
THE REMOTE PROCESSING FRAMEWORK FOR
PORTABLE COMPUTER POWER SAVING1

Alexey Rudenko Peter Reiher Gerald J. Popek2 Geoffrey H. Kuenning2

University of Cali fornia, Los Angeles
{ arudenko, reiher@cs.ucla.edu, geoff@cs.hmc.edu, popek@platinum.com}

KEYWORDS: remote processing, power saving, client server, laptop battery, wireless communication

ABSTRACT
Recent research has demonstrated that portable computer users can save battery power by migrating tasks over wireless
networks to server machines. Making this technique generally useful requires considerable automation. This paper describes
a framework for automatically migrating tasks from a portable computer over a wireless network to a server and migrating
the results back. The paper presents the framework's architecture, discusses key issues in creating the framework, and
presents performance results that demonstrate that the framework is both useful and power-inexpensive.

I. INTRODUCTION
The continuing limitations on battery power make power
management one of the most challenging problems in portable
computing. Various power conservation techniques have been
proposed, including turning off the portable computer’s screen
[2], optimizing hard drive I/O [7], slowing down the CPU [5],
etc. Recently, process migration over wireless networks has
been proposed to conserve power [11], [13]. Power-
consumptive processes are migrated over wireless networks to
a server that performs the actual computation, and the results
are migrated back.

This technique has its own diff iculties and drawbacks. The
power consumption of radio communication is especially
important, because presumably if a user does not have access
to an AC power source, he also does not have access to a
network connector. A wireless network must provide ubiq-
uitous access to certain network services through radio. But
radio communication devices also use power; [15] shows that
one typical device is itself a heavy power consumer.

If the portable computer and server must each maintain copies
of the data necessary to perform the task, maintaining

consistency of persistent data is also a problem. Ideally, the
server would permanently store replicas of the data. The
portable computer would transport recently updated files to
the server. The power costs of this data transport must be
traded off against the power consumed for the task processing
itself. Sometimes moving the processing to the remote server
is cheaper, sometimes processing it locally is cheaper. This
decision is potentially complex, but it can have a large impact
on power consumption. System support for making this deci-
sion is desirable.

This paper presents the Remote Processing Framework, which
provides system support for making such decisions and
handling the mechanical issues of process migration. The
paper compares the power consumption obtained from local
and remote processing using the Remote Processing
Framework to determine when migrating a process is
worthwhile for one important class of tasks. These results
show the importance of proper decision-making for such a
framework.

The response time depends on the speed of the server. In
some cases the response time can be slower than in the case of
a local run, but the user will be willi ng to accept this in return
for battery savings.

II. RELATED WORK
Two groups have recently and independently investigated this
power saving technique. Rudenko et al., in [13] describe
experiments using portable machines with WaveLAN radio
devices, using experimental methods. This paper showed that
significant power can be saved through remote processing for
several realistic tasks. Othman [11] used simulation to show
that battery li fe can be extended through process migration.
The authors ran simulations of servers with different workload
and bandwidth characteristics. The simulation showed that
highly utili zed mobile hosts are more likely to benefit from
job migrations. If the CPU utili zation is low, transferring jobs
does not result in the CPU remaining idle long enough to lead
to substantial savings. The paper offers some decision-making

1 This work was partially supported by the Defense Advanced
 Research Agency Projects Agency under contract DABT63-
 94-C-0080.
2 Gerald Popek is also affiliated with PLATINUM technology,
 inc. Geoff Kuenning is now affiliated with the Computer
 Science Department of Harvey Mudd College.

Client-agent-server Infrastructure

Agents

Server Client

Figure 1: Client-agent-server Infrastructure for the
Remote Processing Framework

Idle
Period

Task
Execution

SERVERSTART
DATA(ftp)

ACCEPTED

READY

DONE

Results(ftp)

Time

Power-saving RP protocol

CLIENT

Figure 2: RPF protocol of the remote processing in
client server implementation

algorithms such as History and Adaptive Load Sharing (ALS),
which learns and adapts its decision based on previous CPU
time measurements for a particular process. The paper does
not discuss how the algorithm adapts to changes in noisy
communication channels, which can have a significant impact
on power consumption.

A related but different approach to remote processing is taken
by the InfoPad portable terminal system [10]. The InfoPad is
a network I/O device with no computational power, relying on
network servers to run major processes. Local computing is
not possible, so this system does not utili ze the techniques
discussed here.

