transport the results of escape analysis in a tamper-
proof manner, using an extended type system. In Section 6
we describe our generic compression engine. In Section 7,
we report how relatively easily our scheme can be adapted
to other domains. We then present some measurements
demonstrating how exceptionally dense our encoding is
(Section 8). Finally, we present related (Section 9) and
future (Section 10) work and then conclude the paper.

2. GRAMMAR-BASED COMPRESSION
A grammar-based compressor encodes sentences of a given
grammar that are known to fully conform to the grammar
(i.e., there are no syntax errors). It is fairly easy to
construct such an encoder simply by numbering the available
choices whenever there is an alternative in a production of
the grammar, and transmitting the language sentence as

unthinkable" (existence of a G�odelization of thought) goes
back to Wittgenstein's Tractatus Logico-Philosophicus[49].
2Bit patterns can also be \too long", i.e., only their pre�x
maps to a valid program. In this case, the remainder is
simply ignored. Hence, any bit pattern can be classi�ed as
mapping to either (a) an incomplete program (the pattern
is too short), or (b) a legal program (the pattern is valid),
or (c) a legal program plus extra bits (the beginning of the
pattern contains a valid pre�x).

a sequence of choice designators. Since the decoder has
the same grammar speci�cation available to it, it is able
to reconstruct the sentence based only on these choices;
in particular, sequences with no choices require no extra
communication at all.

For example, consider the following excerpt from a very
simple grammar that has the additional bene�cial property
that it is LL(1), so that we can construct a compressor using
the recursive-descent technique (the curly braces indicate
zero or more repetitions of the enclosed construct):

statement ::=
| ``LET'' identifier ``:='' expression

| ``WHILE'' expression ``DO'' { statement } ``END''
| ``IF'' expression ``THEN'' { statement } ``END''

| ``REPEAT'' { statement } ``UNTIL'' expression.

To encode a statement in this grammar, we need to
communicate which of the four choices (assignment, while-
statement, if-statement, repeat-statement) we are dealing
with. However, once we have selected a choice, we do
not need to send additional information until we arrive at
another choice. Take the program fragment

IF ex1 THEN

REPEAT S1 UNTIL ex2;

LET i := j
END

Assume that the encoding of exp1 yields the bit sequence
bits-ex1, that the encoding of S1 yields the bit sequence bits-
S1, etc., the choices in statement are numbered (1, 2, 3, 4),
and that the END and UNTIL choices are numbered zero,
then the above sentence can be encoded as:

3 bits-ex1 4 bits-S1 0 bits-ex2

1 bits-i bits-j 0

Hence, in particular, we do not need to explicitly encode
the facts that there is a THEN in the if-statement, nor that
there is an \:=" in the assignment.

3. SAFETY BY CONSTRUCTION
Intuitively, one senses that compression and safety must be
complementary to each other|if we design an encoding that
can represent only a subset of all possible programs (the
\legal" ones, according to some statically decidable analysis)
then there are fewer alternatives to encode and hence the
encoding should be denser. This merely takes the idea
of grammar-based encoding one step further: A grammar
based compressor encodes only those character sequences
that are valid sentences of its grammar; now we are further
limiting ourselves to those sentences of the grammar that
conform to some additional statically veri�able semantics.

As an example of such semantics, we could design an
encoding that implicitly enforces some of the typing rules of
a programming language. Take the following Java program
fragment:

class Basic {...};
class Extended extends Basic {...};



static void Sample1 {
Basic b1, b2; Extended x1 ,x2;

...

}

Now consider which assignments can be written down inside
method Sample1 : some of these assignments are illegal
under Java's type system, while certain others, although
legal, are pointless because they assign a variable to itself. In
this particular example, only half of all possible assignments
are actually simultaneously legal and useful.

Assignments
useful illegal pointless

b1 := b2 x1 := b1 b1 := b1
b1 := x1 x1 := b2 b2 := b2
b1 := x2 x2 := b1 x1 := x1
b2 := b1 x2 := b2 x2 := x2
b2 := x1
b2 := x2
x1 := x2
x2 := x1

In a type-unaware encoding, each assignment between two
variables represents one choice out of 16 (four possible left
sides and four possible right sides), which might be encoded
by using two bits each for each variable, for a total of 4 bits.
Conversely, an encoding that incorporates static semantics
might enumerate all eight useful assignments and simply use
the index of the appropriate assignment in this enumeration
to communicate the choice|this would require only 3 bits.
Hence, incorporating the type semantics into the encoding
results in a greater encoding density since there are only half
as many assignments to choose from3.

