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Java bytecode verification forms the basis for Java-based Internet security and needs a rigorous
description. One important aspect of bytecode verification is to check if a Java Virtual Machine
(JVM) program is statically well-typed. So far, several formal specifications have been proposed
to define what the static well-typedness means. This paper takes a step further and presents a
chaotic fixpoint iteration, which represents a family of fixpoint computation strategies to compute
a least type for each JVM program within a finite number of iteration steps. Since a transfer
function in the iteration is not monotone, we choose to follow the example of a nonstandard
fixpoint theorem, which requires that all transfer functions are increasing, and monotone in case
the bigger element is already a fixpoint. The resulting least type is the artificial top element if
and only if the JVM program is not statically well-typed. The iteration is standard and close to
Sun’s informal specification and most commercial bytecode verifiers.
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1. INTRODUCTION

The Java Virtual Machine (JVM) is a stack-based abstract computing machine.
Java methods are usually compiled into JVM methods, which consist of JVM in-
structions. During execution, an (operand) stack and a set of registers called local
variables are created on each method invocation and destroyed when the method
execution completes.

In this paper, stack entries and local variables are uniformly called memory loca-
tions. They hold data that are either object references or values of primitive types.
Object references point to objects stored in the heap. We consider only object
references but no objects themselves, nor the heap in this paper.

Since a JVM method may be dynamically loaded from the network, there is no
guarantee that it contains no bugs or has no hostile intentions to break the host
system. Sun’s JVM Specification [Lindholm and Yellin 1996] (SJVMS) requires,
that prior to execution, bytecode verification must be performed to prove, among
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other things, that each newly loaded JVM method is (statically) well-typed. In-
formally, if one can statically assign types to all memory locations at all program
points1 in a JVM method such that instructions only use and store data from and
into memory locations with correct assigned types, then the method is well-typed
and the assignment of types is a legal assignment for the method.

SJVMS informally describes the well-typedness of JVM programs. Since it is an
important aspect of Java-based Internet security, a number of formal specifications
have been proposed to define the well-typedness (e.g., Freund and Mitchell [1998],
Goldberg [1998], Hagiya and Tozawa [1998], O’Callahan [1999b], [Pusch 1999],
Qian [1998], and Stata and Abadi [1998]).

This paper takes a step further and presents a standard chaotic (fixpoint) iter-
ation (e.g., see Cousot and Cousot [1979]), which represents a family of standard
fixpoint computation strategies (e.g., see Kildall [1973] and Muchnick [1997]) to
compute a least type for each JVM program within a finite number of iteration
steps. Since the iteration is close to SJVMS and most commercial bytecode ver-
ifiers, it might be used to derive reference implementation. In addition, it might
serve as a part in a comprehensive and relatively realistic formal model for Java-
based Internet. Finally, it definitely contributes to the understanding of the JVM,
in particular, the JVM subroutines.

The transfer functions in our chaotic iteration are defined based on a set of typing
rules derived from those in the formal specification by Qian [1998]. One advantage
is that the proofs of properties (with respect to the formal specification) become
simpler than otherwise.

Unfortunately, we cannot directly apply any of the standard fixpoint theorems
in the proofs, since not all transfer functions of the iteration are monotone (see
Section 4.1), as required by these theorems (cf. Cousot and Cousot [1979] and
Lassez et al. [1982] for a survey). The nonmonotonicity property stems from the
requirements on instructions for JVM subroutines. To avoid the problem, we choose
to follow the example of a nonstandard fixpoint theorem, which requires that all
transfer functions are increasing, and monotone in case the bigger element is a
fixpoint. The proof that all transfer functions satisfy the restricted monotonicity
condition is not trivial, since as we will see later, some transfer functions do not
always compute the sharpest type information from a local perspective.

Our chaotic iteration always yields a least type for each JVM program within a
finite number of iteration steps. The least type is the artificial top element if and
only if the JVM program is not statically well-typed with respect to the typing
rules, upon which the transfer functions are defined.

In this paper we make a number of simplifying assumptions to JVM programs
and bytecode verification. We believe that one can always discard the assumptions
and extend the formalism to full bytecode verification for the entire JVM without
affecting the main results of this paper.

The paper is organized as follows. Section 2 first recalls chaotic iteration and
other related concepts, as well as a corresponding standard fixpoint theorem. Then
it proves a nonstandard fixpoint theorem. Section 3 introduces JVM instructions

1Note that different types can be assigned to the same memory location at different program
points.
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and informally discusses assignments of types to them. Section 4 illustrates a
nonmonotone transfer function, and informally explains why the transfer function
is monotone in case where the bigger element is a fixpoint. Section 5 formally
introduces some notations, in particular, defines the types for memory locations.
The typing rules of the formal specification are presented in Section 6. Our chaotic
iteration is described in Section 7. The formal properties are proved in Section 9.
Section 10 discusses related work. Section 11 concludes the paper.

2. CHAOTIC ITERATION AND FIXPOINT THEOREMS

A partially ordered set (poset) 〈D,v〉 consists of a set D and a partial order v on
it. We use d @ d′ to denote d v d′ and d 6= d′. A sequence d1, d2, · · · of elements in
D is called increasing or simply a chain if di v di+1 for all i = 1, 2, · · ·. It is called
strictly increasing if di @ di+1 for all i = 1, 2, · · ·. The poset is of finite height if it
contains no infinite, strictly increasing chain.

A function f : D → D is called monotone if for all d, d′ ∈ D, d v d′ implies that
f(d) v f(d′). Two functions f, g : D → D are said to commute if f(g(d)) = g(f(d))
for all d ∈ D. An element d ∈ D is called a fixpoint of a function f : D → D if
f(d) = d. A fixpoint d ∈ D is called the least fixpoint if d v d′ for all fixpoints
d′ ∈ D.

Consider a finite2 set F of functions of the form f : D → D. An element d ∈ D
is called a (common) fixpoint of F if it is a fixpoint of every function in the set.

Let 〈D,v〉 be a poset with a bottom element ⊥ (i.e., ⊥ v d for all d ∈ D).
Let F be a finite set of monotone functions. A chaotic iteration produces infinite
sequences of the following form

d0, d1, d2, · · ·

where d0 = ⊥ and di = gi(di−1) with gi ∈ F for i = 1, 2, · · ·. The functions in F
are called the transfer functions of the chaotic iteration.

The above chaotic iteration is called fair if whenever f(di) 6= di for some finite
i ≥ 0 and some function f ∈ F , di 6= di+k for some finite k ≥ 1. Intuitively, if
progress is possible, then a fair chaotic iteration never applies the same function
infinitely many times before making progress.

A special case of a standard fixpoint theorem by Cousot and Cousot [1979] is
stated as follows.

Theorem 2.1. Let 〈D,v〉 be a poset of finite height and with a bottom ⊥. Let F
be a finite set of monotone functions that pairwise commute. Then the least fixpoint
of F exists in D. In particular, a fair chaotic iteration with the transfer functions
in F can always produce the least fixpoint within a finite number of iteration steps.

Proof. First, the iteration produces only chains, since the bottom ⊥ is the least
element, and since the functions in F are monotone and pairwise commute.

Second, each produced chain contains a fixpoint dh of F for a finite number h,
since the iteration is fair and since the poset is of finite height.

Finally, the dh found as above is the least fixpoint, since the bottom ⊥ is the
least element and that all functions in F are monotone.

2The discussion here applies also for a countable set F .
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Unfortunately, as we will see later, the above fixpoint theorem is too restrictive
to be applied here, since some transfer functions which arise here are not monotone.
Thus we introduce a nonstandard fixpoint theorem.

A function f : D → D is called increasing if d v f(d) for all d ∈ D. Monotonicity
does not imply increasingness. Consider a set consisting of two elements a, b such
that a v b. A function f satisfying f(a) = f(b) = a is monotone but not increasing.
The converse does not hold either. Consider another set with three elements a, b, c
such that a v b v c. A function f satisfying f(a) = c, f(b) = b, and f(c) = c is
increasing but not monotone.

A function f : D → D is called monotone-with-fixpoint if for all d, d′ ∈ D, when
d v d′ and d′ is a fixpoint, then f(d) v d′. A monotone function is obviously
monotone-with-fixpoint, but the converse does not necessarily hold. Consider a
set with three elements a, b, c and a function f such that a v b v c, f(a) = b,
f(b) = b, and f(c) = a. The element b is the only fixpoint of f . The function f is
monotone-with-fixpoint but not monotone.

By requiring that transfer functions be increasing and monotone-with-fixpoint
rather than pairwise commuting and monotone, we obtain a nonstandard fixpoint
theorem, whose proof is even more direct than that of Theorem 2.1.

Theorem 2.2. Let 〈D,v〉 be a poset of finite height and with a bottom ⊥. Let F
be a finite set of functions that are increasing and monotone-with-fixpoint. Then the
least fixpoint of F always exists in the poset. In particular, a fair chaotic iteration
with the transfer functions in F can always reach the least fixpoint within a finite
number of iteration steps.

Proof. First, by increasingness, the iteration produces only chains.
Second, using the same proof as for Theorem 2.1, each produced chain reaches a

fixpoint dh of F for a finite number h.
Finally, since ⊥ is the least element, by monotonicity-with-fixpoint, the dh found

as above is the least fixpoint.

Our proof of the concrete chaotic iteration in this paper will follow the example
of the proof of Theorem 2.2. For convenience, we will perform the proof directly,
instead of applying Theorem 2.2. Note that in Theorem 2.2 it actually suffices to
require that elements in chains produced by chaotic iteration starting with ⊥ be
increasing and monotone-with-fixpoint. Thus we will require monotonicity-with-
fixpoint on these elements only.

3. BYTECODE

We consider only classes but no interfaces. Furthermore, we consider only one
primitive type int, among many. We will use i to denote type int.

We consider only methods that return no results (i.e., whose return type is void).
A method body is a sequence of instructions. The position of an instruction is called
an address.

The execution of a method always starts with a newly created (operand) stack
and n newly created local variables for a number n specified in the method. Initially,
the stack is empty, and some local variables contain the this object and all actual
arguments.

We only consider the following instructions in method bodies.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 4, July 2000.
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Method void m(i) // Signature, where the argument of the method is of type i.
.limit locals 4 // The method has 4 local variables. Store this object into

// local variable 1 and the actual argument into local variable 2.
// Create an empty stack.

0 jsr 5 // Push address 1 onto the stack and jump to address 5.
1 aload 1 // Copy the object in local variable 1 onto the stack
2 astore 2 // Move the top object from the stack into local variable 2
3 jsr 5 // Push address 4 onto the stack and jump to address 5.
4 return // Return.
5 astore 3 // Move the return address from the stack into local variable 3.
6 jsr 7 // Push address 7 onto the stack and jump to address 7.
7 astore 4 // Move the return address from the stack into local variable 4.

8 ret 3 // Return to the address stored in local variable 3.

Fig. 1. A JVM program.

—aload x : pushes the object or address in local variable x onto the stack.

—iload x : pushes the value of type i in local variable x onto the stack.

—astore x : pops the object or address at the top of the stack from the stack and
stores it into local variable x .

—istore x : pops the value of type i at the top of the stack from the stack and
stores it into local variable x .

—ifnull p: jumps to address p if the top stack element is null.

—return: terminates the current method.

—jsr p: pushes the next address onto the stack and jumps to address p.

—ret x : jumps to an address stored in local variable x .

jsr and ret instructions can be used together to realize subroutines, which typ-
ically implement finally clauses in Java programs. Concretely, one can use a
jsr p instruction to push the next address as the return address onto the stack
and to jump to subroutine p. In subroutine p, one can use an astore x instruction
to store the return address from the stack into a local variable x . Finally, one can
use a ret x instruction to return from subroutine p to the return address stored in
local variable x . In general, a subroutine need not have a ret instruction, and a
ret instruction may return to any indirect caller in the subroutine call stack.

We allow multiple ret instructions for each subroutine, whereas SJVMS requires
that each subroutine have at most one ret instruction.

