Response Time SLAs for Cloud-hosted Web Applications

Hiranya Jayathilaka
Prof. Chandra Krintz
Prof. Rich Wolski
Computer Science Dept., UC Santa Barbara

SOCC 2015
Web APIs

Promotes service reuse

Internet

Service Web API

Client Application

Leverages IT resources of the service provider
Growth in Web APIs Since 2005

Number of API Today: ~14,000
Source: http://www.programmableweb.com/api-research
Web APIs are Now IT Resources

APIs do not provide strong guarantees

API
Web Application

API
Web Application

API
Web Application

Client Application

APIs impact user experience

SLA
Application SLAs and “The Cloud”

• Modern cloud platforms only provide some uptime SLAs for individual APIs

<table>
<thead>
<tr>
<th>Covered Service</th>
<th>Monthly Uptime Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google Prediction API, Google BigQuery Service, and the standard storage class of Google Cloud Storage</td>
<td>>= 99.9%</td>
</tr>
<tr>
<td>Durable Reduced Availability Storage class of Google Cloud Storage</td>
<td>>= 99.0%</td>
</tr>
<tr>
<td>Cloud Storage Nearline class of Google Cloud Storage</td>
<td>>= 99.0%</td>
</tr>
</tbody>
</table>

• Cloud platforms do not provide SLAs on deployed user applications and APIs.
Performance SLAs in the Cloud

• **Question:** Is it possible to determine, automatically, performance SLAs for cloud-hosted applications and APIs?

• **Our solution:** Cerebro
 – Predicts the response time of future web-API invocations from historical measurements
 – Fully automatic
 – For PaaS clouds
PaaS Clouds for Web Services

Scalable, high available and cost effective

Application code must adhere to the provided cloud SDK

Client Application (Web, Mobile or Desktop)

(a)

Web Application

(b)

Web Application

Cloud SDK (datastore, memcache, users, taskqueue...)

Restricted I/O and threading capabilities
PaaS Client Application Survey

PaaS Client Applications...

- Don’t have many branches
 - 99% of the methods have < 36 paths
- Don’t have many loops
 - 88% of the methods have no loops
- Spend most of their time executing cloud SDK calls (> 94%)

So...

- PaaS applications are highly amenable to static analysis
- Cloud SDK calls essentially define client-perceived application performance
Cerebro Architecture

PaaS Cloud

Cloud SDK Monitor

Static Analyzer

SLA Predictor
(Time series aggregation & QBETS)

Fetch cloud monitoring data

Web API code

Cloud SDK invocation sequences
QBETS: Queue Bounds Estimation from Time Series

• Analyzes the first n entries in a time series
• Predicts an upper bound for the $(n+1)^{th}$ entry
 – $QBETS([x_1, x_2, ... x_n], p) = Q$ where $p \in (0, 1)$
 – $P(x_{n+1} \leq Q) \geq p$
• Cerebro uses QBETS to predict response time SLAs of the form:
 – Operation O responds under T milliseconds $(100p)$ % of the time
Evaluation: Prediction Correctness

Percentage of measurements under predicted SLA (%) for Google App Engine and AppScale.
Evaluation: Prediction Tightness

![Bar Chart](chart.png)

- Average difference between predicted and actual values (ms)
- Comparison between Google App Engine and AppScale
Conclusions and Future Work

• Cerebro predictions are correct and moderately tight
 – Necessary conditions for use in an SLA
• SLA durability period analysis
 – GAE: 26.8 hours
 – AppScale: 33.7 hours
• SLA-related policy enforcement at deployment time with EAGER
Thank You! Questions?

• Hiranya Jayathilaka (hiranya@cs.ucsb.edu)
• The UCSB Lab for Research on Adaptive Computing Environments (RACELab)
Non-commercial entities are joining the API party too...

- White House API Program: https://www.whitehouse.gov/digitalgov/apis
- IEEE APIs: http://ieeexplore.ieee.org/gateway/
- UC Berkeley APIs: https://api-central.berkeley.edu/
Prototype and Experiments

- SDK monitor: App Engine Java app
- Tests conducted on Google App Engine public cloud, and AppScale private cloud (running on a 4-node Eucalyptus cluster)
- Network delay between client and Google is included but not modeled or predicted explicitly