More importantly, the type-aware encoding is inherently
immune against malicious modi�cations that would
undermine type safety, since programs that violate the
assignment compatibility rule cannot be represented in the
�rst place. Hence, unlike programs expressed in JVM
language, which need to be veri�ed upon arrival at the target
machine, assignment compatibility in the just described
format need never be veri�ed at all.

In practice, of course, the set of valid choices in an assign-
ment might be in�nite, since it may contain expressions
other than simple variables. For example, when working
with dynamically linked data structures we might need to
encode the statement

l.next = l.next.next

However, as we explained in Section 2 above, our type-
aware encoding works in conjunction with a grammar-based
encoding that already possesses the capability of encoding
these choices.

3E�ectively, adding the type rules \squeezes some entropy
out of the encoding domain". Hence, the resulting coding
density should always be greater, even if one uses a more
intelligent encoding for communicating the actual choice
than simply using log(#choices) bits. Examples of \better"
encodings include Hu�man[23] coding and arithmetic cod-
ing[48]. The latter is used in our actual bit-level encoding
of choices, as mentioned below.

A further requirement is that the decompressor needs to be
able to reconstruct the valid choices using the information
available to it; i.e., based only on some static rules and the
information already transmitted. In the example above, this
means that the variables used in the program, as well as
their types, would need to be transmitted before the actual
statements. This is usually easy to arrange, but as we shall
see below, might in some cases limit the static properties
that can be encoded.

4. ANNOTATION FOR OPTIMIZATION
Our aim is to transport not only the original program as
the programmer wrote it, but also annotations inserted
by the compiler front-end. Annotation-based techniques
have been developed for dynamically compiled JVM-code
programs to enable optimized execution speeds with little
just-in-time compilation overhead [30], and to communicate
analysis information that is too time-consuming to collect
on-line [4, 27, 41, 21, 43]. Annotation transport size must
be small so as not to negate the bene�t in execution time
with transfer delay|especially in a wireless environment.
Past annotation frameworks cause �le size increases ranging
from 7% to 97% [41, 27, 24].

Annotations make costly optimizations feasible in dynamic
optimization environments. Analysis results that are time-
and space-consuming to generate can now be employed
since the analyses can be performed o�-line and the results
compactly communicated via annotation. An example of
one such analysis is escape analysis [47, 10], a technique
which identi�es objects that can be allocated on the program
stack as opposed to on the heap. Escape analysis can
also reveal when objects are accessed by a single thread.
This information can then be used to eliminate unnecessary
synchronization overhead.

Escape analysis is both time- and space-consuming since it
requires interprocedural analysis, �xed-point convergence,
and a points-to escape graph for each method in the
program [47]. Fixed point convergence is required for loops
(within the method and within the call chain) to ensure that
the points-to escape graph considers all possible paths that
e�ect object assignment. However, prior escape analysis
implementation indicates that its use o�ers substantial
execution performance potential [47, 10].

Ideally, we would like to encode escape analysis as an
annotation that is transported with the program. At
the destination, the dynamic compilation system can then
allocate annotated objects on the stack to improve program
performance without the overhead of on-line escape analysis.
However, escape analysis annotations that have been de-
scribed in the literature so far, like those for other important
analyses (register allocation, array bounds and null pointer
check identi�cation) are unsafe. That is, their accidental
or malicious modi�cation can cause security violations (as
de�ned by the language and runtime system) that result in
system exploitation or crashes.

One way to enable the use of such annotated analyses is
to perform veri�cation of them at the destination. This
however, introduces runtime overhead that, in many cases,
is as complex as performing the analysis itself. In the next



section, we describe how we have overcome this limitation.

5. EXTENDING THE TYPE SYSTEM TO
TRANSPORT UNSAFE ANNOTATIONS
SAFELY

In Section 3, we explained how one can design an encoding
that provides safety by construction, by restricting the
domain of \what can be encoded" to apply only to \legal"
programs in the �rst place. In this section, we will explain
how the static semantics that are enforceable in this manner
need not even be part of the original programming language
de�nition, but can correspond to compiler-inferred proper-
ties. Hence, one can use such an intrinsically safe encoding
not only to transport semantically relevant information, but
also performance-relevant attributes.

In particular, we have designed an encoding that can
transport the results of escape-analysis in a tamper-proof
manner. By this we mean that if a program can be
encoded in our format at all, then its escape-analysis
annotations are guaranteed to be correct. Stated the other
way around, it is impossible to even hand-craft a program
in our representation that contains references marked as
\non-escaping" that do escape. We know of no other
technique for communicating escape-analysis results
safely; all published annotation-based solutions [4, 27, 41]
are unsafe, i.e., they are never veri�ed at the target machine.