Figure 1 shows a JVM method and describes its meaning. Note that the instruc-
tion jsr 5 at addresses 0 and 3 calls subroutine 5, and the instruction astore 3
at address 5 stores the return address (1 or 4) into local variable 3. Subroutine 5
contains the instruction jsr 7 at address 6, which calls subroutine 7. Subroutine
7 has the instruction ret 3 at address 8, which completes both subroutines 7 and
5, and returns to the return address (i.e., 1 or 4) as stored in local variable 3.

3.1 Types for Memory Locations

Figure 2 shows a legal assignment of memory types to memory locations in the
method in Figure 1. For the moment we will not consider how to compute such an
assignment. In general, a method can have zero or more legal assignments.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 4, July 2000.
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Code VT ST SR Succ

Method void m(i)

.limit locals 4

0 jsr 5 [c,i,u,u] [] [] 5
1 aload 1 [c,i,u,u] [] [] 2
2 astore 2 [c,i,u,u] [c] [] 3
3 jsr 5 [c,c,u,u] [] [] 5
4 return [c,c,u,u] [] [] return
5 astore 3 [c,u,u,u] [〈5〉] [(5, {})] 6
6 jsr 7 [c,u,〈5〉,u] [] [(5, {3})] 7
7 astore 4 [c,u,〈5〉,u] [〈7〉] [(5, {3}), (7, {})] 8

8 ret 3 [c,u,〈5〉,〈7〉] [] [(5, {3}), (7, {4})] 1,4

Fig. 2. Types for the method in Figure 1.

In the figure, we write types for local variables under column VT and types for
stack entries under column ST . Local variables are numbered with 1, 2, 3, and 4
from left to right. Intuitively, the assigned types at an instruction indicate the types
of data the memory locations may hold prior to the execution of that instruction.

The assignment also contains extensions of subroutine call stacks under column
SR. We will discuss them later in this section.

Column Succ is not part of the assignment. It contains static successors of each
address. It is helpful in the illustration, since the assigned types at an address are
often related to those at static successors.

A type for a memory location is either a class (name), or the primitive type i,
or a term of the form 〈p〉, where p is an address, or a special symbol u.

Type u is a type of all possible data. Bytecode verification treats each memory
location with type u as unusable, since no single instruction can deal with all possible
data in such a memory location in a type-correct way.3

Within a given method, a type of the form 〈p〉 is a type of all addresses a
subroutine starting with the address p may return to. We consider return address
types because memory locations may hold return addresses. Two return address
types are distinct and represent disjoint sets of return addresses if and only if the
associated subroutine addresses are distinct.

We assume that the method in Figure 2 is declared in a class with name c. The
types are c, i, 〈5〉, 〈7〉, and u. In particular, type 〈5〉 is the type of the values 1
and 4, i.e., the return addresses that subroutine 5 may return to, and type 〈7〉 is
the type of the value 7, i.e., the return address that subroutine 7 may return to.

We define a partial order v on all types for memory locations by that t v t ′ if
and only if at least one of the following holds:

(1) t = t ′.
(2) t ′ = u.
(3) Both t and t ′ are classes, and t is a (direct or indirect) subclass of t ′.

For the types given for the method above we have that c v u, i v u, and 〈p〉 v u
for p = 5 and 7. These types build a semilattice with respect to v.

3In the full JVM, some stack manipulation instructions like pop can handle memory locations
with type u. But we do not consider them in this paper.
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To check that the assigned types do indicate the types of data the memory lo-
cations may hold prior to the execution of an instruction, we see that for example,
local variables 1 and 2 at address 0, which are assigned with types c and i, re-
spectively, will hold the this object and the actual argument, respectively, at run
time. Local variables 3 and 4 at address 0, which are assigned with type u, will
contain undefined data. The local variables at address 5 are assigned with types
bigger than or equal to those both at addresses 0 and 3; the stack at address 5 is
assigned with type [〈5〉]. This coincides with the execution of the instruction jsr 5
at addresses 0 and 3, which pushes their return addresses onto the stack and jumps
to address 5.

The process of assigning types to memory locations for the instruction ret 3 at
address 8 is complex due to special requirements for a ret instruction. The first
requirement is that the static successors of the instruction should depend on the
type assigned to the given local variable. For the instruction ret 3 at address 8,
since the type for local variable 3 is 〈5〉, the successors are all return addresses for
subroutine 5, i.e., addresses 1 and 4.

The second requirement is that none of the return addresses for a subroutine
and all its inner subroutines should be usable outside the subroutine. To achieve
this, we assign type u to the memory locations containing such return addresses.
In the above example, types 〈5〉 and 〈7〉 for local variables 3 and 4 at address 8 are
replaced by type u at addresses 1 and 4.

The third requirement is that if a local variable is not modified in a subroutine,
then its content at each calling site of the subroutine should remain usable after
the call completes. To ensure this, we do the following things:

—If a local variable is not modified in a subroutine, then its type at each return
address should be bigger than or equal to that at the corresponding calling site,
independent of that at any ret instruction of the subroutine.

—Otherwise, its type at each return address should be bigger than or equal to that
at each ret instruction of the subroutine, independent of that at the correspond-
ing calling site.

In the example, local variable 2 is not modified in subroutine 5. Thus the type of
local variable 2 at the return address 1 is chosen to be type i at the calling site 0,
and the type at the return address 4 is chosen to be type c at the calling site 3.

These requirements imply that we need to record called subroutines and modified
local variables. To do this, we introduce a concept of subroutine records. In Figure 2,
subroutine records are given under column SR. A subroutine record is a list of pairs
where the first elements in these pairs form a subroutine call stack, and the second
element in each pair is a set of local variables that are directly modified in the
corresponding subroutine. Using the subroutine record at a ret instruction, we
can compute the set of all local variables modified (directly or indirectly) in a
subroutine.

In the above example, the subroutine record [(5, {3}), (7, {4})] at address 8 records
that subroutines 5 and 7 are called, and that local variable 3 is directly modified
in subroutine 5, and local variable 4 in subroutine 7. The set of all local variables
modified in subroutine 5 is the union {3}∪{4}. In other words, we know that local
variables 1 and 2 are not modified in subroutine 5.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 4, July 2000.
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Method void n(i) // The argument of the method is of type i.
.limit locals 3 // The method has 3 local variables. Store this object into

// local variable 1 and the actual argument into local variable 2.
// Create an empty stack.

0 aload 1 // Copy the object in local variable 1 onto the stack.
1 ifnull 4 // If the top stack element is null then jump to address 4.
2 aload 1 // Copy the object in local variable 1 onto the stack again.
3 astore 2 // Move the top object from the stack into local variable 2.
4 jsr 6 // Push address 5 onto the stack and jump to address 6.
5 return // Return.
6 astore 3 // Move the top object from the stack into local variable 3.
7 aload 1 // Copy the object in local variable 1 onto the stack.

8 ifnull 11 // If the top stack element is null then jump to 11.
9 iload 2 // Copy the integer in local variable 2 onto the stack.
10 istore 2 // Move the top integer from the stack into local variable 2.
11 ret 3 // Return to the address stored in local variable 3.

Fig. 3. Another example

Note that only those local variables that are modified by an astore or istore
instruction are required to be put into the subroutine record. This is slightly
different from SJVMS, which requires that all variables accessed by an aload,
iload, or ret instruction be put into the subroutine records as well.

In this paper, a subroutine record is designed to be a list, which is close to
the current implementation in JDK 1.2. For a more general treatment, where a
subroutine record is a directed acyclic graph, see Qian [1998].

4. THE PROBLEM AND EXPLANATION OF OUR SOLUTION

In this section, we show why the transfer function for a ret instruction is not
monotone, and briefly explain our solution. We will use the method in Figure 3 for
illustration and assume that the method is declared in class c.

We first informally illustrate how to use dataflow analysis to assign types and
subroutine records for the entire method.

Let us start with the definition of a relation v on tuples of memory location
types and subroutine records for individual addresses, by lifting componentwise the
relation v on the types defined in the previous section and the subset relation on
sets of modified local variables. We introduce an artificial bottom element ⊥ as the
least element into the set of these tuples.

Then we define a relation v on all assignments of memory location types and
subroutine records for the entire method by componentwise lifting the relation v
on the tuples just introduced above. The least assignment is

{p 7→ ⊥ | for each address p in the method}.

Figure 4 shows the first 10 iteration steps of our dataflow analysis on the exam-
ple in Figure 3, each computing a new assignment of memory location types and
subroutine records for the entire method. Column “Step” indicates these analysis
steps at specified addresses. The analysis starts with the least assignment. Since
each analysis step computes a new assignment by updating the previously assigned
types and subroutine records at all successors of the specified address (as given
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φ1

Step Code Succ VT ST SR

1 Method void n(i) 0

.limit locals 3

2 0 aload 1 1 [c, i, u] [] []
3 1 ifnull 4 2,4 [c, i, u] [c] []
9 2 aload 1 3 [c, i, u] [] []
10 3 astore 2 4 [c, i, u] [c] []
4 4 jsr 6 6 [c, i, u] [] []

[c, u, u] [] []
5 return ⊥

5 6 astore 3 7 [c, i, u] [〈6〉] [(6, {})]
6 7 aload 1 8 [c, i, 〈6〉] [] [(6, {3})]
7 8 ifnull 11 9,11 [c, i, 〈6〉] [c] [(6, {3})]
8 9 iload 2 10 [c, i, 〈6〉] [] [(6, {3})]

10 istore 2 11 [c, i, 〈6〉] [i] [(6, {3})]
11 ret 3 5 [c, i, 〈6〉] [] [(6, {3})]

Fig. 4. An assignment for the method in Figure 3

in column “Succ”), it is enough for Figure 4 to show only the updates at these
successors for each analysis step. In fact, the updates are the least upper bounds
of the newly computed types and subroutine records and the previously assigned,
corresponding ones at all successor addresses. For notational simplicity, Figure 4
also omits the bottom element ⊥ in the initial assignment for all addresses except
address 5; the bottom element ⊥ at address 5 is not updated within the first 10
iteration steps.

Let us consider the analysis steps in detail. Step 1 produces an assignment
at address 0 based on the information in the method head and the operational
semantics for the execution, i.e., on the facts that at address 0, local variable 1
holds the this object, local variable 2 the actual parameter, local variable 3 an
undefined value, and both the stack and the subroutine record are empty.

Step 2 at address 0 produces an assignment at the successor address 1 using that
at address 0, since the stack at address 1 holds this object.

The ifnull instruction at address 1 has successor addresses 2 and 4. Thus step
3 updates the assignments at addresses 2 and 4.

As step 4, the chaotic iteration chooses to continue at address 4. Since the
instruction jsr 6 pushes the next address 5 onto the stack and the address 5 is of
type 〈6〉 for subroutine 6, step 4 produces the stack containing a single type 〈6〉 and
the subroutine record containing an initial assignment [(6, {})] at address 6. The
empty set in the subroutine record means that so far no local variables have been
modified in subroutine 6.

Since the instruction astore 3 at address 6 moves the top element of the stack
into local variable 3, step 5 at address 6 produces a subroutine record at address 7
recording that local variable 3 is modified in subroutine 6.

The iteration proceeds in a similar way as above. Note that the instruction
ifnull 11 at address 8 has static successor addresses 9 and 11. Thus step 7
produces an assignment at each successor address.

After step 8, the iteration chooses to continue at address 2 and then at address
3. Since the instruction at address 3 is astore 2, local variable 2 at address 4 must
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 4, July 2000.
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Code φ2

VT ST SR

· · · · · · same as φ1 · · ·
10 istore 2 [c,i, 〈6〉] [i] [(6, {3})]
11 ret 3 [c,i, 〈6〉] [] [(6, {2, 3})]

Fig. 5. Another assignment for the method in Figure 3

φ′1 φ′2
Code VT ST SR VT ST SR

... · · · same as in φ1 · · · · · · same as in φ2 · · ·
4 jsr 6 [c, u, u] [] [] [c, u, u] [] []
5 return [c, u, u] [] [] [c, i, u] [] []

... · · · same as in φ1 · · · · · · same as in φ2 · · ·
11 ret 3 [c, i, 〈6〉] [] [(6, {3})] [c, i, 〈6〉] [] [(6, {2, 3})]

Fig. 6. A nonmonotone transfer function for the method in Figure 3

now hold both an integer and an object, which have no common type except type
u. Thus step 10 assigns type u to local variable 2 at address 4.

