THE REMOTE PROCESSING FRAMEWORK FOR
PORTABLE COMPUTER POWER SAVING*

Alexey Rudenko

Peter Reiher Gerald J. Popek?®

Geoffrey H. Kuenning®

University of California, Los Angeles
{arudenko, reiher @cs.ucla.edu, geoff @cs.hmc.edu, popek@platinum.com}

KEYWORDS: remote processng, power saving, client server, laptop kettery, wirelesscommunicaion

ABSTRACT

Recat research has demonstrated that portable mmputer users can save battery power by migrating tasks over wireless
networks to server machines. Making this technique generally useful requires considerable automation. This paper describes
a framework for automatically migrating tasks from a patable ommputer over a wireless network to a server and migrating
the results back. The paper presents the framework's architedure, discusses key isales in creating the framework, and
presents performanceresults that demonstrate that the framework is both useful and paver-inexpensive.

. INTRODUCTION

The ontinuing limitations on tettery power make power
management one of the most challenging problemsin patable
computing. Various power conservation techniques have been
propased, including turning off the portable mmputer’s sreen
[2], optimizing hard drive 1/O [7], lowing down the CPU [5],
etc. Recantly, process migration over wireless networks has
been proposed to conserve power [11], [13]. Power-
consumptive processes are migrated over wirelessnetworks to
a server that performs the at¢ual computation, and the results
are migrated bad.

This technique has its own dfficulties and dawbads. The
power consumption o radio communicaion is espedally
important, because presumably if a user does not have accss
to an AC power source, he dso daes not have accssto a
network conredor. A wireless network must provide ubig-
uitous accessto certain network services through radio. But
radio communication devices also use power; [15] shows that
onetypicd deviceisitself aheary power consumer.

If the portable cmputer and server must ead maintain copies
of the data necessry to perform the task, maintaining

! Thiswork was partially supported by the Defense Advanced
Research Agency Projects Agency under contract DABT63-
94-C-0080.

2 Gerald Popek is also affiliated with PLATINUM technology,
inc. Geoff Kuenning is now affiliated with the Computer
Science Department of Harvey Mudd College.

consistency of persistent data is also a problem. Ideally, the
server would permanently store replicas of the data. The
portable computer would transport recently updated files to
the server. The power costs of this data transport must be
traded off against the power consumed for the task processng
itself. Sometimes moving the processng to the remote server
is chegoer, sometimes processng it locdly is chegoer. This
dedsionis patentially complex, but it can have alarge impad
on paver consumption. System suppat for making this ded-
sionisdesirable.

This paper presents the Remote Processng Framework, which
provides g/stem suppat for making such dedsions and
handing the medhanicd issues of process migration. The
paper compares the power consumption oliained from locd
and remote procesing using the Remote Processng
Framework to determine when migrating a process is
worthwhile for one important class of tasks. These results
show the importance of proper dedsion-making for such a
framework.

The resporse time depends on the speed of the server. In
some caes the resporse time can be slower than in the cae of
alocd run, but the user will be willi ng to accept thisin return
for battery savings.

II.RELATED WORK

Two groups have recently and independently investigated this
power saving tedhnique. Rudenko et a., in [13] describe
experiments using portable macines with WaveLAN radio
devices, using experimental methods. This paper showed that
significant power can be saved through remote processng for
severd redistic tasks. Othman [11] used simulation to show
that battery life can be extended through process migration.
The authors ran simulations of servers with dfferent workload
and bendwidth charaderistics. The simulation showed that
highly utilized mobile hosts are more likely to benefit from
job migrations. If the CPU utili zation is low, transferring jobs
does nat result in the CPU remaining idle long enough to lead
to substantial savings. The paper offers sme dedsion-making

algorithms such as History and Adaptive Load Sharing (ALS),
which leans and adapts its dedsion besed on pevious CPU
time measurements for a particular process The paper does
not discuss how the dgorithm adapts to changes in ndsy
communicaion channels, which can have asignificant impad
on paver consumption.