Jain [8] discusses optimizing distributed database operations
that include portable computers, including process migration.
One dimension for optimization that is considered is battery
power. The authors use analytical methods to study this issue.

DCOM [4], Rover [9] and CORBA [16] offer programming
tools that allow a designer to build distributed applications.
These systems could be used to build the kind of framework
discussed here, and could allow finer granularity of migration
by dividing applications into power-consumptive and power-
conservative parts. However, they have not yet been used for
this purpose.

III. DESIGN OF THE REMOTE
PROCESSING FRAMEWORK
The design of the Remote Processing Framework (RPF) is
based on a client-agent-server paradigm [1] (see Figure 1). On
the client’s side the framework automatically decides whether
to run a process remotely or locally, moves necessary portions
of the user’s file system to the remote machine, runs the
process locally or remotely, and handles the database of
processes. On the server side the package performs the
operations the user requested and reliably communicates the
results back. RPF is written in C++ running on Linux and
uses standard tools for data compression and transportation.

In an off ice-based RPF system, the server would be
permanently assigned for the mobile client machines, and

would permanently store replicas of files required for remote
processing. For example, in the tests reported here processes
were migrated to a Pentium server. The laptops were
disconnected from both AC power and the wired network, but
is equipped with WaveLAN cards. In more general cases, the
mobile clients might move anywhere, and a ubiquitous agent
infrastructure would be necessary to serve such travelers. This
paper will only discuss the simpler off ice system, but the same
principles could be used more generally with some extensions.

To run processes remotely the client needs to replicate its file
system on the server. Relocating the whole file system from
the client to the server is very power-costly, so moving only
the modified data is preferable. The server must have access to
the whole user file system, but if it has already been replicated
when the client was tethered and power was not an issue, the
server only needs to receive the updates since that time before
it can run the process. When the process completes, the
results must be sent to the client.

Remote execution is il lustrated in Figure 2:

1. The client and the server start with consistent copies of
the data.

2. The client modifies the data and keeps track of its
modifications.

3. The client decides to run the process remotely and sends
its modifications and the process description to the
server.

4. The server verifies whether it has enough resources and an
appropriate environment to run the process. If so, the
server sends an acknowledgment to the client.

5. The client, after receiving the acknowledgment, can run
other jobs, remain idle, put its radio communication
device into sleep mode, or suspend itself for power
saving.

6. The server applies the user modifications to its local replica
and executes the process. After the successful execution
of the task, it sends a message to the client.

7. If the client is awake, it downloads the results from the
server and acknowledges completion. If the client or its
radio device is sleeping, the server waits. When the
client awakens it sends the server a message to verify
whether the task has completed. If the client awakens too
early, the server informs the client, and the client can
wait or sleep more.

If the client decides to execute the task locally in step 3, then
steps 4-7 are not performed.

III.1 RPF Data and Control Protocol

An important component of RPF is the protocol used to
transfer data and control messages between the client and
server machines. We present an outline of the protocol here;
consideration of error recovery is omitted to save space. For
more information see [14].

The CLIENT runs on a portable computer equipped with a
WaveLAN card. The SERVER runs on a server machine also
equipped with a WaveLAN.

When the SERVER receives a START message with CLIENT
information that contains the location of user modifications
and instructions on running the process, it forks a child
process to handle this CLIENT. The SERVER assigns a new
communications port for the child, then returns to the waiting
state. It can now work on another client request.

The child process verifies the consistency of resources
between client and server machines and downloads the
modified files to the server’s replica. If the data was
downloaded successfully, it sends an ACCEPTED message to
the CLIENT; if not, NACCEPTED is sent. ACCEPTED
contains a verification number assigned to this process by the
SERVER. After getting the ACCEPTED message, the
CLIENT can stay idle, put its WaveLAN into sleep mode, or
enter suspend mode.

After sending the ACCEPTED message, the SERVER child
forks a grandchild to handle process execution. The
grandchild runs the process according to the instructions
obtained from the CLIENT. When the processing is finished,
the grandchild dies and the SERVER child sends a READY
message to the CLIENT. If the CLIENT is awake, it
downloads the results of the execution and the screen output
of the executed process. This protocol assumes that no
concurrent updates are generated

If the CLIENT is not awake, it cannot get the READY
message, and the responsible SERVER child must wait until
the CLIENT awakens. When the CLIENT awakens it sends
an IS_READY message to the SERVER and the SERVER
sends the READY message again. Then the CLIENT
downloads the result. If the result was downloaded
successfully, the CLIENT sends a DONE message to the
SERVER. After getting DONE, the child responsible for
communication dies.