4.1 A Nonmonotone Transfer Function

Write φ1 for the final assignment obtained in Figure 4. Now our chaotic itera-
tion may choose to continue at address 10. Since the instruction at address 10
is istore 2, this step causes the addition of local variable 2 in the set of “modi-
fied” local variables and hence produces the assignment at address 11 as shown in
Figure 5, where we write φ2 for the resulting assignment. Clearly φ1 v φ2 holds.

Now we consider two continuations of the iteration at address 11, one from as-
signment φ1, the other from φ2. Figure 6 illustrates the results φ′1 and φ′2. Since
assignment φ1 does not record, that at address 11, local variable 2 is modified in
subroutine 6, the result φ′1 has type u for local variable 2 at address 5, which comes
from that at address 4. Since assignment φ2 records that at address 11, local vari-
able 2 is modified in subroutine 6, the result φ′2 has type i for local variable 2 at
address 5, which comes from that at address 11.

Since φ1 v φ2 and φ′1 6v φ′2, the transfer function for a ret instruction is non-
monotone!

It is clear that the nonmonotonicity property stems from the fact that addition of
a new local variable in the set of modified local variables may cause re-computation
of a type for this local variable. The problem lies in the fact that the type obtained
in the re-computation comes from a different place than the previous type for this
local variable.

4.2 An Intuitive Explanation of Our Solution

The problem with nonmonotonicity is not an unsolved problem. One option is to
design a new algorithm where nonmonotonicity disappears. Another is to prove
that the given algorithm as a whole still works in spite of nonmonotonicity.

Following the first approach, one might design an algorithm with two phases.
The first phase would compute modified local variables only. The second would
assign types based on the sets of modified local variables. Both phases need to
examine almost the whole program because in order to compute a complete set of
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Code VT(2) in φ3 VT (2) in φ′3 VT (2) in φ′

...

4 jsr 6 t1 t ′1
5 return t3 lub(t1, t2) t ′3

...

11 ret 3 t2 t ′2

Fig. 7. An intuitive explanation of our solution

all modified local variables, one needs to know almost all static execution paths.
Thus one disadvantage of the approach would be that the resulting algorithm may
be inefficient. Another disadvantage would be that it would differ significantly from
most commercial bytecode verifiers and thus not directly provide hints on their
qualities. Freund and Mitchell’s recent work [Freund and Mitchell 1999b] follows
this direction. See Section 10 for more discussion.

This paper follows the second approach. It has the disadvantage that the proofs
are nonstandard. But it does have the advantage that the chaotic iteration is
simple, natural, and close to SJVMS and most commercial bytecode verifiers.

Now we informally explain our proof, following the example of the proof of The-
orem 2.2. The proof of increasingness is easy. The nontrivial task is to prove
monotonicity-with-fixpoint. The complication lies in the treatment of the jsr and
ret instructions.

Let us use the method in Figure 3 again and consider the types for local variable 2
at addresses 4, 5, and 11 as illustrated in Figure 7. Assume that the assignment φ3

does not record local variable 2 as a modified local variable at address 11. Assume
also that the iteration produces an assignment φ′3 from φ3 in a similar way as it
produces φ′2 in Figure 6 from φ1 in Figure 4, i.e., first adds local variable 2 as a
modified local variable and then computes a new type lub(t1, t2) for local variable
2 at address 5. Finally, assume that the assignment φ′ is a legal assignment of the
method and satisfies φ3 v φ′. Next, we explain why φ′3 v φ′.

Note that although computing the least upper bound lub(t1, t2) is standard in a
dataflow analysis, it does not compute the sharpest type information here, since the
type t2, not type lub(t1, t2), is the sharpest type information. Choosing lub(t1, t2)
ensures the increasingness property. But we need to prove that it is not too big,
i.e., lub(t1, t2) v t ′3.

Since φ3 v φ′, t1 v t ′1 and t2 v t ′2. In order to show that lub(t1, t2) v t ′3, we
need only to show that lub(t ′1, t

′
2) v t ′3, i.e., t ′1 v t ′3 and t ′2 v t ′3. The proof of

t ′2 v t ′3 is straightforward, since φ′ surely records that local variable 2 is a modified
local variable at address 11. The proof of t ′1 v t ′3 is due to the existence of a
static execution path from address 4 to address 11 on which local variable 2 is not
modified. Such a path does exist; otherwise, the assignment φ3, which does not
record that local variable 2 is a modified local variable at address 11, would not
have been produced. Actually, looking at Figure 3, we see that local variable 2 is
not modified on the path of addresses 4, 6, 7, 8, and 11.

Since the assignment φ′ is legal for the method in consideration, applying chaotic
iteration will not change it. In particular, if transfer functions are applied at each
program point one by one on the path, the assignment φ′ will not change. This
means that the type of local variable 2 in φ′ along the path either increases or
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remains unchanged. This means that t ′1 v t ′2. Recall t ′2 v t ′3. Hence t ′1 v t ′3.

5. PRELIMINARIES

In the rest of the paper, we use the notation αn to denote a sequence α1, · · · , αn, and
the notation {· · ·} to denote a set. We use {αn 7→ α′n}, where αi 6= αj holds for all

0 ≤ i 6= j ≤ n, to denote a (finite) mapping. We define Dom({αn 7→ α′n})
def
= {αn}.

For a mapping θ and an element α ∈ Dom(θ), we use θ(α) to denote the result of
the mapping for α. Note that the expression θ(α) represents an application of a
predefined “apply” function to two (first-order) terms θ and α. We use θ[α 7→ α′]
to denote the mapping that is equal to θ except it maps α to α′. For a set W ,
we use θ|W to denote the mapping obtained from θ by restricting its domain to

Dom(θ)∩W . A list [αn] is a special mapping {n 7→ αn}. We define size([αn])
def
= n

and [αn] + α
def
= [αn, α].

In formalizing our specification, we chose to use a constraint-solving framework
based on a first-order order-sorted algebra, which consists of a collection of sets,
called sorts, a subset relation among the sorts, functions, and predicates on these
sorts (cf. Smolka et al. [1989]). A function is uniquely determined by a name. A
predicate is uniquely determined by a name and argument sorts.

There is a set of variables for each sort. Variables may occur in terms and logical
formulas and are placeholders for terms. One should not confuse variables in the
algebra with local variables in JVM programs.

Terms are built by functions and variables and are well-sorted. A term of a sort
is automatically a term of each of its supersorts. Each term has a least sort.

Logical formulas are built as in first-order predicate logic, using predicates, terms,
usual logical constants, connectives, and quantifiers, and are well-sorted. A set of
logical formulas represents the conjunction of them; the empty set represents true.

We use FV(r) to denote the set of all free variables in a term or a logical formula
r. A term or a logical formula r is closed if FV(r) = ∅.

A closed logical formula semantically represents a statement of a relation in the
first-order order-sorted algebra, which evaluates either to true or false.

For simplicity, we omit the explicit definitions of sorts as well as those of standard
functions and predicates in this paper.

A substitution is a mapping {Xn 7→ rn}, where each Xi is a variable and each
ri a closed term of the sort of Xi for all i = 1, · · · , n. We use σ to range over all
substitutions. Applying a substitution σ to a term or logical formula r yields a
result σ(r) defined as usual, where all free occurrences of X ∈ Dom(σ) in r are
replaced by σ(X), and bound variables in σ(r) are automatically renamed to avoid
bound variable capture.

A constraint is a logical formula. A constraint r is satisfied under a substitution σ
if and only if σ(r) is closed and σ(r) evaluates to true (in the first-order order-sorted
algebra).

5.1 Methods and Types

For the rest of the paper, we assume an arbitrary but fixed environment consisting
of a fixed and finite set of classes and a fixed subclass relation. We use c to range
over all these classes.
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We consider an arbitrary but fixed method described as (c, tm, n, mth). The no-
tation c stands for the name of the class in which the method is declared, m for the
number of the arguments of the method, and tm for the types of the arguments of
the method, where each ti for 1 ≤ i ≤ m is either a class or primitive type i. The
notation n stands for the number of local variables in the method with m ≤ n. The
notation mth stands for a (possibly empty) list of instructions as the method body.

We use p and s to range over all addresses of the method body mth, i.e., 0 ≤
p, s < size(mth), where s usually stands for (the beginning of) a subroutine. We
use x to range over all indices of local variables, i.e., 1 ≤ x ≤ n.

Types for memory locations are of the following forms:

t ::= c | i | 〈p〉 | u

A partial order v is defined by that t v t ′ if and only if at least one of the
following holds:

(1) t = t ′;
(2) t ′ = u;
(3) t = c, t ′ = c′, and c is a (direct or indirect) subclass of c′.

We define a join operation t based on v in the usual way. All types form a
join-semilattice.

It is worth emphasizing that the join-semilattice is of finite height, since the
subclass relation in a finite set of classes is always of finite height.

We construct five sorts of composite types in the following.

Type lists: vt , st ::= [tn] (n ≥ 0)
Index sets: xs ::= {xn} (n ≥ 0)
Subroutine records: sr ::= [(sn, xsn)] (n ≥ 0, si 6= sj for i 6= j)
Program point types (P-types): ρ ::= (vt , st , sr) | ⊥P | >P
Method types (M-types): φ ::= {p 7→ ρp | 0 ≤ p < size(mth)} | >M

We usually use vt for types of local variables and st for types of entries in a stack.
A P-type is an assignment of types and subroutine records at an individual

program point. An M-type is a complete assignment of types and subroutine records
for an entire method.

We define a partial order v on lists of types and a partial order v on subroutine
records as follows:

—[tn] v [t ′m] if and only if n = m and ti v t ′i for all i = 1, · · · , n.

—[(sn, xsn)] v [(s ′m, xs ′m)] if and only if n = m, si = s ′i, and xsi ⊆ xs ′i for all
i = 1, · · · , n.

We define a partial order v on P-types by that ρ v ρ′ if and only if at least one
of the following conditions holds:

—ρ = ⊥P ;
—ρ′ = >P ;
—ρ = (vt , st , sr) ∧ ρ′ = (vt ′, st ′, sr ′) ∧ vt v vt ′ ∧ st v st ′ ∧ sr v sr ′ for some

vt , st , sr , vt ′, st ′, and sr ′.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 4, July 2000.



Standard Fixpoint Iteration for Java Bytecode Verification · 651

We define a join-operation t on P-types based on the v in the standard way. All
P-types form a join-semilattice of finite height.

We define a partial order v on M-types by that φ v φ′ if and only if at least one
of the following conditions holds:

—φ′ = >M ;
—φ 6= >M ∧ φ′ 6= >M ∧ (∀p.φ(p) v φ′(p))

The element >M is introduced for easy formulation of chaotic iteration. By
definition, we have that

>M 6= {p 7→ >P | for each p}.

We introduce an abbreviation:

⊥M
def
= {p 7→ ⊥P | for each p}

We define a join-operation t on M-types based on the v in the standard way.
All M-types form a join-semilattice of finite height.

For convenience, we extend the partial orders defined above on types and com-
posite types to a partial order v on substitutions as follows: σ1 v σ2 if and only if
Dom(σ1) = Dom(σ2), and for each X ∈ Dom(σ1) the following holds:

σ1(X) v σ2(X) if the sort of X is the sort of types or
one of the five sorts of composite types

σ1(X) = σ2(X) otherwise

6. TYPING RULES

6.1 The Form of Typing Rules

Our typing rules use the variables in the following table.