The main idea is surprisingly similar to the encoding
described in Section 3: we extend the underlying type
system by an additional dimension representing \captured-
ness". The choices here are captured, which means that the
reference in question never occurs in an assignment that
would make it escape its de�ning scope, and other, which
means that the reference either escapes or that we cannot
prove that it doesn't escape4 . The task of the encoding then
becomes to disallow all assignments between variables that
could possibly allow a captured reference to escape. For
example, consider the following Java program fragment:

static void Sample2 {
captured Object cap1, cap2; Object o1, o2;

...
}

The annotation \captured" in the declaration of variables
cap1 and cap2 indicates that an analysis in the compiler
front-end has determined that these variables will never be
involved in an assignment that would let the referenced
objects escape. As a consequence, assignments from cap-
tured to other variables must not be representable in the
encoding. The following table summarizes the assignments
that would be allowed or prohibited in method Sample2
under the capturedness type rules:

4Note that the \capturedness" property applies to references
(pointer variables) and not to the objects that are attached
to them. A captured reference may at times point to an
object that does escape; we are merely guaranteeing that
an escape will not be caused by assignments involving the
captured reference.

Assignments
allowed disallowed pointless

cap1 := cap2 o1 := cap1 cap1 := cap1
cap1 := o1 o1 := cap2 cap2 := cap2
cap1 := o2 o2 := cap1 o1 := o1
cap2 := cap1 o2 := cap2 o2 := o2
cap2 := o1
cap2 := o2
o1:= o2
o2 := o1

Using the method described in Section 3, the capturedness
property can therefore be transported in a fully tamper-
proof manner. If an adversary were to change the annotation
of an escaping variable to erroneously claim that it was
captured, then our encoding would not be able to encode any
assignment that would let the variable escape. Conversely,
if one were to change the annotation of a captured variable
to escaping, then that would simply mean that a potential
for optimization had been lost, without making the program
any less safe5.

Hence, our method overcomes a major drawback of existing
approaches to using annotations with mobile code, namely
that corrupted annotation information could undermine the
security of the system. In previous approaches [4, 27,
41], annotations were generally unsafe because there would
have been no way of verifying their correctness at the code
consumer's site other than by repeating the analysis they
were targeting to avoid. Using our method, any object
that at its creation time is marked \captured" is guaranteed
to be stack-allocatable. No veri�cation is required at the
destination to ensure that the annotations we encode are
safe to use.

5.1 Capabilities and Limitations
Our current implementation enforces the capturedness prop-
erty of local variables, method parameters, and return refer-
ences. Additionally, we register the capturedness property
of newly created objects|if these are captured, then they
can safely be allocated on the stack.

It is important to note that the decoder in our approach
only has available to it the information that was previously
transmitted by the encoder|it does not have a \global
view", and in particular, only hindsight.

A limitation of our escape analysis annotation is our assump-
tion that the entire program is analyzed and annotated.
We analyze the application and all of the library routines
that can be called by it during construction of the points-
to escape graphs that determines the captured state of

5Note that the additional \capturedness" type dimension
needs to be considered during linking. Hence, if an adversary
modi�es a class in transit, changing the annotation of an
imported reference in a method signature from captured
to escaping, then that would be detected during link-
time signature matching. In our current solution, if one
changes the implementation of a library method in such a
manner that it e�ects the capturedness of any parameter
in its signature, then all clients of the library should be
recompiled. Section 5.1 revisits this issue.



objects. However, we encode, compress, and transport
only the application (not the libraries). As a result, our
technique assumes that the libraries at the destination have
been analyzed and annotated6 . We believe this is a fair
assumption since this analysis bene�ts the user by improving
program performance. It is a general belief that libraries
at the destination will be fully optimized. As part of
libary optimization, escape and similar analysis annotation
will be included with the method signatures of the library
metadata. At dynamic link time, we verify that the client
program was compiled against a version of the library that
has the exact same capturedness annotations in method
signatures as the one currently available on the target
machine.

5.2 Realization
In our current implementation, the tamper-proof transport
of annotated Java programs is implemented as a source-
to-source transformation; that is, our decoder reconstructs
a Java source program containing veri�ed annotations
rather than directly generating native code in the instruction
set of the target machine. This is merely an implementation
convenience; we are working on a just-in-time compiler that
will compile directly from our safe intermediate represen-
tation into native code. Note that the source code being
reconstructed at the code receiver's side is guaranteed not
only to be syntactically correct, but also to conform to all
the static semantic rules that were part of the encoding; this
includes the correctness of the veri�ed annotations.