III.2 The Process Database

All processes that ever use the RPF are recorded in a process
database. Each process is identified by the command line that
runs it and the path to the directory where the process runs.
The database record contains the description of the environ-
ment, platform, and OS for the process. Each record of a
process contains the list of files that should not be transferred
from client to server and a list of files that should not be trans-
ferred from server to client even if they are modified. For
example, if the process is a compilation, object files should
not be transferred from server to client nor executables from
client to server. The record of a process also contains
temporary information obtained from the SERVER in the
ACCEPTED message, li ke the number of the I/O port of the
child, status of the process, etc. The record also keeps the
statistics about power consumption by the process (mean and
standard deviation) for the particular size of the user-modified
information. The record is updated twice during the
processing: after the ACCEPTED message is obtained, and
after the processing is over. The mean and standard deviation
are used for the calculation of confidence intervals used for
the comparison of power costs.

III.3 Client/Server Resource and
Environment Verification

To run the process remotely, RPF needs a consistent
environment on both machines. While the RPF currently runs
only on a limited variety of platforms and operating systems,
in principle it could be ported to many others. But
interoperation between different platforms or operating
systems would be diff icult, so the RPF must verify the
consistency of:

1) Platforms: e.g., Sparc/x86, big-endian vs. littl e-endian

2) OS: Linux, UNIX, Windows95, etc.

3) Software packages: G++, libraries, tar, zip, etc.

4) Environment variables

5) Hard drive space, to ensure that enough is available for
the process

6) CPU workload

 Depending on characteristics of particular process, other
environmental factors may prove important. Checks for these
will be added as they are discovered.

III.4 The Rumlet Procedure

The client must be able to identify updated files and transfer
them to the server. This process must be very cheap in terms
of power consumption, or it will negate any gains from
migration. Modifications that the user committed to his files
can be recorded by trapping updates. Another possibilit y is to
scan the directory and find all files whose mtime attribute is
newer than one prerecorded in a special database.

Both approaches have advantages and disadvantages that can
potentially have significant effects on power savings. For the
current research we have chosen to implement scanning

because it allows us to avoid kernel modifications, thus
increasing the portabilit y and reliabilit y of the code.

Several file replication services use scanning [6], [12], but
these systems do not consider power management issues.
They tend to provide generality not required for RPF, at the
cost of power-expensive operations. We designed the Rumlet
program to scan a user’s file system and record attributes of
files to a database using littl e power. Modified files are
recognized through comparison of their attributes to their
recorded attributes in the database. The Rumlet procedure
runs on the client site to find user-modified files and on the
server site to find results, i.e. files newly produced by the
process.

III.5 Off-the-Shelf Packages

Some processes were incorporated into RPF from standard
packages. ncftp was used to transport user data and results
between CLIENT and SERVER. tar and gzip are used for the
conversion of multiple files that must be transported into one
compressed file. The power costs of the extra processing for
these conversions are compensated by the decreased power
spent transporting smaller data packages. If a file is encrypted
or zipped already, i.e. the further zipping will not be able to
make the file smaller, this step can be skipped.

III.6 Decision-Making

The client must decide whether to run processes remotely.
[13] showed that data size is the main factor in the power cost
of the processing. But it is not the only cost. In noisy
environments the power cost of remote processing grows

dramatically. Also, changes in the process workload may
affect the choice of where to run this process. But if the
workload was changed accidentally, for example if the process
fails because of a syntax error, then future decisions should
not be influenced. Thus the decision-making procedure must
be adaptive [11], but also must have suff icient conservatism
not to be skewed by errors. We implemented a decision-
making procedure for RPF according to the following prin-
ciples:

1) Data gathering

RPF initially runs the same process alternatively, locally and
remotely, encouraging the user to use battery power on his
laptop in both cases and measuring the cost of both alterna-
tives. This method obviously puts an extra burden on the
laptop’s battery; but sometimes it is impossible to predict
which alternative gives the best results without trying both.

2) Primary decision-making

After RPF gets enough measurements to determine that one of
the choices is better, it runs the process that way on most
future occasions.