Variables P,S VT ,ST X C Y SR Φ
For elements p, s vt , st x c c and 〈p〉 sr φ

Note that we have omitted the formal definition of sorts and the subsort relation
for simplicity. Actually we should have defined, for example, that the sort of variable
Y is a supersort of that of variable C , and the sort of variables VT and ST is a
list sort whose element sort is a supersort of the sort of variable Y .

A typing rule R is always of the form

AR
CR
SR

where the hypothesis part (above the line) is a set AR of logical formulas, and the
conclusion part (under the line) consists of two sets CR and SR of logical formulas.
Intuitively, the set AR determines an address of application. The set CR constrains
the P-type at the determined address. The set SR constrains the P-types at each
successor of the determined address.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 4, July 2000.



652 · Zhenyu Qian

In the description of each concrete typing rule R in Section 6.2, the determination
of the sets CR and SR is always implicit: the set CR consists of all those logical
formulas in the conclusion part that are not of the form

· · · w · · · ,

while the set SR consists of all those that are of the form.

Definition 6.1. For each typing rule R, we use the notations

QR
def
= FV(AR)− {Φ}

Q′R
def
= FV(CR ∪ SR)− ({Φ} ∪QR).

Rule R induces a constraint

∀QR.(AR ⇒ ∃Q′R.(CR ∪ SR)).

As we will see later, Φ is a common variable occurring in all typing rules; it
stands for an M-type of the method body mth. Actually Φ is the only free variable
in the constraints induced by typing rules.

Note that although the sets CR and SR play the same role in a constraint induced
by a typing rule, they will play different roles in the definition of transfer functions.

All typing rules together define a set of constraints on variable Φ, i.e., on M-types
of the method body mth.

Definition 6.2. An M-type φ is called legal if and only if φ 6= >M and the
constraint set

{∀QR.(AR ⇒ ∃Q′R.(CR ∪ SR)) | for each typing rule R}

is satisfied under the substitution {Φ 7→ φ}.

A method body may have zero or more legal M-types.

Definition 6.3. A method body is called well-typed if it has a legal M-type.

6.2 Concrete Typing Rules

This section gives concrete typing rules. In order to discuss the instances of the
typing rules, we use the method in Figure 2, which is declared in class c, has a
single argument type i and has 4 local variables.

We assume the following in the description of the rules:

—In each typing rule R except rule (1), the set AR always implicitly contains the
condition Φ(P ) 6= ⊥P .

—In rules (2), (3), (4), (5), and (6), the set CR always implicitly contains the
condition P + 1 < size(mth).

Figure 8 gives the first group of typing rules. Rule (1) induces constraints on
P-types at address 0 based the information contained in the header of the method.
Note that C(1) = ∅. The P-type at address 0 in Figure 2 satisfies rule (1), where
m = 1, t1 = i, and n = 4.

Rule (2) is straightforward except one point: the condition VT (X ) = Y implic-
itly forces the local variable X to have a type of the form c or 〈p〉, since Y can be
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0 < size(mth)

Φ(0) w ([1 7→c0, 2 7→t1, · · · , m + 1 7→tm, m + 2 7→u, · · · , n 7→u], [], [])
(1)

mth(P ) = aload X

Φ(P ) = (VT , ST ,SR)
VT (X ) = Y
Φ(P + 1) w (VT ,ST + Y , SR)

(2)

mth(P ) = iload X

Φ(P ) = (VT ,ST ,SR)
VT (X ) = i

Φ(P + 1) w (VT , ST + i,SR)

(3)

mth(P ) = astore X

Φ(P ) = (VT , ST + Y , SR)
Φ(P + 1) w (VT [X 7→ Y ],ST , ad mvs({X}, SR))

(4)

mth(P ) = istore X

Φ(P ) = (VT , ST + i,SR)
Φ(P + 1) w (VT [X 7→ i],ST , ad mvs({X}, SR))

(5)

mth(P ) = ifnull P ′

Φ(P ) = (VT ,ST + C ,SR)
Φ(P ′) w (VT , ST , SR)
Φ(P + 1) w (VT , ST ,SR)

(6)

Fig. 8. The first group of typing rules.

instantiated only by these forms. As an example, rule (2) is satisfied at address 1
in Figure 2 under {P 7→ 1,X 7→ 1,Y 7→ c,VT 7→ [c, i, u, u],ST 7→ [],SR 7→ []}.
Rule (3) is similar to rule (2).

Rules (4) and (5) use the following auxiliary function to extend the set of modified
local variables of the last subroutine in a nonempty subroutine record; the function
returns an empty subroutine record if the input subroutine record is empty.

ad mvs(xs , [(sn, xsn)]) def=
{

[(sn−1, xsn−1)] + (sn, xsn ∪ xs) if n ≥ 1
[] if n = 0

In Figure 2, rule (4) is satisfied at address 5 under {P 7→ 5,X 7→ 3,VT 7→
[c, u, u, u],ST 7→ [〈5〉],Y 7→ 〈5〉,SR 7→ [(5, {})]}, with ad mvs({3}, [(5, {})]) =
[(5, {3})]. Note that rules (4) and (5) are the only rules that require addition of
modified variables.

Rule (6) is straightforward.
Note that no rule for a return instruction is necessary, since a return instruction

introduces no explicit constraints.
Figure 9 contains the remaining typing rules. Rule (7) is for the jsr instruction.

The auxiliary predicate called is defined by

called(s , [(sn, xsn)]) yields true if and only if s = si for some i with 1 ≤ i ≤ n.

Intuitively, the condition not(called (S ,SR)) ensures that no subroutines are called
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mth(P ) = jsr S

Φ(P ) = (VT ,ST ,SR)
not(called(S , SR))
Φ(S) w (VT ,ST + 〈S〉, SR + (S , {}))

(7)

mth(P ) = ret X

Φ(P ) = (VT , ST , SR)
VT(X ) = 〈S〉

(8)

mth(P ) = ret X
Φ(P ) = (VT ,ST ,SR)
VT (X ) = 〈S〉
mth(P ′) = jsr S
Φ(P ′) = (VT ′, ST ′,SR′)
called(S , SR)

P ′ + 1 < size(mth)
Φ(P ′+1) w (VT ′[j 7→filter(VT (j), sbs in(S ,SR)) | j∈mvs in(S ,SR)],

filter l(ST , sbs in(S ,SR)), ad mvs(mvs in(S ,SR), sr bef (S ,SR))

(9)

Fig. 9. The second group of typing rules.

recursively. The condition

Φ(S ) w (VT ,ST + 〈S 〉,SR + (S , {}))

says that at the beginning of subroutine S , the top element in the stack should
be able to hold a return address. In addition, it adds an entry (S , {}) to the
subroutine record. In Figure 2, rule (7) is satisfied both at address 0 under {P 7→
0,S 7→ 5,SR 7→ [], · · ·}, and at address 3 under {P 7→ 3,S 7→ 5,SR 7→ [], · · ·}.

Rule (8) is for the ret instruction. It ensures that local variable X is of type 〈S 〉
for subroutine S . Note that S(8) = ∅. In Figure 2, the M-type satisfies rule (8) at
address 8 under {P 7→ 8,X 7→ 3,VT 7→ [c, u, 〈5〉, 〈7〉], · · ·} with VT (3) = 〈5〉.

In rule (9), the set A(9) determines an address P , where a ret instruction occurs,
and an address P ′, where a corresponding jsr instruction occurs. The predicate
called(S ,SR) ensures that the applications of auxiliary functions in S(9) are well-
defined.

The set S(9) in rule (9) uses several auxiliary functions. The auxiliary function
ad mvs has been defined before. Other auxiliary functions are defined as follows.
Note that due to the existence of the predicate called(S ,SR) in the setA(9), we need
only to consider the definitions for a subroutine record [(sn, xsn)] and a subroutine
sk with 1 ≤ k ≤ n.

sbs in(sk, [(sn, xsn)])
def
= {sk, · · · , sn}

mvs in(sk, [(sn, xsn)])
def
= xsk ∪ · · · ∪ xsn

sr bef (sk, [(sn, xsn)])
def
= [(sk−1, xsk−1)]

Intuitively, the function sbs in(sk, [(sn, xsn)]) computes the set of all subroutines
that are called within subroutine sk (including sk) according to subroutine call
record [(sn, xsn)]. The function mvs in(sk, [(sn, xsn)]) computes the set of all vari-
ables that are modified in subroutine sk or other inner subroutines according to
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subroutine call record [(sn, xsn)],. The function sr bef (sk, [(sn, xsn)]) computes the
prefix of subroutine record [(sn, xsn)] before subroutine sk (exclusive of sk).

We define two auxiliary (filter) functions for an arbitrary type t , a type list [tm],
and a set ss of subroutines as follows:

filter(t , ss)
def
=
{
u if t = 〈s〉 and s ∈ ss
t otherwise

filter l([tm], ss)
def
= [filter(tm, ss)]

The function filter(t , ss) changes type t into type u if it is a return address type
for a subroutine in the set ss . The function filter l([tm], ss) does the same for each
element ti in a type list [tm]. These two functions are used in rule (9) to ensure
that some return addresses become unusable when a subroutine returns.

In rule (9), the term

VT ′[j 7→ filter(VT (j), sbs in(S ,SR)) | j∈mvs in(S ,SR)]

represents some types of the local variables, where if local variable j is modified in
subroutine S according to subroutine call record SR, then its type is either VT (j)
or type u, depending on whether VT (j) is a return address type for a subroutine
in sbs in(S ,SR) or not; otherwise its type is VT ′(j). The term

filter l(ST , sbs in(S ,SR))

represents a type list obtained from type list ST , where all return address types
for subroutines in sbs in(S ,SR) are changed into type u. The term

ad mvs(mvs in(S ,SR), sr bef (S ,SR))

is a subroutine call record obtained from the prefix of subroutine call record SR
before subroutine S , where all local variables modified within subroutine S are
recorded as modified by the caller subroutine of subroutine S .

In Figure 2, rule (T-9) is satisfied at address 8 under {P 7→ 8,X 7→ 3,S 7→
5, P ′ 7→ 0,SR 7→ [(5, {3}), (7, {4})]} (or {P 7→ 8,X 7→ 3,S 7→ 5, P ′ 7→ 3,SR 7→
[(5, {3}), (7, {4})]}) with

sbs in(S ,SR) = {5, 7}, mvs in(S ,SR) = {3,4} and sr bef (S ,SR) = [].

At the successor P ′ + 1 = 1 (and P ′ + 1 = 4 as well), we have that

filter(VT (j), sbs in(S ,SR)) = u for j = 3 or 4
filter l(ST , sbs in(S ,SR)) = []
ad mvs(mvs in(S ,SR), sr bef (S ,SR)) = []

Note that our specification requires that only those local variables that are mod-
ified by astore or istore be put into subroutine records. The SJVMS requires
that all local variables accessed by astore, istore, aload, iload, or ret be put
into subroutine records.

7. CHAOTIC ITERATION FOR BYTECODE VERIFICATION

In this section, we present a chaotic iteration to compute legal M-types. The
transfer functions of the iteration are derived from the typing rules in the previous
section. For technical reasons, we will design a generic transfer function, which can
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be instantiated into a concrete transfer function for each typing rule. The generic
transfer function takes a substitution σ as argument, which contains not only an
M-type σ(Φ) for variable Φ, but in most cases also other information such as the
address σ(P ) for variable P , indicating where the typing rule should be applied.

Definition 7.1. Consider a typing rule R and a substitution σ.

—Rule R is called applicable under σ if Dom(σ) = FV(AR)∪{Φ} and σ(AR) holds.
—Rule R is called pre-satisfied under σ if Dom(σ) = FV(AR∪CR)∪{Φ}, and both
σ(AR) and σ(CR) hold.

—Rule R is called satisfied under σ if it is pre-satisfied under σ and σ(SR) holds.
—Rule R is said to fail under σ if it is applicable under σ but there are no substi-

tutions σ′ such that σ′|FV(AR)∪{Φ} = σ and σ′(CR) holds.