A related but different approach to remote processng is taken
by the InfoPad patable terminal system [10]. The InfoPad is
anetwork /O devicewith nocomputational power, relying on
network servers to run major processes. Locd computing is
not possble, so this ystem does nat utili ze the techniques
discussed here.

Jain [8] discusses optimizing distributed database operations
that include portable aomputers, including process migration.
One dimension for optimizaion that is considered is battery
power. The aithorsuse anayticd methods to study thisissue.

DCOM [4], Rover [9] and CORBA [16] offer programming
toodls that alow a designer to build dstributed applicaions.
These systems could be used to buld the kind o framework
discussed here, and could allow finer granularity of migration
by dividing applications into pawer-consumptive and paver-
conservative parts. However, they have not yet been used for
this purpose.

Client-agent-server Infrastructure

Figure 1: Client-agent-server Infrastructurefor the
Remote Processing Framework

[I1. DESIGN OF THE REMOTE
PROCESSING FRAMEWORK

The design of the Remote Procesing Framework (RPF) is
based ona dient-agent-server paradigm [1] (seeFigure 1). On
the dient’s sde the framework automaticdly deddes whether
to run a processremotely or locdly, moves necessary portions
of the user's file system to the remote machine, runs the
process locdly or remotely, and handles the database of
proceses. On the server side the padkage performs the
operations the user requested and reliably communicates the
results badk. RPF is written in C++ running on Linux and
uses gandard tools for data compresson and transportation.

In an oficebased RPF system, the server would be
permanently asdgned for the mobile dient machines, and

would permanently store replicas of files required for remote
processng. For example, in the tests reported here processes
were migrated to a Pentium server. The laptops were
disconreded from both AC power and the wired network, but
is equipped with WaveLAN cads. In more generd cases, the
mobile dients might move awywhere, and a ubiquitous agent
infrastructure would be necessary to serve such travelers. This
paper will only discussthe simpler office system, but the same
principles could be used more generally with some extensions.

To run pgrocesses remotely the dient needs to replicate its file
system on the server. Relocating the whole file system from
the dient to the server is very power-costly, so moving only
the modified datais preferable. The server must have accesto
the whole user file system, but if it has already been replicated
when the dient was tethered and paver was not an isaue, the
server only nedls to recave the updates $ncethat time before
it can run the process When the process completes, the
results must be sent to the dient.

Remote exeautionisillustrated in Figure 2:

Time CLIENT START ?ERVER
DATA(ftp)~ —
ACCEPTED
Idle Task
Period Execution
READY
T* Resuits(ftp)
DONE
Power-saving RP pratocol

Figure 2: RPF protocol of the remote processing in
client server implementation

1. The dient and the server start with consistent copies of
the data.

2. The dient modifies the data and keeps tradk of its
modificaions.

3. The dient deddes to run the processremotely and sends
its modificaions and the process description to the
Server.

4. The server verifies whether it has enough resources and an
appropriate environment to run the process If so, the
server sends an adknowledgment to the dient.

5. The dient, after receving the a&nowledgment, can run
other jobs, remain idle, put its radio communicaion
device into slegp mode, or suspend itself for power
saving.

6. The server applies the user modificationsto its locd replica
and executes the process After the successul execution
of the task, it sends a message to the dient.

7. |If the dient is awake, it downloads the results from the
server and adknowledges completion. If the dient or its
radio device is deeing, the server waits. When the
client awakens it sends the server a message to verify
whether the task has completed. If the dient awakens too
ealy, the server informs the dient, and the dient can
wait or sleep more.

If the dient deddes to exeaute the task locdly in step 3, then
steps 4-7 are not performed.

I111.1 RPF Data and Control Protocol

An important comporent of RPF is the protocol used to
transfer data and control messges between the dient and
server machines. We present an outline of the protocol here;
consideration o error recmvery is omitted to save space For
more information see[14].

The CLIENT runs on a portable computer equipped with a
WavelL AN cad. The SERVER runs on a server machine dso
equipped with a WaveL AN.

When the SERVER recéves a START messge with CLIENT
information that contains the locaion o user modificaions
and ingtructions on running the process it forks a dild
processto hande this CLIENT. The SERVER asdsgns a new
communicaions port for the cild, then returns to the waiting
state. It can how work on anather client request.