At the code producer's side, our annotation insertion system
is an extension of our prior annotation work [30]. The
system is invoked during program encoding and enables
both static analysis and execution characteristics about the
program to be collected. The annotation insertion process
consists of three steps: program compilation, static bytecode
analysis, and decompilation.

We �rst compile the program to bytecode using the Java
HotSpot Client JDK, version 1.3.1, available from Black-
down Corporation [5]. Following this, we perform escape
and other static analyses on the bytecode of the program
as well as on that of the library methods used by the
program. This analysis is enabled through the use of
the Bytecode Instrumentation Tool (BIT) [32]. The BIT
interface enables elements of the bytecode class �les, such
as bytecode instructions, basic blocks and methods, to be
queried and manipulated. In particular, BIT enables us to
navigate through the basic blocks of a bytecode program,
collect information about the use of local and constant pool
variables, opcodes, branch conditionals, etc., and to perform
control-ow and data-ow analysis. We then annotate the
bytecode with the pro�ling and analysis information.

The last step of the process is to convert the bytecode
back to Java source code. To enable this, we use the
freely available (via GPL) decompiler called jode [26]. We
extended jode to convert bytecode annotations to source
code annotations during decompilation. Since we start this
process with source code, we are able to add local variable

6In particular, for optimizing performance we need access
to the initialization code for newly created objects.

information (via the -g:vars ag to java) to the bytecode.
As a result, the decompiled source is very similar to the
original programs in form and control (and equivalent to it
in function). The end result is an annotated Java source
program that is then encoded using our inherently safe
encoding method.

Our source code annotations take the form of Java com-
ments:

/*#captured*/RefType var

The comment immediately precedes the name of the syn-
tactic entity for which the annotation is meant. Within the
comment, the annotation begins with a # symbol to indicate
that it is an annotation. Although we only describe our
escape analysis here, we intend to use this same framework
to support other annotations as well in the future.

6. COMPRESSION USING PREDICTION
BY PARTIAL MATCH (PPM)

As has already been explained, our encoding mechanism
uses grammar-based compression. Rather than compressing
the source text directly, or rather, its parse tree, our
compressor builds a canonized abstract syntax tree �rst.
This abstract syntax tree (AST) corresponds to the concrete
syntax stripped of all syntactic sugar; the transformation
between the two is isomorphic. The abstract syntax is
known to both the encoder and the decoder and is LL(1),
enabling top-down parsing durihng the encoding process.

The AST is then encoded using a novel statistical approach,
using a variant of a text compression technique called
predition by partial match (PPM) that we have adapted
to work on trees. PPM models the statistical properties
of ASTs by maintaining a set of contexts (i.e., paths form
the root to a node). Each context maintains the counts of
symbols that followed that context. Based on these counts,
predictions can be made, and the actual choice encoded
more space-eÆciently (using arithmetic encoding) the next
time this context is encountered.

Our compression framework has the following conceptual
stages:

� Parsing: Produce an AST from the source code (i.e.
a canonicalization of the parse tree).



� Serialization: The AST needs to be converted into a
linear sequence of symbols before being encoded. We
traverse the tree depth-�rst, in order to serialize it.

� Modeling: The symbols of the serialized AST are
encoded in a predictive manner, i.e. a probability
of occurrence is assigned to every symbol which may
occur next. The grammar and additional semantic
constraints play an important role in this step, because
they are used to limit the number of symbols which
may possibly occur next.

� Arithmetic Coder : The arithmetic encoder [48] uses
the model built by the previous step to output an
actual stream of bits.

At the code consumer's end, the AST is incrementally
rebuilt in the order it was traversed during encoding. The
information being used by the modeler at the producer's end
is limited to the symbols seen in the traversal up to the one
currently being encoded. Hence, the coder and modeler at
the consumer's end operate conceptually in lock-step with
those at the producer's end. For full details, we refer the
reader to our technical reports [45, 44]

6.1 Compressing Constants
A sizeable part of an average program consists of constants
such as integers, oating-point numbers, and, most impor-
tantly, string constants and identi�er names. An eÆcient
way of encoding constants is to specify an index into a table
which contains all constants. The number of bits of this
index can be further reduced by maintaining di�erent tables
for di�erent kinds of constants, such as strings, type names,
identi�ers and so on. Our prototype stores constants as
references into various compressed tables of constants, which
we call global pools.