3) Validity checking

Occasionally RPF deliberately makes the “wrong” decision,
and runs the process the other way. If, for example, it was
decided to run the process locally, occasionally RPF runs the
process remotely to be sure that the decision is still right. If
the “wrong” way appears better now, RPF does not
immediately switch. It continues to run processes in the

0

2

4

6

8

10

12

14

0 125 250 375 500
Kilobytes of Changed Source Code

% of
Battery
Used

Local
Local RPF
Remote
Remote RPF
Transmission

Figure 3: Comparisons of local and remote processing with and without RPF.

previously chosen way with shorter periods between “wrong”
runs.

If the power costs of running the process in the previously
chosen manner change dramatically, the alternative decision
will be checked more often. Such fluctuation in a task
normally run locally might be caused by the growth of the
process workload, possibly making remote processing better.

If the power costs of running the process in the previously
chosen manner demonstrate stabilit y, the alternative decision
will be checked less often.

4) Filtering

Sometimes changes in the power consumption of RPF tasks
are the result of transients in network noise or statistical
fluctuation, which should not be responded to rapidly. RPF
continues to run the process in the initially chosen way until it
is reasonably sure that the differences are due to continuing
conditions. The formula used for the estimation of local and
remote costs is the following simple digital fil ter:<Estimated
power cost>= (1-α) *< Last N measured power costs / N > + α
*< Last estimated power cost >, where N > 0 and α is the
coeff icient of conservatism of the system. If changes in the
environment are rare, then the coeff icient should be low and
the result depends more on recently measured values. If
changes happen often, and any particular change is not reason
enough to change the decision, then the coeff icient should be
high and the current decision will depend more on the
previous decision.

IV. EXPERIMENTS
We ran 70 experiments, consuming 200 hours of wall clock
time, to measure the RPF. Each point plotted below typically
represents four to eight hours of experiments. The processes

tested here were compilations of real packages; one of them
was RPF itself. The experiments were run using a Dell l aptop
with 486 100 mHz processors as the mobile computer, and a
Pentium Pro PC running at 200 mHz as a server. All
machines were equipped with WaveLAN radio cards. The
server was also in regular use for other tasks. The queue
waiting for processing on the server usually contained 0.7 to
0.8 tasks (not counting experimental tasks), which is a

relatively small workload. The radio channel was mostly idle,
but neighboring laboratories were using WaveLAN cards for
their own research. In more realistic environments the server
will serve more than one client through radio communication
devices, and the radio channel will carry a significant amount
of other traff ic. The methodology of measurements is the
same as the experiments described in [13]. All results are
shown with 95% confidence intervals.

IV.1 RPF Power Cost

Figure 3 shows the costs of running the RPF itself. Local and
remote compilations without RPF are compared with compi-
lations using RPF. The X axis shows the size of the modified
source code. The Y axis shows the power cost in percent of
the battery li fe. For each amount of code changed, five bars
are shown. The first shows the cost of the local compilation
without using RPF and without running a WaveLAN card.
The second shows local costs when RPF and a powered-up
WaveLAN card are included. Running RPF without radio
would be pointless, so this bar realistically shows the cost of
having the option of migrating when the system chooses not to
exercise it.

The third bar shows the costs of processing the compilation
remotely, by hand and without RPF, as cheaply as possible.
The fourth bar shows the costs of running remotely with RPF,
rather than handcrafted methods. Finally, the fifth bar shows
the power cost of merely transferring the altered files over the
radio channel and the result files back. This bar suggests the
lower bound on how littl e power would be consumed if the
server were infinitely fast and there were no overhead costs.

Adding the WaveLAN card to the mobile machine increases
the cost of processing proportionally to the duration of the
process. In most cases, remote processing with RPF and
without RPF is statistically indistinguishable, which means
that the cost of RPF is negligibly small . At the zero point, the
cost of Remote RPF shows the direct cost of a pure RPF
protocol message exchange without useful processing and
transporting, which is equal to 0.2 ± 0.1 percent of battery li fe.

The use of power-costly WaveLAN cards increases the cost of
local processing that doesn’ t use them, but that is the price of
having a communication service. The extra power cost of the
WaveLANs grows with the duration of the local experimental
runs, which depends on the amount of modified code.
Because of this obvious trend in power costs, the measu-
rements at the points 375- and 500-Kb were not necessary.