The dild process verifies the wnsistency of resources
between client and server macines and davnloads the
modified files to the server's replica If the data was
downloaded successully, it sends an ACCEPTED message to
the CLIENT; if not, NACCEPTED is ®nt. ACCEPTED
contains a verificaion number assigned to this processby the
SERVER. After getting the ACCEPTED messge, the
CLIENT can stay idle, put its WaveL AN into slegp mode, or
enter suspend mode.

After sending the ACCEPTED message, the SERVER child
forks a grandchild to handle process exeaution. The
grandchild runs the process acmrding to the instructions
obtained from the CLIENT. When the processng is finished,
the grandchild dies and the SERVER child sends a READY
messge to the CLIENT. |If the CLIENT is awake, it
downloads the results of the execution and the screen ouput
of the exeauted process This protocol asumes that no
concurrent updates are generated

If the CLIENT is not awake, it canna get the READY
message, and the resporsible SERVER child must wait urtil
the CLIENT awakens. When the CLIENT awakens it sends
an IS READY messge to the SERVER and the SERVER
sends the READY message aain. Then the CLIENT
downloads the result. If the result was downloaded
succesqully, the CLIENT sends a DONE message to the
SERVER. After getting DONE, the dild resporsible for
communicaion des.

I111.2 The Process Database

All processes that ever use the RPF are recorded in a process
database. Each processisidentified by the command line that
runs it and the path to the diredory where the processruns.
The database record contains the description o the environ-
ment, platform, and OS for the process Each record of a
processcontains the list of files that shodd na be transferred
from client to server and alist of files that shoud na be trans-
ferred from server to client even if they are modified. For
example, if the processis a cmpilation, objed files $oud
not be transferred from server to client nor exeautables from
client to server. The record of a process aso contains
temporary information olained from the SERVER in the
ACCEPTED messge, like the number of the I/O port of the
child, status of the process etc. The record aso keegs the
statistics about power consumption by the process (mean and
standard deviation) for the particular size of the user-modified
information. The record is updated twice during the
processng: after the ACCEPTED messge is obtained, and
after the procesdng is over. The mean and standard deviation
are used for the caculation d confidence intervals used for
the comparison o power costs.

I111.3 Client/Server Resour ce and
Environment Verification

To run the process remotely, RPF needs a mnsistent
environment on bah madines. Whil e the RPF currently runs
only on alimited variety of platforms and operating systems,
in principle it coud be ported to many others. But
interoperation between dfferent platforms or operating
systems would be difficult, so the RPF must verify the
consistency of:

1) Platforms: e.g., Sparc/x86, big-endian vs. littl e-endian
2) OS: Linux, UNIX, Windows95, etc.

3) Software packages: G++, libraries, tar, zip, etc.

4) Environment variables

5) Hard drive space to ensure that enough is avail able for
the process

6) CPU workload

Depending on charaderistics of particular process other
environmental fadors may prove important. Chedks for these
will be added asthey are discovered.

I11.4 The Rumlet Procedure

The dient must be @le to identify updated files and transfer
them to the server. This processmust be very cheg in terms
of power consumption, or it will negate any gains from
migration. Modificaions that the user committed to his files
can be recorded by trapping updates. Another possgbility isto
scan the diredory and find al files whase ntime attribute is
newer than ore prerecorded in aspeda database.

Both approaches have alvantages and dsadvantages that can
potentially have significant effeds on paver savings. For the
current reseach we have daosen to implement scanning

becaise it alows us to avoid kerne modificaions, thus
increasing the portability and reli abilit y of the amde.