7. ADAPTATION TO OTHER DOMAINS
Our framework for compression of ASTs (Section 6) is
parameterized by the grammar of the language being parsed.
This parameterization is via a text �le containing the
grammar. It is read by the compressor at startup. To
use the framework with a new language merely requires the
speci�cation of a new abstract grammar. Further context-
sensitive constraints can also be added in a modular fashion.

This genericity is in stark contrast to the dedicated com-
pression routines that have been proposed for Java of
late[42]|and surprisingly, our solution comes very close to
the encoding density of these dedicated methods in many
cases.

Originally, our framework was designed with Java in mind,
but to make a point of its genericity, we adapted it to the
language Oberon-2 [34]. In order to do this, the framework
itself did not need to be modi�ed|we only had to specify the
augmented grammar of the Oberon language in a di�erent
parametrization �le for our AST encoder, and then build
a front-end that converts Oberon source text into an AST
conforming to that grammar. The whole implementation
e�ort of supporting Oberon in addition to Java took less
than a week.

8. MEASUREMENTS
The benchmarks we have used to empirically evaluate our
results were taken from a set of applications developed by
the JavaGrande Forum [17]. The following is a list of these
benchmarks and a brief description of their fuctionality:

� Euler: Computational uid dynamics

� MolDyn: Molecular dynamics simulation

� Montecarlo: Monte Carlo simulation

� Raytracer: 3-dimensional ray tracer

� Search: Alpha-beta pruned search

We �rst present the results of our escape analysis. Table
1 shows the number of static allocation sites that allocate
captured objects (over the total number of allocation sites).
Objects allocated at these sites can be stack-allocated and
synchronization performed on these objects can be removed.
The type declarations of each stack-allocatable object as well
as occurrences in method signatures of method parameters
that don't escape inside are annotated with /*#captured*/.
On average, 34% of the static allocation sites are such
sites. These results are in line with those presented in prior
work [47].

Program Captured / Total
Euler 16 / 48
MolDyn 5 / 9
Montecarlo 34 / 105
Raytracer 17 / 57
Search 13 / 29
Avg 17 / 50

Table 1: Escape Analysis Results

We next present our encoding relative to four di�erent com-
pression techniques: Jar, Pack, Gzip, and Bzip. The Java
archive (jar) format is the most common tool for collecting
(archiving) and compressing Java application �les [25]. The
format is based on the standardized PKWare zip format [40]
and enables archivation of various components of Java
applications (class, image, and sound �les).

Pack [42] is a jar �le compression tool from the University of
Maryland. This utility de�nes a compact representation of
class �le information and substantially reduces redundancy
by exploiting the Java class �le representation, and by
sharing information between class �les. The compression
ratios achieved by this tool are far greater than any other
compression utility for Java applications. However, the pack
utility has very slow decompression since the class �les must
be reconstituted from this complex format.

Gzip and bzip are both standard compression utilities,
commonly used on UNIX operating system platforms. Gzip
does not consider domain speci�c information and uses a
simple, bit-wise algorithm to compress �les. As such, gzip
has very fast decompression times but does not achieve the
compression ratios of pack. Bzip is a freely available, high-
quality data compression utility [7] that makes use of the
Burrows-Wheeler method for compression.



Table 2 shows the size in bytes of bytecode programs en-
coded using jar, pack, gzip, and bzip compression (columns
2-5, respectively). The �nal column shows the size (in bytes)
of the programs when we use our encoding that we call
Compact Abstract Syntax Trees (CAST) on the Java source
�les. The section3 benchmark is the combination of all of
the benchmarks. The encoding results for our format are
given both for the case where escape-analysis annotations
are included (ACAST) or omitted (CAST). No escape-
analysis annotations are included in the results presented
for the non-CAST encodings.

9. RELATED WORK
The initial research on syntax-directed compression was
conducted in the 1980's primarily to reduce the storage
requirements for source text �les. Contla [11, 12] describes
a coding technique essentially equivalent to the technique
described in section 6. This reduces the size of Pascal
source to at least 44% of its original size. Katajainen et.
al. [29] achieve similar results with automatically generated
encoders and decoders. Al-Hussaini [2] implemented an-
other compression system based on probabilistic grammars
and LR parsing. Cameron [8] introduces a combination of
arithmetic coding with the encoding scheme from section 6.
He assigns �xed probabilities to alternatives appearing in
the grammar and uses these probabilities to arithmetically
encode the pre-order representation of ASTs. Furthermore,
he uses di�erent pools of strings to encode symbol tables for
variable, function, procedure, and type names. Deploying
all these (even non-context-free) techniques, he achieves a
compression of Pascal sources (including comments) to 10{
17% of their original size.