IV.2. The Necessity of Decision Making

If a given process should always be run locally (or remotely)
regardless of how much of its data changed, the RPF would
not need a decision capabilit y. If the extrapolated lines of local
and remote cost cross, the decision should be changed at the
crossover point. If the crossover point is too close to 0, we do
not need RPF’s decision facilit y because we should always
run the process remotely. If the crossover point is very far
from 0, RPF’s decision facilit y is again less necessary because
users seldom change that much code, and can therefore afford
the occasional power costs.

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 11 20 50

Kilobytes of Changed Source Code

% of
Battery
Used

Local
Remote

Figure 4: The power costs for local and remote
compilation of the RPF package

The first series of experiments compiled the RPF package
itself. This package contains about 100K of source code, with
executables of about 500K. The result is shown in Figure 4.
For this package it nearly always pays to run the process
remotely. The cost of remote processing grows very littl e
because the speed of compilation on a fast server is so high
that most of the cost is in transportation of source and executa-
bles.

Another series of tests used the code for the Rumor replicated
file system [12]. This source code is about 500K, and exe-
cutables are 7MB for a stripped and 28MB for unstripped
executables. Usually the user is more interested in the un-
stripped version, because multiple recompilations occur
during debugging, when the unstripped version is valuable.
The results of these experiments are shown in Figures 5 and 6
for stripped and unstripped versions, respectively. The cross-
over for the stripped version is located between 11 and 20 KB
of modified source code, corresponding to about 550 lines of
C++. The crossover for the unstripped version is at 20 KB of
modified source code, about 770 lines of source code.

Therefore, RPF’s decision capabilit y is useful for Rumor
compilations because recompilation is common on both sides
of the crossover point. The decision capabilit y allows battery
savings of around .5 percent per compilation for these realistic
cases.

The remote bars demonstrate much slower growth with the
growth of the modified user source code because the server is
significantly faster than the portable computer, so the time
required for remote execution grows slowly. For larger ranges
of code changes, the growth of the remote power costs is
noticeable. For example, consider the large changes in remote
power costs in Figure 3 as the size of the modified source code

grows from 0 to 500 Kb.

The confidence intervals of the remote bars on Figure 4 are
relatively wide and cross the X-axis, due to the very low
precision of the APM power measurement tool. The
difference between two consecutive measurements can be up
to 4 percent, and the second measurement can even show
higher battery capacity than the first one.

[13] discusses advantages and disadvantages of this form of
measurement method. This research did not use external elec-
tric power-measuring devices because of the diff iculty of
achieving a reliable experimental setup. Also, a typical run-
ning implementation of the RPF would not have such devices,
and the system should use only the devices that are available
to the average user on his laptop.

V. SUITABLE APPLICATIONS FOR RPF
The value of RPF depends on how many common applications
have the characteristics demonstrated above for compilation.
Some applications, such as MS Word, will not gain anything
from it. [13] demonstrated that processes with high I/O and
CPU activity (such as Gaussian elimination) can achieve very
high percentages of power saving. Gaussian elimination’s
processing complexity is O(D** 1.5), where D is the amount of
data to be processed. Its transmission complexity is only
O(D). The measurements in [13] showed that statistically
noticeable power saving can be observed for matrices bigger
than 500x500. Any process with complexity O(D** k) with
k>1 will save power when run remotely for D>Do, where Do
= (α) ** (1/(k-1)) and α is tangent to the transmission power
cost.

Other tasks that seem suitable for RPF include:
1) Large simulation and numerical applications
2) Graphic applications
3) Genetic algorithms
4) On-line analytical processing
5) Statistical applications

6) Other CPU-bound applications
All of these applications sometimes lead to large amounts of
processing and/or disk I/O activity, but also sometimes are
quite short. Therefore, RPF could be used to decide when to
migrate such tasks in the expectation that particular runs will
or will not consume large amounts of power.

The interactivity of a process also affects its suitabilit y for
RPF. If a user needs to communicate with his application run-
ning on the remote machine, some additional constraints
appear. First of all , the user' s machine cannot be suspended
during the idle period, but must stay alert to all remote calls.