Severa file replicaion services use scanning [6], [12], but
these systems do nd consider power management isues.
They tend to provide generality not required for RPF, at the
cost of power-expensive operations. We designed the Rumlet
program to scan a user’s file system and record attributes of
files to a database using little power. Modified files are
recognized through comparison d their attributes to their
recorded attributes in the database. The Rumlet procedure
runs on the dient site to find wser-modified files and onthe
server dite to find results, i.e. files newly produced by the
process

I11.5 Off-the-Shelf Packages

Some processes were incorporated into RPF from standard
padkages. ncftp was used to transport user data and results
between CLIENT and SERVER. tar and gzip are used for the
conversion d multiple files that must be transported into ore
compres=d file. The power costs of the extra processng for
these mnversions are mmpensated by the deaeased power
spent transporting small er data packages. If afileis encrypted
or zipped drealy, i.e. the further zipping will not be @le to
make the fil e small er, this dep can be skipped.

I11.6 Decision-M aking

The dient must dedde whether to run processes remotely.
[13] showed that data sizeis the main fadtor in the power cost
of the procesdng. But it is not the only cost. In ndsy
environments the power cost of remote procesing gows

14 -
Ul ocal

OlLocal RPF
10 1 M Remote

12 7

dramaticdly. Also, changes in the process workload may
affed the dhoice of where to run this process But if the
workload was changed acddentally, for example if the process
fails becaise of a syntax error, then future dedsions soud
not be influenced. Thus the dedsion-making procedure must
be aaptive [11], but also must have sufficient conservatism
not to be skewed by errors. We implemented a dedsion
making procedure for RPF acmrding to the following prin-
ciples:

1) Datagathering

RPF initialy runs the same process dternatively, locdly and
remotely, encouraging the user to use battery power on hHs
laptop in bah cases and measuring the st of both aterna-
tives. This method olviously puts an extra burden on the
laptop's battery; but sometimes it is impossble to predict
which aternative gives the best results without trying both.

2) Primary dedsion-making

After RPF gets enough measurements to determine that one of
the doices is better, it runs the process that way on most
future occasions.

3) Vadlidity cheding

Occasionally RPF deliberately makes the “wrong” dedsion,
and runs the process the other way. If, for example, it was
dedded to run the processlocdly, occasionally RPF runs the
processremotely to be sure that the dedsion is dill right. If
the ‘“wrong” way appeas better now, RPF does not
immediately switch. It continues to run processs in the

8 - DRemote RPF
% of s - Transmission
Battery
Used 4 -
o =il |

0 125 250 375
Kilobytes of Changed Source Code

500

Figure 3: Comparisons of local and remote processing with and without RPF.

previoudy chosen way with shorter periods between “wrong”
runs.

If the power costs of running the processin the previously
chosen manner change dramaticdly, the dternative dedsion
will be dcedked more often. Such fluctuation in a task
normaly run locdly might be caised by the growth of the
processworkload, possbly making remote processng better.

If the power costs of running the processin the previously
chosen manner demonstrate stability, the dternative dedsion
will be dhedked lessoften.

4) Filtering

Sometimes changes in the power consumption d RPF tasks
are the result of transients in network noise or statistica
fluctuation, which shoud na be responced to rapidly. RPF
continues to run the processin the initially chasen way until it
is ressonably sure that the differences are due to continuing
condtions. The formula used for the estimation o locd and
remote @sts is the following simple digital filter:<Estimated
power cost>= (1-a) *< Last N measured power costs/ N > +a
*< Last estimated powver cost >, where N > 0 and a is the
coefficient of conservatism of the system. If changes in the
environment are rare, then the wefficient shoud be low and
the result depends more on recently measured values. |If
changes happen dften, and any particular change is not reason
enough to change the dedsion, then the mefficient shoud be
high and the airrent dedsion will depend more on the
previous dedsion.

IV.EXPERIMENTS

We ran 70 experiments, consuming 200 hous of wall clock
time, to measure the RPF. Eadh pdnt plotted below typicdly
represents four to eight hours of experiments. The processes