Intuitively, applicability indicates that a typing rule can be used at a given ad-
dress. Pre-satisfaction indicates, that in addition to applicability, checking the
P-type at the given address is successful. Satisfaction means, that in addition to
pre-satisfaction, checking the P-types at all successor addresses of the given ad-
dress is successful. The concept of failure captures the only reason for the chaotic
iteration to fail.

Informally we distinguish between several situations:

—If a typing rule is not applicable, then it has no impact on the given input.
—The fact that a typing rule is pre-satisfied but not satisfied indicates that the

input M-type is too small at some successor addresses; one should choose a bigger
M-type.

—If a typing rule is applicable but not pre-satisfied, then there are no strictly bigger
M-types that pre-satisfy the typing rule. In this case, the chaotic iteration fails.

The generic transfer function is defined as procedure P(σ,R) in Figure 10. The
three steps of the procedure roughly capture the cases above. In particular, the
second case corresponds to the production of the M-type

σ′(Φ)[σ′(A) 7→ (σ′(Φ(A)) t σ′(B)) | (Φ(A)wB) ∈ SR]

which is the least M-type among those that are bigger than or equal to σ(Φ) and
satisfy all predicates in SR. As we will see below, the caller of the procedure always
secures that σ(Φ) 6= >M . Note that FV(A)∪FV(B) ⊆ Dom(σ′) and thus that the
terms σ′(A) and σ′(B) are always defined, since we always have that

FV(AR ∪ CR) ∪ {Φ} ⊇ FV(SR).

Figure 11 shows our chaotic iteration. It repeatedly calls procedure P(σ,R) to
compute a sequence of intermediate M-types φ0, φ2, · · ·. As we will prove later,
the iteration always terminates, finally yields as result the least legal M-type of
the method body when the method body has any legal M-types, or finally yields
M-type >M when the method body has no legal M-types.

7.1 Examples

As an extreme case, assume that mth is an empty list. Then there are only two
distinct M-types: the bottom element ⊥M = {} and the top element >M . Use the
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 4, July 2000.



Standard Fixpoint Iteration for Java Bytecode Verification · 657

Procedure P(σ,R)

(1) if rule R is not applicable under σ then return σ(Φ)

(2) else if there is a substitution σ′ with σ′|FV(AR)∪{Φ} = σ such that rule R is

pre-satisfied under σ′ then return the M-type

σ′(Φ)[σ′(A) 7→ (σ′(Φ(A)) t σ′(B)) | (Φ(A)wB) ∈ SR]

(3) else return M-type >M .

Fig. 10. Generic transfer function.

Iteration I:

(1) φ0
def
= ⊥M ; k := 0;

(2) while φk 6= >M and there exist a typing rule R and a substitution σ with
Dom(σ) = FV(AR) ∪ {Φ}, σ(Φ) = φk and φk 6= P(σ, R)

do φk+1
def
= P(σ, R); k := k + 1 od;

(3) return φk

Fig. 11. Chaotic iteration.

notations in Definition 6.1. It is straightforward to see that for none of the typing
rules R, the set AR is satisfied under any substitution of variables in QR. Thus all
constraints induced by the typing rules are trivially satisfied. Therefore, ⊥M is a
legal M-type. It is easy to see that iteration I yields ⊥M .

Assume that mth consists of only a return instruction (at address 0). Then it
is easy to see that for none of the typing rules R except rule (1), the set AR is
satisfied under any substitution of variables in QR. Thus the constraints induced
by all typing rules except rule (1) are trivially satisfied. Examining rule (1), it is
not hard to see that two of the legal M-types are

{0 7→ ([1 7→c0, 2 7→t1, · · · , m + 1 7→tm, m + 2 7→u, · · · , n 7→u], [], [])
{0 7→ >P } (note that {0 7→ >P } 6= >M ).

Iteration I actually yields the first one.
Figure 12 describes an execution of iteration I, which finally yields the legal

M-type in Figure 2. Column “Step” contains numbers indicating the order of
calls of transfer functions (i.e., P(σ,R)); column “Rule” contains the typing rules
corresponding to the called transfer functions; and column “Succ” contains the
static successor addresses of each address. The iteration starts with the bottom
M-type ⊥M . (The figure does not show ⊥M explicitly.) Each row in the figure
contains an updated P-type in an intermediate M-type in the produced sequence.
A P-type may be updated several times. For simplicity, we only write those P-types
that have changed from one M-type to the next one.

For example, step 1 uses a transfer function corresponding to rule (1) to compute
(an M-type with) P-type ([c,i,u,u], [], []) at address 0. Step 2 uses a transfer function
corresponding to rule (7), checking the applicability and pre-satisfaction with re-
spect to the previous P-type at address 0 and computes an update ([c,i,u,u], [〈5〉], [])
at address 5, and so on.

Recall that in each typing rule R except rule (1), the set AR always implicitly
contains the constraint Φ(P ) 6= ⊥. So iteration I always starts with an application
of the transfer function corresponding to rule (1), if the method body is non-empty.
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Step Rule Code Succ VT ST SR

1 (1) Method void m(i) 0

.limit locals 4

2 (7) 0 jsr 5 5 [c,i,u,u] [] []
8 (2) 1 aload 1 2 [c,i,u,u] [] []
9 (4) 2 astore 2 3 [c,i,u,u] [c] []
10 (7) 3 jsr 5 5 [c,c,u,u] [] []

4 return [c,c,u,u] [] []
3 (4) 5 astore 3 6 [c,i,u,u] [〈5〉] [(5,{})]
11 (4) 6 [c,u,u,u]
4 (7) 6 jsr 7 7 [c,i,〈5〉,u] [] [(5,{3})]
12 (7) 7 [c,u,〈5〉,u]
5 (4) 7 astore 4 8 [c,i,〈5〉,u] [〈7〉] [(5,{3}), (7,{})]
13 (4) 8 [c,u,〈5〉,u]
6 (8) 8 ret 3 [c,i,〈5〉,〈7〉] [] [(5,{3}), (7,{4})]
7 (9) 1

14 (8) [c,u,〈5〉,〈7〉]
15 (9) 1

16 (9) 4

Fig. 12. Compute the M-type in Figure 2.

It is worth noticing that steps 15 and 16 use a transfer function corresponding
to rule (9) at address 8, where the subroutine record is sr = [(5,{3}), (7,{4})], and
thus mvs in(5, sr) = {3, 4}, sbs in(5, sr) = {5, 7}, and sr bef (5, sr) = []. Step 15
produces [c,i,u,u] for local variables at address 1, where local variables 3 and 4 have
type u from those at address 8 because 3, 4 ∈ mvs in(5, sr) and 5, 7 ∈ sbs in(5, sr),
and local variables 1 and 2 have types c and i from those at address 0 because
1, 2 6∈ mvs in(5, sr). Note that local variable 2 at address 1 does not have type u
from that at address 8. Step 16 produces [c,c,u,u] at address 4 based on the same
principle, where local variable 2 has type c from that at address 3.

8. ITERATION I AND LEGAL M-TYPES

This section focuses on the relationship between iteration I and legal M-types. First
of all, we formally establish that a legal M-type is always a fixpoint of procedure
P .

Lemma 8.1. Consider an arbitrary typing rule R and a substitution σ with
Dom(σ) = FV(AR)∪{Φ} such that σ(Φ) is a legal M-type. Then we have P(σ,R) =
σ(Φ).

Proof. If rule R is not applicable under σ, then by the definition of procedure
P , P(σ,R) = σ(Φ).

Now assume that rule R is applicable under σ. Thus σ(AR) holds. Recall that

QR
def
= FV(AR) − {Φ} and Q′R

def
= FV(CR ∪ SR) − ({Φ} ∪ QR). Since σ(Φ) is a

legal M-type, by definition, the constraint

∀QR.(AR ⇒ ∃Q′R.(CR ∪ SR))

is satisfied under {Φ 7→ σ(Φ)}. This means that there is a substitution σ′ with
Dom(σ′) = QR ∪Q′R ∪ {Φ} such that (σ′)|FV(AR)∪{Φ} = σ and σ′(CR) and σ′(SR)
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hold. Then rule R is pre-satisfied under σ′. By the definition of procedure P ,

P(σ′, R) = σ′(Φ)[σ′(A) 7→ (σ′(Φ(A)) t σ′(B)) | (Φ(A)wB) ∈ SR].

Since σ′(SR) holds, σ′(Φ(A)) w σ′(B), and thus σ′(Φ(A))t σ′(B) = σ′(Φ(A)) hold
for each (Φ(A)wB) ∈ SR. Hence P(σ,R) = σ′(Φ) = σ(Φ).

Now we formally state that iteration I is correct (with respect to the typing
rules).

Theorem 8.2 (Correctness). If iteration I terminates with an M-type φ 6=
>M , then M-type φ is a legal M-type.

Proof. Consider an arbitrary typing rule R. Recall that QR
def
= FV(AR)−{Φ}

and Q′R
def
= FV(CR ∪SR)− ({Φ}∪QR). We need only to prove that the constraint

∀QR.(AR ⇒ ∃Q′R.(CR ∪ SR))

is satisfied under {Φ 7→ φ}.
For doing this, assume that there is a substitution σ such that Dom(σ) =

FV(AR)∪{Φ}, σ(Φ) = φ and such that σ(AR) holds. Thus R is applicable under σ.
Since φ is the result of iteration I, φ = P(σ,R). By the definition of procedure P ,
since φ 6= >M , there is a substitution σ′ such that σ′|FV(AR)∪{Φ} = σ, and rule R
is pre-satisfied under σ′. Thus Dom(σ′) = QR ∪Q′R ∪ {Φ}, σ′(CR) holds and

φ = σ′(Φ)[σ′(A) 7→ (σ′(Φ(A)) t σ′(B)) | (Φ(A)wB) ∈ SR].

Let us choose an arbitrary Φ(A) w B in S. Then φ(σ′(A)) = σ′(Φ(A)) t σ′(B).
Since σ′(Φ) = σ(Φ) = φ, σ′(Φ(A)) = σ′(Φ(A)) t σ′(B). Thus σ′(Φ(A)) w σ′(B).
Since Φ(A) w B is arbitrary in S, σ′(SR) holds. Since rule R and σ have been
arbitrarily chosen, the assertion of the theorem holds.

9. TERMINATION OF ITERATION I AND LEAST M-TYPES

This section mainly focuses on the operational properties of the iteration. Recall
that Theorem 2.2 requires the following conditions:

—The poset is of finite height and has a bottom element.
—All transfer functions are increasing.
—All transfer functions are monotone-with-fixpoint.
—The iteration is fair.

Let the join-semilattice of all M-types be the poset. The first condition trivially
holds. The increasingness and fairness conditions are easy. They will be discussed
in Section 9.1. Monotonicity-with-fixpoint is not that easy to prove. First, some
preparations are made in Sections 9.2 and 9.3. Section 9.4 formally addresses
monotonicity-with-fixpoint. Finally Section 9.5 contains the results on least M-
types.

9.1 Increasingness and Termination

We first prove that procedure P is increasing.
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Lemma 9.1 (Increasingness). For each typing rule and each substitution σ
with Dom(σ) = FV(AR) ∪ {Φ}, σ(Φ) v P(σ,R).

Proof. Let us use the notations in Figure 10. In the case when rule R is not
applicable under σ, P(σ,R) = σ(Φ)

In the case when there is a substitution σ′ with σ′|FV(AR)∪{Φ} = σ such that
rule R is pre-satisfied under σ′, then

P(σ,R) = σ′(Φ)[σ′(A) 7→ (σ′(Φ(A)) t σ′(B)) | (Φ(A)wB) ∈ SR].

Since σ′(Φ(A)) v σ′(Φ(A)) t σ′(B), σ(Φ) = σ′(Φ) v P(σ,R).
In other cases, σ(Φ) @ >M = P(σ,R).

Based on the increasingness property, we prove the termination of the chaotic
iteration.

Theorem 9.2 (Termination). Iteration I is terminating.