Katajainen and M�akinen [28] present a general survey of
tree compression mentioning the above methods. It seems
that before this survey all of the above four e�orts were
pursued independently of each other. Tarhio [46] suggests
the application of PPM to drive the arithmetic coder in a
fashion similar to ours. He reports increases in compression
of Pascal ASTs (excluding constants, i.e., pools of strings,
etc.) by 20% compared to a technique close to Cameron's.
7 Cheney [9] suggests applying PPM in the context of term
compression.

All of these techniques are concerned only with compressing
and preserving the source text of a program in a com-
pact form and do not attempt to represent the program's
semantic content in a way that is well-suited for further
processing such as dynamic code generation or interpreta-
tion (Katjainen [29] even reect incorrect semantics in their
tree). Franz [18, 19] was the �rst to use a tree encoding for
transporting (executable) mobile code. He uses a dictionary-
based encoding to compress the abstract syntax tree of
Oberon programs.

Necula [37] uses a technique very similar to tree compression
in order to compress PCC proofs. Rather than transmitting
the entire proof, only those points in the proof are transmit-
ted where a choice must be made among alternative paths.

7Unfortunately, we learned of Cameron's and Tarhio's work
only after we developed our solution independently of both.

Even though seemingly placed in the same application
domain, research on \code compression" [16, 20, 33, 14]
is generally not comparable to the above line of work on
source text and AST compression. The reason is that code
compression focuses much more on the speci�cs of machine
code such as choice of opcodes, operand formats, lack of
apparent high-level structure, and so on. Nevertheless, will
we try to identify potential overlap between our work and
other work on code compression.

Java, currently the most prominent mobile code platform,
has attracted much attention with respect to compression.
Horspool and Corless [22] compress Java class �les to
roughly 36% of their original size using a compression
scheme speci�cally tailored towards Java class �les. In a
follow-up paper Bradley, Horspool, and Vitek [6] further
improve the compression ratio of their scheme and extend
its applicability to Java archives (jar-�les). An even better
compression scheme for jar-�les was proposed by Pugh
[42]. His format is typically 1/2 to 1/5 of the size of the
corresponding compressed jar-�le (1/4 to 1/10 the size
of the original class �les). Pugh o�ers his tool for free
evaluation.

All of the above Java compression schemes start out with the
byte code of Java class �les. Eck, Changsong, and Matzner
[15] employ a compression scheme similar to Cameron's and
apply it to Java source programs. They report compression
down to around 15% of the original source �le, although
more detailed information is needed to assess their approach.

10. FUTURE WORK
We are working on encoding the full and exact Java type
semantics in using the technique described in Section 3,
which would give us a tamper-proof mechanism for trans-
porting Java programs that would not require any code
veri�cation at all (link-time matching of interfaces across
class boundaries is still necessary). Unfortunately, this
turned out to be far trickier than we expected, and we
weren't able to �nish debugging by the paper submission
deadline. Still, we are con�dent not only that it can be
done, but also that we can do it before the end of the year.

We are currently also investigating other annotation-based
optimizations, include inlining, optimization �ltering [30],
and register allocation. For the latter, complex algorithms
are currently required to e�ectively allocate registers for
Java programs. The use of such techniques in a dynamic
compilation setting is infeasible due to the compilation
delay imposed. However, register allocation, like escape
analysis and other compilation techniques become viable if
performed o�-line and communicated via annotation. Since
our encoding methodology eliminates all of the drawbacks
previously associated with mobile code annotation (transfer
size and security) we hope to enable highly optimized as well
as highly-compact encoding and safe execution of mobile
programs using it.

11. SUMMARY AND CONCLUSION
Up until now, escape analysis in mobile code contexts had to
be performed on the code consumer side, or be transported
as unsafe annotations. We have solved the problem of
how such annotations can be transported in a tamper-proof



manner, making them safe. Our method can be extended to
transport other statically veri�able properties of programs.

Our technique builds on grammar-based compression. It
is completely generic and has been applied to multiple
programming languages. Yet in spite of this genericity, we
have achieved encoding densities that surpass those of other
published compression schemes, including dedicated ones.

12. REFERENCES
[1] Proceedings of the ACM SIGPLAN '01 Conference on

Programming Language Design and Implementation,
Snowbird, Utah, June 20{22, 2001. SIGPLAN Notices,
36(5), May 2001.