1.6 ~
1.4+
1.2
1.0 4
0.8 A

OLocal
O Remote

% of
Battery 0.6 -

Used 0.4 4
0.2 |

0.0 ‘ T ‘ T ‘ T

1 11 20 50

0.2
-0.4 -
Kilobytes of Changed Source Code

Figure 4: The power costsfor local and remote
compilation of the RPF package

tested here were compilations of red padages; one of them
was RPF itself. The experiments were run wsing a Dell | aptop
with 486 100mHz processors as the mobile mmputer, and a
Pentium Pro PC running a 200 mHz & a server. All
macines were ejuipped with WaveLAN radio cards. The
server was aso in regular use for other tasks. The queue
waiting for processng on the server usually contained 0.7 to
0.8 tasks (not courting experimental tasks), which is a

relatively small workload. The radio channel was mostly idle,
but neighbaring laboratories were using WaveL AN cards for
their own reseach. In more redistic environments the server
will serve more than ore dient through radio communication
devices, and the radio channel will cary a significant amourt
of other traffic. The methoddogy of measurements is the
same & the experiments described in [13]. All results are
shown with 9% confidenceintervals.

1V.1 RPF Power Cost

Figure 3 shows the msts of running the RPF itself. Locd and
remote compilations withou RPF are compared with compi-
lations using RPF. The X axis shows the size of the modified
source ®@de. TheY axis $ows the power cost in percent of
the battery life. For eat amourt of code changed, five bars
are shown. The first shows the st of the locd compilation
withou using RPF and without running a WaveL AN cad.
The seaond shows locd costs when RPF and a powered-up
WaveL AN cad are included. Runring RPF withou radio
would be pointless so this bar redisticdly shows the st of
having the option d migrating when the system choases not to
exerciseit.

The third bar shows the wsts of procesing the cmpil ation
remotely, by hand and withou RPF, as chegly as posshle.
The fourth bar shows the @sts of running remotely with RPF,
rather than handcrafted methods. Finaly, the fifth bar shows
the power cost of merely transferring the dtered files over the
radio channel and the result files badk. This bar suggests the
lower bound on hw little power would be cmnsumed if the
server were infinitely fast and there were no overheal costs.

Adding the WaveL AN cad to the mobile machine increases
the st of procesing propationdly to the duration d the
process In most cases, remote procesing with RPF and
withou RPF is dtatisticdly indistinguishable, which means
that the st of RPF is negligibly small. At the zeo pant, the
cost of Remote RPF shows the dired cost of a pure RPF
protocol message exchange withou useful processng and
transporting, which is equal to 0.2 + 0.1 percent of battery life.

The use of power-costly Wavel AN cards increases the @st of
locd processng that doesn’'t use them, but that is the price of
having a ommunicaion service The extra power cost of the
Wavel ANs grows with the duration d the locd experimental
runs, which depends on the amount of modified code.
Because of this obvious trend in power costs, the measu-
rements at the points 375 and 500Kb were nat necessary.

I1V.2. The Necessity of Decision Making

If agiven process fioud aways be run locdly (or remotely)
regardless of how much of its data changed, the RPF would
not need adedsion cgpability. If the extrapolated lines of locd
and remote @st cross the dedsion shoud be changed at the
crosover point. If the adosover point istoo closeto 0, we do
not need RPF's decision fadlity becaise we shoud always
run the process remotely. If the aossover paint is very far
from O, RPF s dedsion fadlity is again lessnecessary becaise
users €ldom change that much code, and can therefore dford
the occasional power costs.

The first series of experiments compiled the RPF padkage
itself. This padkage mntains abou 100K of source mde, with
exealtables of about 500K. The result is siown in Figure 4.
For this padkage it nealy always pays to run the process
remotely. The st of remote procesing grows very little
becaise the speed of compilation ona fast server is © high
that most of the @st isin transportation o source and exeauta
bles.

Another series of tests used the ade for the Rumor repli cated
file system [12]. This urce ode is abou 50K, and exe-
cutables are 7MB for a stripped and 28VB for unstripped
exeautables. Usualy the user is more interested in the un-
stripped version, because multiple recompilations occur
during debugging, when the unstripped version is valuable.
The results of these experiments are shown in Figures 5 and 6
for stripped and urstripped versions, respedively. The adoss
over for the stripped versionis locaed between 11and 20KB
of modified source ®de, correspondng to about 550 lines of
C++. The aosover for the unstripped versionis at 20 KB of
modified source @de, abou 770lines of source mde.