0

1

2

3

4

5

6

7

8

11 20 50 125

Kilobytes of Changed Source Code

% of
Battery
Used

Local
Remote

Figure 6: The power costs for local and remote
compilation of Rumor for unstripped
executables

0.0

0.5

1.0

1.5

2.0

2.5

5 11 20 50

Kilobytes of Changed Source Code

% of
Battery
Used

Local
Remote

Figure 5: The power costs for local and remote
compilation of Rumor for stripped executables

Second, any intercommunication through a radio
communication device is a very power-costly operation, so an
application with a lot of interactivity will not win any power
from the remote processing. Sometimes the amount of
interactivity depends on unpredictable user behavior, in which
case the framework's decision-making procedure will not be
able to make consistent decisions.

VI. DISCUSSION AND FUTURE WORK
Our results show that remote execution of large tasks using
RPF with a faster server can reduce power consumption by 3
to 6 times. However, remote execution when local execution
is less power-costly can cause up to 0.5% loss of battery
power per run. While this level of loss may seem
insignificant, [13] showed that the power losses could be
much greater in noisy environments. Therefore, the decision-
making procedure must be intelli gent enough to handle steady
and bursty noise. Further studies of decision-making
algorithms are needed to address this issue.

Redesigning RPF to permit decomposition of applications into
separately migratable components using DCOM, Rover, or
CORBA would increase the applicabilit y of the methods.
Measuring the power consumption of individual components
would be challenging, however.

The existing RPF incorporates some, but not all of the features
required to support the more general case of machines moving
not just within an off ice environment, but anywhere. An
additional module would be required to handle data transfer
between a mobile machine and the user’s home desktop or
another server. This case also requires more care in
maintaining data consistency among multiple replicas. Other
improvements to RPF for this case would involve load
management among server machines, search methods for
finding servers suitable for handling particular remote
executions, and migrating results to other servers to handle
clients in motion during the process’ execution. Security and
privacy issues would also need to be addressed. All of these
features would need to be added without increasing power
consumption.

Further research is necessary to determine the best methods of
making migration decisions for a wider variety of applications.
Also, more effort is required to determine the best filtering
techniques for handling process migration in environments
with varying noise characteristics, since in such environments
the costs of migration will also vary. Finally, wide
deployment and field testing of the Remote Processing
Framework would be desirable.

VII. CONCLUSION
Previous research demonstrated the possibil ity of improving
the battery li fetime of untethered portable computers by using
wireless networks to migrate large tasks to server machines.
Migrating such tasks can save power from many sources on
the portable computer, including the CPU, memory, disk, and
screen. However, custom-crafted process migration required
knowledge and care not practical for ordinary users.

We show here that a simple software framework can automate
most of the diff icult tasks of process migration for power
management. By automating data consistency issues and
handling the basic protocol synchronization to communicate
between the portable client and its server, the Remote
Processing Framework makes process migration for power
management a feasible technique for the average user.

This research also answers the question of whether a useful
Remote Processing Framework could be implemented without
incurring large new overheads that overwhelmed the desired
power savings. Earlier research using handcrafted process
migration obtained benefits of up to 51 percent of the battery
power expended [13]. This paper demonstrates that similar
results are possible with an automated system requiring no
user intervention. Given that users are already paying the cost
of having a wireless network card in their portable computer,
the extra cost of the Remote Processing Framework itself is
around .2 percent of a typical portable computer's battery li fe
for each invocation. Since migration can give benefits of 6
percent or more of the battery li fe for realistic tasks, this
overhead is negligible. The key to lowering the costs of the
framework was simpli fying as many of the framework's details
as possible, particularly its replication faciliti es.

This research further demonstrates the importance of having
some degree of sophistication in the decision-making process
that determines whether a given invocation of a task should be
run locally or remotely. The same command can lead to very
different power costs, depending on the state of the data
involved. Incorrectly choosing to run a task either locally or
remotely can be expensive in power. Fortunately, for im-
portant applications like compilation, the framework can
automatically determine whether a particular invocation
should be handled locally or remotely.