Proof. Consider any arbitrary sequence φ0, φ1, · · · of intermediate M-types pro-
duced by iteration I. By Lemma 9.1, since φk 6= φk+1, the sequence is strictly
increasing. Since the semilattice of M-types has finite height, the iteration process
can only have finite number of iteration steps. It is easy to check that all auxiliary
functions and predicates introduced in this paper are terminating. Thus iteration
I is terminating.

9.2 Some Basic Properties

We formalize the observation that if a typing rule is applicable or pre-satisfied under
a substitution, then the whole substitution is actually determined by part of it.

Lemma 9.3. If a typing rule is applicable or pre-satisfied under two substitutions
σ1 and σ2, then the following hold:

—If the rule is rule (1), then σ1 = σ2 if and only if σ1(Φ) = σ2(Φ).
—If the rule is any rule but not rule (1) nor rule (9), then σ1 = σ2 if and only if
σ1(Φ) = σ2(Φ) and σ1(P ) = σ2(P ).

—If the rule is rule (9), then σ1 = σ2 if and only if σ1(Φ) = σ2(Φ), σ1(P ) = σ2(P ),
and σ1(P ′) = σ2(P ′).

—The above properties remain to hold when we replace σ1 = σ2 by σ1 v σ2 and
σ1(Φ) = σ2(Φ) by σ1(Φ) v σ2(Φ).

Proof. Follows directly from the definitions of individual typing rules.

By examining each typing rule R, we observe that if the rule is not rule (9),
then the satisfaction of the set AR is quite independent of the substitution for Φ.
For rule (9), the satisfaction of the set A(9) is dependent of the substitution for Φ,
but also related to the satisfaction of the sets C(7) and C(8) in rules (7) and (8),
respectively. We formally formulate these as the following lemma.

Lemma 9.4. Assume that a typing rule R is applicable under a substitution σ1.
Let σ2 be a substitution such that σ1 v σ2 and σ2(Φ) 6= >M . Then the following
properties hold:

(1) If the rule is not rule (9), then the rule is applicable under σ2.
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(2) If the rule is rule (9), then either
—rule (9) is applicable under σ2, or
—rule (7) or (8) fails under some substitution σ with σ(Φ) = σ2(Φ).

(3) If the rule fails under σ1, then the rule fails under σ2.

Proof. (1) Follows easily from the definition of each individual typing rule.
Note that the property does not need the condition σ1(Φ) v σ2(Φ).

(2) Since σ1 v σ2 and σ2(Φ) 6= >M , we have that Dom(σ2) = FV(A(9)) ∪ {Φ},
σ2(Φ) = φ2, σ2(P ) = σ1(P ), σ2(X ) = σ1(X ), σ2(S ) = σ1(S ), and σ2(P ′) =
σ1(P ′). Since rule (9) is applicable under σ1, σ1(Φ(P )) 6= ⊥P and σ2(Φ(P )) 6=
⊥P .
Assume that rule (9) is not applicable under σ2. Then we need only to consider
the following cases:
—In the case where σ2(Φ(P )) 6= σ2(VT ,ST ,SR), since σ1(Φ(P )) v σ2(Φ(P )),
σ2(Φ(P )) = >P . In this case, rule (8) fails under every substitution σ with
σ(Φ) = φ2 and σ(P ) = σ2(P ).

—In the case where σ2(Φ(P )) = σ2(VT ,ST ,SR) but σ2(VT (X )) 6= σ2(〈S 〉),
since σ1(VT (X )) = σ1(〈S 〉) v σ2(VT (X )), σ2(VT (X )) = u. Thus rule (8)
fails under every substitution σ with σ(Φ) = σ2(Φ) and σ(P ) = σ2(P ).

—If σ2(Φ(P ′)) 6= σ2(VT ′,ST ′,SR′), since σ1(Φ(P ′)) v σ2(Φ(P ′)), σ2(Φ(P ′)) =
>P . In this case, rule (7) fails under every substitution σ with σ(Φ) = σ2(Φ)
and σ(P ′) = σ2(P ′).

—Since called(σ1(S ), σ1(SR)) and σ1(VT (X )) v σ2(VT (X )) hold, we know
that called(σ2(S ), σ2(SR)) must hold.

(3) We only prove the case for rule (8). Other cases are either analogous or trivial.
Since σ1 v σ2 and σ2(Φ) 6= >M , we have that Dom(σ2) = FV(A(8)) ∪
{Φ}, σ2(P ) = σ1(P ), σ2(X ) = σ1(X ), and σ2(S ) = σ1(S ). Since rule (8)
fails under σ1, σ1(Φ(P )) 6= ⊥P , and if there is a substitution σ′1 such that
Dom(σ′1) = Dom(σ1) ∪ {VT ,ST ,SR,S} and (σ′1)|{Φ,P,X} = σ1, then either
σ′1(Φ(P )) 6= σ′1(VT ,ST ,SR) or σ′1(VT (X )) 6= σ′1(〈S 〉). Now assume that there
is a substitution σ′2 such that Dom(σ′2) = Dom(σ2) ∪ {VT ,ST ,SR,S} and
(σ′2)|{Φ,P,X} = σ2. We need to prove that either σ′2(Φ(P )) 6= σ′2(VT ,ST ,SR)
or σ′2(VT (X )) 6= σ′2(〈S 〉).
If σ′1(Φ(P )) 6= σ′1(VT ,ST ,SR), since σ1(Φ(P )) v σ2(Φ(P )), σ′2(Φ(P )) =
>P . Thus σ′2(Φ(P )) 6= σ′2(VT ,ST ,SR). If σ′1(Φ(P )) = σ′1(VT ,ST ,SR) but
σ′1(VT (X )) 6=σ′1(〈S 〉), since σ1(Φ(P ))vσ2(Φ(P )), then σ′2(VT (X )) 6=σ′2(〈S 〉).

Another useful property is that no rules may fail under a substitution containing
a legal M-type.

Lemma 9.5. If φ is a legal M-type, then no rules can ever fail under a substitu-
tion σ with σ(Φ) = φ.

Proof. By Definitions 6.2 and 7.1, it is straightforward to check that if a rule
fails under a substitution σ with σ(Φ) = φ, then the M-type cannot be a legal
M-type.
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9.3 Reachability

We introduce a relation reachφ(p, p′), which means that address p′ is a static succes-
sor of address p with respect to M-type φ. Intuitively, the relation builds a control
graph for dataflow analysis. The relation depends on a given M-type φ, enabling
the control graph to automatically change with the current M-type computed by
dataflow analysis.

Definition 9.6. For an M-type φ with φ 6= >M and two addresses p and p′, we
define that a relation

reachφ(p, p′)

holds if and only if there is a typing rule R that is neither rule (1) nor (8), and a
substitution σ such that

—rule R is applicable under σ,
—σ(Φ) = φ,
—σ(P ) = p for the variable P in rule R, and
—σ(A) = p′ for some (Φ(A)wB) ∈ SR.

Formally, an M-type is necessary in the definition, since the way rule (9) de-
termines a successor depends on an M-type. Actually, rule (9) determines that
σ(P ′ + 1) is a successor of σ(P ) only when the jsr instruction at address σ(P ′)
calls subroutine σ(S ) and the M-type φ records that local variable σ(X ) at address
σ(P ) has type σ(〈S 〉).

Reachability is preserved under the increase of its defining M-type unless rule (7)
or (8) fails under a substitution containing the increased M-type.

Lemma 9.7. If reachφ(p, p′) holds for addresses p and p′ and an M-type φ, then
reachφ′(p, p′) holds for every M-type φ′ with φ v φ′ 6= >M , unless rule (7) or (8)
fails under some substitution σ with σ(Φ) = φ′.

Proof. By Definition 9.6, since reachφ(p, p′), there are a typing rule R and a
substitution σ such that the conditions in Definition 9.6 are satisfied. For typing
rules except rules (1), (8), and (9), it is easy to construct a substitution σ′ such
that σ v σ′, σ′(Φ) = φ′, and such that all conditions in Definition 9.6 are satisfied.
Thus reachφ′(p, p′). For rule (9), following the same arguments as in the proof of
Lemma 9.4-2, we have that either reachφ′(p, p′), unless rule (7) or (8) fails under
some substitution σ with σ(Φ) = φ′.

Now we start to formalize the informal explanation in Section 4.2. First of all, we
state a lemma that identifies a static execution path of the corresponding subroutine
for a given ret instruction.

Lemma 9.8. Assume that iteration I produces an intermediate M-type φk. As-
sume that there is an address p such that

mth(p) = ret x and φk(p) = (vt , , sr) with vt(x ) = 〈s〉 and called(s , sr)

for some x , vt , sr , and sbr. Then there are addresses p1, p2, · · · , pn+1 with n ≥ 0
such that

—mth(p1) = jsr s ,
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—p = pn+1,
—for all i = 1, · · · , n, reachφ(pi, pi+1), and
—for all i = 2, · · · , n+ 1, if φk(pi) = ( , , sr i) for some sr i, then called(s , sr i).

Proof. Since the transfer function corresponding to rule (7) is the only one that
can extend a subroutine record and introduce type 〈s〉 into an intermediate M-type,
and since the transfer function corresponding to rule (9) is the only one that can
remove some pairs from the end of a subroutine record, by vt(x ) = 〈s〉 and by
the definition of iteration I, there are addresses p1, p2, · · · , pn+1 with n ≥ 0 such
that mth(p1) = jsr s , p2 = s , pn+1 = p, and there are φh1 , · · · , φhn ∈ {φk} with
reachφhi (pi, pi+1) for all i = 1, · · · , n. Without loss of generality, we may choose
the addresses p1, p2, · · · , pn+1 such that mth(pi) 6= jsr s for all i = 2, · · · , n+ 1.

Assume that for each i = 2, · · · , n+ 1, φhi(pi) = ( , , sr ′i) for some sr ′i.
Furthermore, the typing rules cannot be rule (9) under a substitution σi such that

σi(S ) = s , or σi(S ) 6= s and a pair (σi(S ), ) occurs in sr ′i before the pair (s , ).
For, in either case, we would have not(called(s , sr ′i+1)), and since mth(pi) 6= jsr s
for all i = 2, · · · , n+ 1, the condition called(s , sr) would be false.

By observing all typing rules that may be possibly used in inducing the relations
reachφhi (pi, pi+1), called(s , sr ′i) holds for all i = 2, · · · , n+1. By Lemma 9.1, φhi v
φk for all i = 2, · · · , n+ 1. Therefore, for all i = 2, · · · , n+ 1, if φk(pi) = ( , , sr i),
then called(s , sr i).

The above lemma actually implies that checking the condition called(S ,SR) in
A(9) is practically redundant in the transfer function corresponding to rule (9).

In Section 4.2, it has been observed that if a local variable is not modified on a
static execution path of a subroutine, then under certain conditions a legal M-type
records that the type of this local variable only increases or remains unchanged
on the path. Now we formally state the observation. The notations vt1(x ) and
vtn+1(x ) in the following lemma correspond to the notations t ′1 and t ′2 in Figure 7.

Lemma 9.9. Let φ be a legal M-type and p1, · · · , pn+1 addresses such that the
following hold for local variables x and x ′ and subroutine s :

reachφ(pi, pi+1) for all i = 1, · · · , n
mth(p1) = jsr s
mth(pn+1) = ret x ′

φ(pi) = (vt i, st i, sr i) for all i = 1, · · · , n+ 1
called(s , sr i) for all i = 2, · · · , n+ 1
vtn+1(x ′) = 〈s〉
x 6∈ mvs in(s , sr)

Then vt1(x ) v vtn+1(x ).

Proof. We use induction on k to prove that vt1(x ) v vtk(x ) for 1 ≤ k ≤ n.
For k = 1,4 the assertion holds trivially. Assume that the assertion holds for

all i with 1 ≤ i ≤ k. Examining the typing rule that induces reachφ(pk, pk+1), we
distinguish between two cases.