Therefore, RPF's dedsion cgpability is useful for Rumor
compil ations becaise recompil ation is common on bah sides
of the dosover point. The dedsion capability al ows battery
savings of around.5 percent per compil ation for these redistic
cases.

The remote bars demonstrate much sower growth with the
growth of the modified user source @de because the server is
significantly faster than the portable computer, so the time
required for remote exeaution grows dowly. For larger ranges
of code canges, the growth of the remote power costs is
naticeale. For example, consider the large changes in remote
power costsin Figure 3 as the size of the modified source @de

8 -
7 1 OLocal
6 1 O Remote
% of 51
Battery 4
Used 3 -
2 4
Al
0 T |
11 20 50 125

Kilobytes of Changed Source Code

Figure 6: The power costsfor local and remote
compilation of Rumor for unstripped
executables

grows from 0 to 500Kb.

The mnfidenceintervals of the remote bars on Figure 4 are
relatively wide and crossthe X-axis, due to the very low
predsion d the APM power measurement tool. The

diff erence between two conseautive measurements can be up
to 4 percent, and the seand measurement can even show
higher battery capadty than the first one.

[13] discusses advantages and dsadvantages of this form of
measurement method This reseach dd na use ecternal elec
tric power-measuring devices because of the difficulty of
adhieving a reliable experimental setup. Also, a typicd run-
ning implementation d the RPF would na have such devices,
and the system shoud use only the devices that are available
to the average user on hislaptop.

V.SUITABLE APPLICATIONS FOR RPF

The value of RPF depends on hav many common applicaions
have the charaderistics demonstrated above for compil ation.
Some gplicaions, such asMS Word, will not gain anything
fromit. [13] demonstrated that processes with high I/O and
CPU adivity (such as Gausdan elimination) can achieve very
high percentages of power saving. Gausdan elimination's
processng complexity is O(D** 1.5), where D isthe amourt of
datato be processd. Itstransmisson complexity isonly
O(D). The measurements in [13] showed that statisticdly
noticeale power saving can be observed for matrices bigger
than 50x500. Any processwith complexity O(D** k) with
k>1 will save power when runremotely for D>Do, where Do
=(a) * (U/(k-1)) and a istangent to the transmisson paver
cost.

Other tasks that seem suitable for RPF include:

1) Largesimulationand numericd applicaions
2) Graphic gpplicaions

3) Genetic dgorithms

4) On-line analyticd processng

5) Statisticd applications

2.5
OLocal
2.0
[0 Remote
% of 1.5

Battery
Used 1.0

0.5 1 I m { {
0.0 T T T
5 11 20 50

Kilobytes of Changed Source Code

Figure5: The power costsfor local and remote
compilation of Rumor for stripped executables

6) Other CPU-boundapplicaions

All of these gplicaions smetimes leal to large anourts of
procesing and/or disk 1/O adivity, but also sometimes are
quite short. Therefore, RPF could be used to dedde when to
migrate such tasks in the expedation that particular runs will
or will not consume large anourts of power.

The interadivity of a process also affeds its aiitability for
RPF. If auser nealsto communicae with his applicaion run-
ning on the remote machine, some alditional constraints
appea. First of all, the user' s maciine caxna be suspended
during the idle period, but must stay alert to al remote cdls.

Sewmnd, any intercommunication through a radio
communicdion deviceis a very power-costly operation, so an
applicaion with a lot of interadivity will not win any power
from the remote procesing. Sometimes the amount of
interadivity depends on unpedictable user behavior, in which
case the framework's dedsion-making procedure will not be
able to make mnsistent dedsions.

V1. DISCUSSION AND FUTURE WORK

Our results show that remote exeaution d large tasks using
RPF with a faster server can reduce power consumption by 3
to 6times. However, remote exeaution when locd exeaution
is less power-costly can cause up to 0.5% loss of battery
power per run. While this level of loss may seem
insignificant, [13] showed that the power losses could be
much greaer in ndsy environments. Therefore, the dedsion-
making procedure must be intelli gent enowgh to hande stealy
and busty noise. Further studies of dedsion-making
algorithms are needed to addressthis issue.