REFERENCES

[1] Ajay Bakre, B. R. Badrinath. M-RPC: A Remote
Procedure Call Service for Mobile Clients, Proceedings of the
First International Conference on Mobile Computing and
Networking, MobiCom’95, Berkley, Cali fornia, pp. 97-110,
November, 1995
[2] James W. Davis. Power Benchmark Strategy for Systems
Employing Power Management, IEEE International Sympo-
sium on Electronics and Environment, 1993.
[3] A.T. Galecki. NLMEM: a new SAS/IML macro for
hierarchical nonlinear models, Computer Methods and
Programs in Biomedicine, vol.55, no.3, Elsevier, March 1998,
p.207-16.
[4] R. Grimes. Professional DCOM Programming, Olton,
Birmingham, Canada: Wrox Press, 1997.
[5] David P. Helmbold, Darrell D. E. Long and Bruce
Sherrod. A Dynamic Disk Spin-down Technique for Mobile
Computing, Proceedings of the Second Annual ACM
International Conference on Mobile Computing and
Networking, Rye, NY, November 1996.
[6] John H. Howard. Using Reconcili ation to Share Between
Occasionally Connected Computers, Fourth Workshop on

Workstation Operating Systems, Napa, Cali fornia, pp. 56-60,
October 1993.
[7] Kinshuk Govil , Edwin Chan, Hal Wasserman. Comparing
Algorithms for Dynamic Speed-Setting of a Low-Power CPU,
Proceedings of the First International Conference on Mobile
Computing and Networking, MobiCom’95, Berkley,
Cali fornia, pp. 13-25, November, 1995.
[8] Ravi Jain and N. Krishnakumar. An asymmetric cost
model for query processing in mobile computing environ-
ments, pp. 363-378, in Wireless Information Networks, ed. J.
Holtzman, Kluwer Academic Publishers, 1996.

[9] Anthony D. Joseph, Alan F. deLespinasse, Joshua A.
Tauber, David K. Gifford, and M. Frans Kaashoek, ROVER:
A Toolkit for Mobile Information Access, Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles,
pp. 156-171, Colorado, December, 1995

 [10] Shankar Narayaswamy et al. Application and Network
Support for InfoPad, IEEE Personal Communications, Vol. 3,
No. 2, pp. 4-17, April 1996.
[11] Mazliza Othman, Stephen Hailes. Power Conservation
Strategy for Mobile Computers Using Load Sharing, Mobile
Computing and Communications Review, Vol. 2, No. 1, pp.
19-26, January 1998.
[12] Peter Reiher, Michial Gunter and Gerald Popek. A
User-level File Replication Middleware Service, Proceedings
of the SIGCOMM Workshop on Middleware, August 1995.
[13] Alexey Rudenko, Peter Reiher, Gerald J.Popek, Geoffrey
H. Kuenning. Saving Portable Computer Battery Power
through Remote Process Execution, Mobile Computing and
Communications Review, Vol. 2, No. 1, pp. 19-26, January
1998.
[14] Alexey Rudenko Portable Computer Battery Power
Saving Using a Remote Processing Framework, Master
Thesis, Computer Science Department of UCLA, 1998.
[15] Mark Stemm, Randy H. Katz. Measuring and Reducing
Energy Consumption of Network Interfaces in Hand-Held De-
vices, Proceedings of 3rd International Workshop on Mobile
Multimedia Communications (MoMuC-3), Princeton, NJ,
September 1996.
[16] Steve Vinoski. CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments, IEEE
Communication Magazine, Vol. 35, No. 2, February 1997.

Alexey Rudenko is a research assistant in the Computer
Science Department at the University of Cali fornia, Los
Angeles. He received his M.S. degree from UCLA in 1998.
His research interests focus on mobile computing, distributed
file systems, and active networks.

Peter Reiher is an Adjunct Associate Professor of Computer
Science at UCLA. Dr. Reiher received his Ph.D. from UCLA
in 1987. He has worked on several distributed operating
system projects at JPL and UCLA. Dr. Reiher’s research
interests include mobile computing, distributed operating
systems, optimistic and predictive computing, and security for
distributed systems.

Gerald J. Popek has been a Professor of Computer
Science at UCLA since 1973. His academic background

includes a doctorate in computer science from Harvard
University. He co-authored “The LOCUS Distributed
System Architecture,” MIT Press, 1985, and has written
more than 70 professional articles concerned with computer
security, system software, and computer architecture. Dr.
Popek was the founder of Locus Computing Corporation,
and is currently also the Chief of Technology Off icer for
PLATINUM technology, inc.

Geoffrey H. Kuenning received his Ph.D. in computer
science from UCLA. He is currently an assistant professor
at Harvey Mudd College. He is currently performing
research in mobile computing, distributed file systems,
prediction, and clustering methods. Dr. Kuenning is a
member of IEEE, CPSR, ACM, and a number of ACM
SIGs.