[2] A. M. M. Al-Hussaini. File compression using
probabilistic grammars and LR parsing. PhD thesis,
Loughborough University, 1983.

[3] W. Amme, N. Dalton, J. von Ronne, and M. Franz.
SafeTSA: A type safe and referentially secure
mobile-code representation based on static single
assignment form. In Proceedings of the ACM
SIGPLAN '01 Conference on Programming Language
Design and Implementation [1], pages 137{147.
SIGPLAN Notices, 36(5), May 2001.

[4] A. Azevedo, A. Nicolau, and J. Hummel. Java
Annotation-Aware Just-In-Time Compilation System.
In ACM Java Grande Conference, pages 142{151,
June 1999.

[5] Blackdown. Java Linux. http://www.blackdown.org/.

[6] Q. Bradley, R. N. Horspool, and J. Vitek. JAZZ: An
eÆcient compressed format for Java archive �les. In
Proceedings of CASCON'98, pages 294{302, Toronto,
Ontario, Nov. 1998.

[7] Bzip2 compression utility.

[8] R. D. Cameron. Source encoding using syntactic
information source models. IEEE Transactions on
Information Theory, 34(4):843{850, July 1988.

[9] J. Cheney. Statistical models for term compression. In
Data Compression Conference, page 550, 2000.

[10] J. Choi, M. Gupta, M. Serrano, V. Shreedhar, and
S. Midki�. Escape analysis for Java. In ACM
SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), Nov. 1999.

[11] J. F. Contla. Compact Coding Method for
Syntax-Tables and Source Programs. PhD thesis,
Reading University, England, 1981.

[12] J. F. Contla. Compact coding of syntactically correct
source programs. Software-Practice and Experience,
15(7):625{636, 1985.

[13] L. da Vinci. Portrait of Mona Lisa (1479-1528), also
known as La Gioconda, the wife of Francesco del
Giocondo; Oil on wood, 77 x 53 cm (30 x 20 7/8
inches). Musee du Louvre, Paris, 1503-06.

[14] S. Debray, W. Evans, and R. Muth. Compiler
techniques for code compression. In Workshop on
Compiler Support for System Software, May 1999.

[15] P. Eck, X. Changsong, and R. Matzner. A new
compression scheme for syntactically structured
messages (programs) and its applications to Java and
the Internet. In Data Compression Conference, page
542, 1998.

[16] J. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A.
Proebsting. Code compression. In Proceedings of the
ACM Sigplan '97 Conference on Programming
Language Design and Implementation, pages 358{365,
1997. Published as Sigplan Notices, 32:5.

[17] J. G. Forum. The Java Grande Forum benchmark
suite.

[18] M. Franz. Code-Generation On-the-Fly: A Key to
Portable Software. PhD thesis, ETH Zurich, Mar.
1994.

[19] M. Franz and T. Kistler. Slim Binaries.
Communications of the ACM, 40(12):87{94, December
1997.

[20] C. W. Fraser. Automatic inference of models for
statistical code compression. In Proceedings of the
ACM Conference on Programming Language Design
and Implementation, 1999.

[21] B. Grant, M. Mock, M. Philipose, C. Chambers, and
S. Eggers. Dyc: An expressive annotation{directed
dynamic compiler for c. Technical Report Tech Report
UW-CSE-97-03-03, University of Washington, 2000.

[22] R. N. Horspool and J. Corless. Tailored compression
of Java class �les. Software{Practice and Experience,
28(12):1253{1268, Oct. 1998.

[23] D. A. Hu�man. A method for the construction of
minimum redundancy codes. Proceedings of the
Institute of Electronics and Radio Engineers,
40:1098{1101, 1952.

[24] J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau.
Annotating the Java Bytecodes in Support of
Optimization. In Journal Concurrency:Practice and
Experience, Vol. 9(11), Nov. 1997.

[25] S. M. Inc. The Java ARchive utility.
http://java.sun.com/products/jdk/1.1/
docs/tooldocs/solaris/jar.html.

[26] Jode. Java optimize and decompile environment.
http://jode.sourceforge.net/.

[27] J. Jones and S. Kamin. Annotating Java class �les
with virtual registers for performance. Concurrency:
Practice and Experience, 12(6):389{406, May 2000.

[28] J. Katajainen and E. M�akinen. Tree compression and
optimization with applications. International Journal
of Foundations of Computer Science, 4(1):425{447,
1990.



[29] J. Katajainen, M. Penttonen, and J. Teuhola.
Syntax-directed compression of program �les.
Software-Practice and Experience, 16(3):269{276,
1986.