Redesigning RPF to permit decompasition d applicaions into
separately migratable comporents using DCOM, Rover, or
CORBA would incresse the gplicability of the methods.
Measuring the power consumption o individual comporents
would be dhallenging, however.

The existing RPF incorporates some, but not all of the feaures
required to suppat the more general case of machines moving
not just within an dfice ewironment, but anywhere. An
additional modue would be required to hande data transfer
between a mobile machine and the user’s home desktop a
another server. This case dso requires more cae in
maintaining data @nsistency among multiple replicas. Other
improvements to RPF for this case would involve load
management among server macines, seach methods for
finding servers aiitable for handing particular remote
exeadtions, and migrating results to ather servers to hande
clientsin motion duing the process exeaution. Seaurity and
privacy isuues would aso need to be aldressed. All of these
feaures would neal to be alded withou increasing power
consumption.

Further reseach is necessary to determine the best methods of
making migration dedsions for awider variety of applicaions.
Also, more dfort is required to determine the best filtering
techniques for handing process migration in environments
with varying noise charaderistics, since in such environments
the wsts of migration will adso vary. Findly, wide
deployment and field testing of the Remote Processng
Framework would be desirable.

VIl. CONCLUSION

Previous reseach demonstrated the possbility of improving
the battery lifetime of untethered patable mmputers by using
wireless networks to migrate large tasks to server machines.
Migrating such tasks can save power from many sources on
the portable mmputer, including the CPU, memory, disk, and
screen. However, custom-crafted process migration required
knowledge and care not pradicd for ordinary users.

We show here that a simple software framework can automate
most of the difficult tasks of process migration for power
management. By automating data @nsistency issues and
handling the basic protocol synchronization to communicate
between the portable dient and its wrver, the Remote
Procesdng Framework makes process migration for power
management a feasible technique for the average user.

This reseach aso answers the question d whether a useful
Remote Procesing Framework could be implemented without
incurring large new overheals that overwhelmed the desired
power savings. Earlier reseach using handcrafted process
migration oliained benefits of up to 51 percent of the battery
power expended [13]. This paper demonstrates that similar
results are posshle with an automated system requiring no
user intervention. Given that users are dready paying the st
of having a wirelessnetwork card in their portable computer,
the extra @mst of the Remote Procesing Framework itself is
around.2 percent of atypicd portable computer's battery life
for eat invocaion. Since migration can give benefits of 6
percent or more of the battery life for redistic tasks, this
overheal is negligible. The key to lowering the asts of the
framework was smplifying as many of the framework's detail s
as possble, particularly its replication fadliti es.

This reseach further demonstrates the importance of having
some degree of sophistication in the dedsion-making process
that determines whether a given invocaion d atask shoud be
run locdly or remotely. The same command can lea to very
different power costs, depending on the state of the data
involved. Incorredly choasing to run atask either locdly or
remotely can be expensive in power. Fortunately, for im-
portant applicaions like cmpilation, the framework can
automaticdly determine whether a particular invocaion
shoud be handled locdly or remotely.

REFERENCES

[1] Ajay Bakre, B. R. Badrinath. M-RPC: A Remote
Procedure Call Servicefor Mobile Clients, Proceeadings of the
First Internationd Conference on Mobile Computing and
Networking, MobiCom' 95, Berkley, Caifornia, pp. 97-110,
November, 1995

[2] James W. Davis. Power Benchmark Strategy for Systems
Employing Power Management, |EEE Internationd Sympo-
sium on Eledronics and Environment, 1993

[3] A.T. Gaedi. NLMEM: anew SAS/IML maao for
hierarchicd norlinea models, Computer Methods and
Programsin Biomedicine, vol.55, no.3, Elsevier, March 1998
p.207-16.

[4] R. Grimes. Professond DCOM Programring, Olton,
Birmingham, Canada: Wrox Press 1997.