4In reality, k = 1 is impossible, since the subroutine needs to have an astore instruction to store
the returning address to local variable x ′. But this point is formally not relevant to the proof.
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—If the rule is not rule (9), since φ is a legal M-type, by observing each possible
typing rule, it is straightforward to see that vtk(x ) v vtk+1(x ). By the induction
assumption, vt1(x ) v vtk+1(x ).

—If the rule is rule (9), then mth(pk) = ret x ′′ for some local variable x ′′. Since
φ is a legal M-type, by rule (8), vtk(x ′′) = 〈s ′〉 for some subroutine s ′. Since
reachφ(pi, pi+1) for all i = 1, · · · , n, mth(p1) = jsr s and called(s , sr i) for all
i = 2, · · · , n + 1, by observing all typing rules, in particular rules (7) and (9),
there is h with 1 ≤ h < k such that mth(ph) = jsr s ′. Note that since φ is a
legal M-type, rule (7) ensures that s ′ 6= s . Again since φ is a legal M-type, by
the definition of rule (9), either vtk(x ) v vtk+1(x ) or vth(x ) v vtk+1(x ). By the
induction assumption, vt1(x ) v vtk+1(x ).

We are now ready to formalize the key point in Section 4.2, where the notations
vtp′(x ) and vtp(x ) in the following lemma correspond to the notations t ′1 and t ′2 in
Figure 7.

Lemma 9.10. Let p and p′ be two addresses, and φk an intermediate M-type
produced by iteration I and φ a legal M-type with φk v φ such that

mth(p) = ret x ′ mth(p′) = jsr s
φk(p) = (vt , , sr) vt(x ′) = 〈s〉 called(s , sr)
φ(p) = (vtp , , ) φ(p′) = (vtp′ , , )

If x 6∈ mvs in(s , sr), then vtp′ (x ) v vtp(x ).

Proof. By Lemma 9.8, there are addresses p1, p2, · · · , pn+1 with n ≥ 0 such
that mth(p1) = jsr s , p2 = s , pn+1 = p, reachφ(pi, pi+1) for all i = 1, · · · , n, and
for all i = 2, · · · , n + 1, if φk(pi) = ( , , sr i) for some sr i then called (s , sr i). Note
that it is possible that p1 6= p′. Since φ is a legal M-type, and since φk v φ and
reachφ(pi, pi+1) for all i = 1, · · · , n, by Lemmas 9.7 and 9.5, reachφ(pi, pi+1) for all
i = 1, · · · , n. By the structure of rule (7), reachφ(p′, p2).

Let p′1
def
= p′ and p′i

def
= pi for i = 2, · · · , n + 1. Since φ is a legal M-type, by

Lemma 9.5, φ(p′i) = (vt ′i, , sr ′i) for all i = 1, · · · , n and some vt ′i and sr ′i. Note
that vt ′1 = vtp′ . The current lemma assumes that φ(p) = (vtp , , ). Thus we let

φ(p′n+1)
def
= (vt ′n+1, , sr ′n+1) for some sr ′n+1 and with vt ′n+1

def
= vtp . Since φk v φ,

φk(pn+1) = ( , , srn+1). Considering the result in the above obtained by applying
Lemma 9.8, we have that called(s , sr i) for all i = 2, · · · , n+ 1. Since again φk v φ,
called(s , sr ′i) for i = 2, · · · , n+ 1. By Lemma 9.9, vtp′(x ) v vtp(x ).

9.4 Monotonicity-with-Fixpoint

We prove that procedure P for each typing rule except rule (9) is monotone.

Lemma 9.11. For all typing rules R except rule (9) and all substitutions σ1 and
σ2 such that Dom(σ1) = Dom(σ2) = FV(AR) ∪ {Φ}, σ1 v σ2 and σ2(Φ) 6= >M ,
we have that P(σ1, R) v P(σ2, R).

Proof. If rule R is not applicable under σ1, then P(σ1, R) = σ1(Φ). By
Lemma 9.1, σ2(Φ) v P(σ2, R). Since σ1 v σ2, P(σ1, R) v P(σ2, R).

Assume that rule R is applicable under σ1. Since rule R is not rule (9), by
Lemma 9.4-1, rule R is applicable under σ2.
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If there are substitutions σ′i for i = 1, 2 such that rule R is pre-satisfied under σ′i
and (σ′i)|FV(AR)∪{Φ} = σi, then

P(σi, R) = σ′i(Φ)[σ′i(A) 7→σ′i(Φ(A)) t σ′i(B) | (Φ(A)wB) ∈ SR]

for i = 1, 2. Examine the typing rules, it is easy to see that σ1 v σ2 implies that
σ1(B) v σ2(B) for each (Φ(A)wB) ∈ SR. Thus P(σ1, R) v P(σ2, R).

If there is such a substitution σ′1 as above, but no such a σ′2, then P(σ1, R) is
defined as above but P(σ2, R) = >M . Thus P(σ1, R) v P(σ2, R).

If there is no such a substitution σ′1 as above, then by Lemma 9.4-3, since σ1 v
σ2, there is no such a substitution σ′2 as above, either. In this case P(σ1, R) =
P(σ2, R) = >M .

We prove that procedure P for rule (9) is monotone-with-fixpoint.

Lemma 9.12. Assume that φ1 is an intermediate M-type produced by iteration
I, and assume that φ2 is a legal M-type with φ1 v φ2 6= >M . Let σ1 and σ2

be substitutions such that Dom(σ1) = Dom(σ2) = FV(A(9)) ∪ {Φ}, σ1 v σ2,
σ1(Φ) = φ1 and σ2(Φ) = φ2. Then P(σ1, (9)) v P(σ2, (9)).

Proof. If rule (9) is not applicable under σ1, the proof is similar to that for
Lemma 9.11.

Assume that rule (9) is applicable under σ1. By Lemma 9.4-2, either rule (9) is
applicable under σ2, or rule (7) or (8) fails under a substitution σ with σ(Φ) = φ2.
Since φ2 is a legal M-type, rule (9) must be applicable under σ2.

Note that FV(A(9)) ⊆ FV(C(9)), and that rule R is pre-satisfied under σ1 if
and only if it is pre-satisfied under σ2. Since φ2 is a legal M-type, rule R must be
pre-satisfied under both σ1 and σ2, where

P(σi, (9)) = σi(Φ)[σi(A) 7→ (σi(Φ(A)) t σi(B)) | (Φ(A)wB) ∈ S(9)]

for i = 1, 2. Since it is known that σ1(B) v σ2(B) for the Φ(A) w B ∈ S(9) implies
that P(σ1, (9)) v P(σ2, (9)), we need only to prove that σ1(B) v σ2(B) for the
Φ(A) w B ∈ S(9).

Let us use the notations in the definition of rule (9) and the following additional
notations for i = 1, 2:

s = σi(S ), p = σi(P ),
vt i = σi(VT ), st i = σi(ST ), sr i = σi(SR), (thus (vt i, st i, sr i) = σi(Φ(P ))
p′ = σi(P ′),
vt ′i = σi(VT ′), st ′i = σi(ST ′), sr ′i = σi(SR′), (thus (vt ′i, st ′i, sr ′i) = σi(Φ(P ′))

Since φ1 v φ2, we have that

vt1 v vt2, st1 v st2, sr1 v sr2,
vt ′1 v vt ′2, st ′1 v st ′2, sr ′1 v sr ′2.

Let us define vi, ki, and mi for i = 1, 2 as follows:

vi
def
= vt ′i[x 7→ filter(vt i(x ), sbs in(s , sr i)) | x ∈ mvs in(s , sr i)]

ki
def
= filter l(st i, sbs in(s , sr i))

mi
def
= ad mvs(mvs in(s , sr i), sr bef (s , sr i))
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Then we have that σi(B) = (vi, ki,mi) for the Φ(A) w B ∈ S(9) and for i = 1, 2.
Now we need only to prove that v1 v v2, k1 v k2, and m1 v m2.

In order to prove that v1 v v2, we prove that v1(x ) v v2(x ) for each x . We
need only to distinguish between three cases for x . Note that since sr1 v sr2,
mvs in(s , sr1) ⊆ mvs in(s , sr2).

—If x 6∈ mvs in(s , sr i) for i = 1, 2, then vi(x ) = vt ′i(x ). By vt ′1 v vt ′2, v1(x ) v
v2(x ).

—If x 6∈ mvs in(s , sr1) but x ∈ mvs in(s , sr2), then

v1(x ) = vt ′1(x ) and
v2(x ) = filter(vt2(x ), sbs in(s , sr2)).

Since x 6∈ mvs in(s , sr1), σ1(Φ) v σ2(Φ), σ1(Φ) is an intermediate M-type pro-
duced by iteration I, rule (9) is applicable under σ1 (thus called(s , sr1)), and
σ2(Φ) is a legal type, by Lemma 9.10, we have that vt ′2(x ) v vt2(x ). By vt ′1 v vt ′2,
vt ′1(x ) v vt ′2(x ). Since vt2(x ) v v2(x ) trivially holds,

v1(x ) = vt ′1(x ) v vt ′2(x ) v vt2(x ) v v2(x ).

—If x ∈ mvs in(s , sr i) for i = 1, 2, then

vi(x ) = filter(vt i(x ), sbs in(s , sr i)).

We distinguish between whether vt2(x ) = 〈s ′′〉 for some s ′′.
—Assume that it is the case. By ⊥ 6= vt1(x ) v vt2(x ), vt1(x ) = vt2(x ). Since

sbs in(s , sr1) = sbs in(s , sr2), v1(x ) = v2(x ).
—Assume that it is not the case. If vt1(x ) = 〈s ′′〉 for some s ′′, then by vt1(x ) v

vt2(x ), vt2(x ) = u. Hence v1(x ) v v2(x ). If vt1(x ) 6= 〈s ′′〉, then v1(x ) =
vt1(x ) v vt2(x ) = v2(x ).

The proof for k1 v k2 is similar to the above case when x ∈ mvs in(s , sr i) for
i = 1, 2.

Since sr1 v sr2 holds, we have that mvs in(s , sr1) ⊆ mvs in(s , sr2) and that
sr bef (s , sr1) v sr bef (s , sr2). Thus m1 v m2 holds.

We now put the above two lemmas together: if there is a legal M-type, then
all intermediate M-types produced by iteration I are smaller than or equal to this
legal M-type.

Lemma 9.13. Assume that there is a legal M-type φ. If iteration I produces a
sequence of intermediate M-types φ0, φ1, · · ·, then φi v φ holds for all i = 0, 1, · · ·.

Proof. Initially, φ0 v φ holds trivially. Assume that φi v φ for 0 ≤ i ≤ k and
that iteration I produces φk+1. By the definition of iteration I, φk+1 = P(σk, R)
for a typing rule R and a substitution σk with Dom(σ) = FV(AR) ∪ {Φ} and
σk(Φ) = φk. By Lemma 8.1, φ = P(σ,R) for the same rule and a substitution σ
with Dom(σ) = FV(AR) ∪ {Φ} and σ(Φ) = φ. If the rule is not rule (9), then
by Lemmas 9.11, φk+1 = P(σk, R) v P(σ,R) = φ. If the rule is rule (9), then by
Lemma 9.12, φk+1 = P(σk, R) v P(σ,R) = φ.
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9.5 Least Legal M-types

Theorem 9.14 (Least legal M-types). If the method body mth is well-typed,
then iteration I always computes the least one among of all its legal M-types.

Proof. Since the method body mth is statically well-typed, it has a legal M-
type. By Theorem 9.2, iteration I is always terminating. By Lemma 9.13, iteration
I must terminate with an M-type φ such that φ v φ′ for each legal M-type of the
method body mth. Clearly, φ 6= >M . By Theorems 8.2, φ is itself an M-type of
mth.

Corollary 9.15. (1) Iteration I yields an M-type that is not >M if and only
if the method body mth is well-typed.

(2) Iteration I yields M-type >M if and only if the method body mth is not well-
typed.

Proof. Follows directly from Theorems 9.2, 8.2, and 9.14.