[30] C. Krintz and B. Calder. Using annotations to reduce
dynamic optimization time. In Proceedings of the
ACM SIGPLAN '01 Conference on Programming
Language Design and Implementation [1], pages
156{167. SIGPLAN Notices, 36(5), May 2001.

[31] Connected limited device con�guration (cldc) and the
k virtual machine. See online at
http://java.sun.com/products/cldc/ for more
information.

[32] H. Lee and B. Zorn. BIT: A tool for instrumenting
Java bytecodes. In Proceedings of the 1997 USENIX
Symposium on Internet Technologies and Systems
(USITS97), pages 73{82, Monterey, CA, Dec. 1997.
USENIX Association.

[33] S. Lucco. Split-stream dictionary program
compression. In Proceedings of the ACM SIGPLAN'00
Conference on Programming Language Design and
Implementation (PLDI), pages 27{34, Vancouver,
British Columbia, 18{21 June 2000. SIGPLAN Notices
35(5), May 2000.

[34] H. M�ossenb�ock and N. Wirth. The programming
language Oberon-2. Structured Programming,
12(4):179{195, Apr. 1991.

[35] G. C. Necula. Proof-carrying code. In Proceedings of
the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages
106{119, Paris, France, Jan. 1997.

[36] G. C. Necula. Compiling with Proofs. PhD thesis,
School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, Sept. 1998.

[37] G. C. Necula. A scalable architecture for
proof-carrying code. In Fifth International Symposium
on Functional and Logic Programming, Waseda
University, Tokyo, Japan, 7{9 Mar. 2001.

[38] G. C. Necula and P. Lee. Safe kernel extensions
without run-time checking. In Proceedings of the
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 229{243, Seattle,
WA, Oct. 1996.

[39] G. Orwell. Nineteen Eighty-Four. Martin Secker &
Warburg, London, 1949.

[40] Pkware inc. http://www.pkware.com/. PKZip format
discription: ftp://ftp.pkware.com/appnote.zip.

[41] P. Pominville, F. Qian, R. Vallee-Rai, L. Hendren, and
C. Verbrugge. A Framework for Optimizing Java
Using Attributes. In Sable Technical Report No.
2000-2, 2000.

[42] W. Pugh. Compressing Java class �les. In Proceedings
of the ACM SIGPLAN'99 Conference on
Programming Language Design and Implementation
(PLDI), pages 247{258, Atlanta, Georgia, 1{4 May
1999. SIGPLAN Notices 34(5), May 1999.

[43] F. Reig. Annotations for portable intermediate
languages. In N. Benton and A. Kennedy, editors,
Electronic Notes in Theoretical Computer Science,
volume 59. Elsevier Science Publishers, 2001.

[44] C. H. Stork and V. Haldar. Compressed abstract
syntax trees for mobile code. In Workshop on
Intermediate Representation Engineering (IRE 2001),
Orlando, Florida, July 2001.

[45] C. H. Stork, V. Haldar, and M. Franz. Generic
adaptive syntax-directed compression for mobile code.
Technical Report 00-42, Department of Information
and Computer Science, University of California,
Irvine, Nov. 2000. revised April 2001.

[46] J. Tarhio. Context coding of parse trees. In
Proceedings of the Data Compression Conference, page
442, 1995.

[47] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for java programs. In ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), Nov. 1999.

[48] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic
coding for data compression. Communications of the
ACM, 30(6):520{540, June 1987.

[49] L. Wittgenstein. Tractatus Logico-Philosophicus. 1921.



Source ByteCode Compressed AST
Program Text Gzip Bzip2 Jar Pack Gzip Bzip ACAST CAST
euler 31689 5251 5015 10250 4108 9978 10460 6094 6034
moldyn 10732 2920 2910 6533 2346 6305 6804 2594 2563
montecarlo 37210 6465 5992 20496 5340 19191 19718 5617 5441
raytracer 15690 4141 3922 12038 3079 11008 11493 3135 3027
search 11011 3247 3234 7146 2833 6797 7296 3004 2967
section3 216707 27786 23997 62243 15561 57436 58008 19237 18798

Figure 1: CAST compared to compressed source and bytecode formats. For each benchmark, we show the size
in bytes. The source columns show the sizes of the source �les without compression, and when compressed
with gzip or bzip2. The bytecode columns show the sizes when compressed using jar, pack, gzip, and bzip
compression. The �nal two column shows the sizes of the programs when we use our encoding, both including
annotations communicating the results of escape analysis (ACAST) as well as without (CAST). The section3
benchmark is the combination of all of the preceding benchmarks.