[5] David P. Helmbold, Darrell D. E. Long and Bruce
Sherrod. A Dynamic Disk Spin-down Tedchnique for Mobile
Computing, Procealings of the Seawmnd Annud ACM
Internationd Conference on Mobile Computing and
Networking, Rye, NY, November 1996

[6] JohnH. Howard. Using Rewncili ation to Share Between
Occasionally Conreded Computers, Fourth Workshop on

Workstation Operating S/stems, Napa, California, pp. 56-60,
October 1993

[7] Kinshuk Govil, Edwin Chan, Hal Wasserman. Comparing
Algorithms for Dynamic Speed-Setting of a Low-Power CPU,
Procealings of the First Internationd Conference on Mobile
Computing and Networking, MobiCom'95, Berkley,
California, pp. 13-25, November, 1995

[8] Ravi Jain and N. Krishnakumar. An asymmetric cost
model for query processng in mobile cmputing environ-
ments, pp. 363-378, in Wireless Information Networks, ed. J.
Holtzman, Kluwer Academic Publishers, 1996

[9] Anthory D. Joseph, Alan F. deLespinasse, Joshua A.
Tauber, David K. Gifford, and M. Frans Kaashoek, ROVER:
A Toadlkit for Mobhile Information Access Procealings of the
Fifteenth ACM Symposium on Operating S§ystems Principles,
pp. 156-171, Colorado, December, 1995

[10] Shankar Narayaswamy et a. Applicaion and Network
Suppat for InfoPad, IEEE Rersond Comrrunications, Vol. 3,
No. 2, pp. 4-17, April 1996

[11] Madiza Othman, Stephen Hailes. Power Conservation
Strategy for Mobile Computers Using Load Sharing, Mobile
Computing and Comrrunications Review, Voal. 2, No. 1, pp.
19-26, January 1998

[12] Peter Reiher, Michia Gunter and Gerald Popek. A
User-level File Replicaion Middieware Service, Procealings
of the SGCOMM Workshop onMiddeware, August 1995
[13] Alexey Rudenko, Peter Reiher, Gerald J.Popek, Geoffrey
H. Kuenning. Saving Portable Computer Battery Power
through Remote Process Exeaution, Mohile Computing and
Comnunications Review, Vol. 2, No. 1, pp. 19-26, January
1998

[14] Alexey Rudenko Portable Computer Battery Power
Saving Using a Remote Processng Framework, Master
Thesis, Computer Science Department of UCLA, 1998

[15] Mark Stemm, Randy H. Katz. Measuring and Reducing
Energy Consumption o Network Interfacesin Hand-Held De-
vices, Procealings of 3rd Internationd Workshop onMobhile
Multimedia Communications (MoMuC-3), Princeton, NJ,
September 1996

[16] Steve Vinoski. CORBA: Integrating Diverse Applicaions
Within Distributed Heterogeneous Environments, |EEE
Comnunication Magazine, Vol. 35, No. 2, February 1997

Alexey Rudenko is a reseach assstant in the Computer
Science Department at the University of Cdifornia, Los
Angeles. He recaeved his M.S. degreefrom UCLA in 1998
His reseach interests focus on mohile computing, distributed
file systems, and adive networks.

Peter Reiher is an Adjunct Associate Professor of Computer
Science @ UCLA. Dr. Reiher recéved his Ph.D. from UCLA
in 1987 He has worked on severa distributed operating
system projects at JPL and UCLA. Dr. Reiher's reseach
interests include mohile cmputing, distributed operating
systems, optimistic and predictive computing, and seaurity for
distributed systems.

Gerald J. Popek has been a Profesor of Computer
Science & UCLA since 1973 His acalemic badkground

includes a doctorate in computer science from Harvard
University. He m-authored “The LOCUS Distributed
System Architedure,” MIT Press 1985 and has written
more than 70 pofesdonal articles concerned with computer
seaurity, system software, and computer architecdure. Dr.
Popek was the founder of Locus Computing Corporation,
and is currently also the Chief of Techndogy Officer for
PLATINUM techndogy, inc.

Geoffrey H. Kuenning receved his Ph.D. in computer
science from UCLA. He is currently an assstant professor
a Harvey Mudd College. He is currently performing
reseach in mohile cmputing, distributed file systems,
prediction, and clustering methods. Dr. Kuenning is a
member of IEEE, CPSR, ACM, and a number of ACM
SIGs.