10. RELATED WORK

10.1 Sun’s JDK 1.2 Implementation

It is interesting to see how Sun’s bytecode verifier in JDK 1.2 treats subroutines.
Essentially Sun’s bytecode verifier implements something quite similar to the sub-
routine records defined here. One main difference is that when subroutine records
are merged, Sun’s bytecode verifier computes the greatest common prefix of the lists
of called subroutines in these subroutine records as that for the resulting subroutine
record. This means that merging subroutine records may cause some subroutine
calls to be removed from some subroutine record, and that after the merging point,
any call to the removed subroutine is allowed. The latter point implies that some
subroutines may be recursively called. Although one may argue if this special
feature is desirable or not, it clearly does not conform to the SJVMS.

In our specification, the definition of the relation v on subroutine records in
Section 5.1 implies that merging two subroutine records with different lists of sub-
routine calls always leads to a bytecode verification error. Since no subroutines may
be removed in the merging process, the condition in rule (7) indeed ensures that
no subroutines may be recursively called. From this perspective, our specification
is closer to the SJVMS.

Except the above difference, our iteration roughly captures the essence of Sun’s
bytecode verifier in JDK 1.2 in dealing with subroutines. It is worth pointing out
that if needed, our specification can be easily adapted to model the above special
feature in Sun’s bytecode verifier.

10.2 Formal Specification of Bytecode Verification

Our chaotic iteration is described using a simplified version of the typing rules
in Qian [1998]. The work [Qian 1998] proves the soundness of the typing rules with
respect to an operational semantics and thus solves a completely different problem
from the current paper. It is noteworthy that we could formalize a chaotic iteration
without making use of the formulation of existing typing rules, but the proofs might
become less direct than they are now.
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Stata and Abadi [1998] have proposed a clean typing system for subroutines,
provided lengthy proofs for the soundness of the system, and clarified several key
semantic issues about subroutines. Freund and Mitchell [1998] have extended Stata
and Abadi’s system by considering object initialization. Their approach implicitly
follows the spirit of dataflow analysis. Thus the typing rules here roughly corre-
spond to some of their rules. At the system level, they use special rules to organize
the application of rules for individual instructions, whereas we regard rules directly
as constraints. At the instruction level, their typing rules are more abstract than
ours: their rules guess the usage of local variables in a subroutine at the jsr instruc-
tion and use the information as a basis for type inference within the subroutine.
Thus additional work is needed to implement the guess step in a verification algo-
rithm. The typing rules here do not guess. Thus one can have an implementation
close to the rules, as shown in the current paper.

Similar to the work in this paper, Freund and Mitchell [1999b] (see also [1999a])
have designed a verification algorithm based on Stata and Abadi [1998] and Freund
and Mitchell [1998]. To implement the guess step mentioned above, their algorithm
pre-computes almost all execution paths and the set of all modified local variables
in each subroutine. Following the tradition of Stata and Abadi [1998], the pre-
computation computes modified local variables at each jsr instruction, instead of
at each ret instruction. This pre-computation relies heavily on the restriction that
no subroutines may be recursively called. After the above phase, the main phase
of dataflow analysis can be described as a standard monotone chaotic iteration. In
general, their way of breaking the dependence of the main dataflow analysis on the
computation of modified local variables is an important contribution toward the
full understanding of JVM subroutines.

Potential problems with their approach could be that a multiple-phase algorithm
might be farther away from the SJVMS and most commercial bytecode verifiers,
and often could lead to a less efficient implementation, than a single-phase one.
Since their approach relies heavily on the restriction that no subroutines may be
recursively called, it is unclear how easily their approach can be adapted to model
the special feature in Sun’s bytecode verifier mentioned above.

In addition, we are a little concerned about some of the assumptions made
in Freund and Mitchell [1999b], in particular, the assumption that no dead code
is present in the JVM programs. The problem is that a ret instruction may intro-
duce dead code if it returns to an outer subroutine call. See the code in Figure 13,
where the inner subroutine s ′ directly returns to the caller of subroutine s , and
thus causes the astore instruction at address s + 2 to become dead code. Obvi-
ously dead code should not contribute to the set of modified local variables, but
the algorithm in Freund and Mitchell [1999b] does not directly address this case.
Extending the algorithm to consider this seems possible. The question is how such
an extension would complicate matters.

Hagiya and Tozawa [1998] have presented a very original typing system for sub-
routines and provided an extremely simple soundness proof. They introduce special
types indicating which local variables hold values from outer subroutines, instead of
recording which variables are modified. They also introduce special types indicating
the position of the subroutine in a subroutine call stack to which a ret instruction
returns. In addition, their approach also heavily relies on the restriction that no
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p: jsr s // call a subroutine
...

s: astore x // store return address
jsr s′ // call nested subroutine
astore x ′ // modify local variable
...

s′: ret x // return to outer subroutine

Fig. 13. Dead code introduced by a ret instruction.

subroutines may be called recursively. Since their idea is quite different from the
standard approach, more studies are needed to understand all possible consequences
for the full JVM. In particular, it is unclear if their approach can be easily adapted
to model the special feature in Sun’s bytecode verifier mentioned above. Hagiya
and Tozawa have informally outlined a verification algorithm corresponding to their
specification but not given any formal description or formal proofs. Therefore, it is
difficult to compare their algorithm with ours on a formal basis.

Goldberg [1998] has directly used dataflow analysis to specify bytecode verifica-
tion and successfully formalized a way to integrate some aspects of class loading
into bytecode verification. His specifications can be regarded as a verification al-
gorithm. However, since he did not consider subroutines, he did not encounter the
problem we have considered here. His and our approach are complementary.

Pusch [1999] has successfully formalized bytecode verification, and mechanically
proved the soundness using the theorem prover Isabelle/HOL. Her formalization is
based on Qian [1998]. Mechanical proofs have the advantages that the proofs are
more reliable and can be mechanically repeated when small changes are made on
some parts of the whole specification. Her work shows that formal tools can be
used to model real-life programming languages.

Nipkow [2000] has formalized and proved correct an executable bytecode verifier
using the theorem prover Isabelle/HOL. His formalization follows the style of Kil-
dall’s algorithm. He approach is first to define an abstract framework for proving
correctness of a class of data flow algorithms, and then instantiate the framework
with a model of the JVM. Although some features of the JVM-like subroutines are
still missing, his work seems to form a promising step toward a complete formal
machine-checked JVM.

O’Callahan [1999b] has constructed a typing system based on polymorphic recur-
sion and continuations similar to a more general setting of typed assembly language
as in Morrisett et al. [1998;1998], and compared it with bytecode verification. He
reveals that return addresses can be directly typed using continuations so that one
does not have to analyze which subroutine each instruction belongs to. He shows
that disallowing recursion in return address types can prevent a return address
to be used more than once. Unfortunately, bytecode verification corresponds to a
problem of generating type information in his typing system, where the decidability
of the problem is in general doubtful. Thus some restrictions might be needed to
make it decidable. One such restriction would be to disallow return address types
from being nested beyond a certain depth [O’Callahan 1999a].

Jones [1998] and Yelland [1999] have independently specified the semantics of
JVM instructions using the functional language Haskell. Their specifications are ex-
ecutable programs. Thus part of them can be regarded as a verification algorithm.
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Since in their approach composition of JVM instructions corresponds to compo-
sition of functional programs, their specifications are particularly flexible when
changing or extending the JVM instruction set. The soundness of the specification,
as explained in Yelland [1999], can be established indirectly using known semantic
foundations for Haskell, although it might be difficult to understand for people un-
familiar with these foundations. In general, both the techniques and the allowed
programs in their work are quite different from those described in the SJVMS and in
most actual implementations, while the techniques and the allowed programs in our
work are much closer. They have not identified any nonmonotonicity property nor
explicitly considered operational properties of their verification algorithms as done
here. More investigations are needed to see whether their verification algorithms
have properties similar to those we have proved here.

Bertelsen [1997] has formalized the JVM using state transitions. Cohen [1997]
has described a formal semantics of a subset of the JVM, where runtime checks
are used to assure type-safe execution. Both papers have not considered bytecode
verification. Börger and Schulte [1999] have presented a quite comprehensive high-
level definition of JVM in a similar style as Bertelsen [1997] and Cohen [1997] and
derived a bytecode verifier from the high-level definition. But they have not con-
sidered any properties of their bytecode verifier like those discussed in this paper.

10.3 Fixpoint Theorems and Chaotic Fixpoint Iteration

Fixpoint theorems have taken many forms and been (re-)proved many times in the
literature (see Lassez et al. [1982] for a survey). There has been much work on
applications of fixpoint theorems in dataflow analysis (e.g., see Kildall [1973] and
Muchnick [1997]) and abstraction interpretation (e.g., see Cousot and Cousot [1977]).
From these perspectives, our chaotic iteration is not something that is substantially
new. However, the result of the current paper is nontrivial, since it relies on the
choice of a special form of fixpoint theorem and the application of the theorem
using special properties of the JVM instructions.

We are not aware of any paper in the literature directly applying Theorem 2.2.
The work by Geser et al. [1996] might be the closest one. It presents a fixpoint the-
orem that is the same as Theorem 2.2 except that the requirement on monotonicity-
with-fixpoint is replaced by that on delay-monotonicity. For a poset 〈D,v〉, a set F
of functions from D to D is called delay-monotone if for each f ∈ F and all elements
d, d′ ∈ D, d v d′ implies that there is a sequence of (possibly identical) functions
f1, · · · , fm with fi ∈ F for all i = 1, · · · ,m such that f(d) v f1(· · · fm(d′)).

In fact, the conditions in Theorem 2.2 as a whole imply delay-monotonicity, and
the conditions in the theorem by Geser et al. imply monotonicity-with-fixpoint. To
prove the former statement, consider d v d′ and f ∈ F . By increasingness, the
chaotic iteration yields a fixpoint of F starting from every element. Thus there
is a sequence f1, · · · , fm with fi ∈ F for all 1 ≤ j ≤ m such that f1(· · · fm(d′))
is a fixpoint. Again by increasingness, d v d′ v f1(· · · fm(d′)). By monotonicity-
with-fixpoint, f(d) v f1(· · · fm(d′)). Thus F is delay-monotone. To prove the
latter statement, consider d v d′, where d′ is a fixpoint of of F , and f ∈ F . Since
F is delay-monotone, f(d) v f1(· · · fm(d′)) for a sequence f1, · · · , fm. Since d′ is
a fixpoint, f1(· · · fm(d′)) = d′ and thus f(d) v d′. Hence F is monotone-with-
fixpoint.
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11. CONCLUSION

The control structure of our chaotic iteration is simple, natural, and standard. Since
our chaotic iteration does not rely on a special strategy to visit program points,
it formally models a core of most existing bytecode verifiers which are based on
standard fixpoint computation.

We have proved that the chaotic iteration does compute the sharpest type in-
formation for input JVM programs. That is, if an input program is well-typed,
then the iteration computes the least M-type; if not, then the iteration yields the
artificial top element >M in the semilattice.

There are a number of commercial bytecode verifiers in use. It is expected that
more bytecode verifiers will be produced in the near future in connection with
building different versions of the JVM for various application areas such as database
systems, embedded systems, etc. All existing commercial verifiers we know of are
based on standard fixed-point computation. The fact that the chaotic iteration
computes the sharpest type information suggests that it is theoretically possible to
let all such bytecode verifiers accept the same set of well-typed JVM programs. In
other words, if a JVM program has been determined to be well-typed using a verifier
on a server host, then it should be determined to be well-typed by every (possibly
different) verifier on a client host. The result clearly increases the confidence in the
availability of services provided by mobile code in a network equipped with different
bytecode verifiers.

Currently, we are using the Specware system to formally specify bytecode verifi-
cation and synthesize an algorithm from that specification [Coglio et al. 1998]. The
synthesized verification algorithm directly corresponds to that in the current paper
except that for practical reasons we are synthesizing concrete transfer functions for
individual instructions, instead of a generic one like procedure P .
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