1. k^n

2. (a) For any uv in L_2 we need to show that $(uv)^R = uv$:

 $$(uv)^R = v^R u^R = v^R (v^R)^R = v^R v = uv$$

 (b) Find a word w such that w is in L_1 but not in L_2 for example $w = aba$

3. (a) Always
 (b) if $\lambda \in L$
 (c) if $\lambda \in L$

4. Prove it in 2 steps: first, show that if $x \in (L_1^* L_2^*)^*$ then $x \in (L_1 \cup L_2)^*$. Second show that if $x \in (L_1 \cup L_2)^*$ then $x \in (L_1^* L_2^*)^*$. To prove each part you can use induction. For example for the first part, what we have to do is:

 Basis: show that $(L_1^* L_2^*)^0 = \lambda \in (L_1 \cup L_2)^* $

 Inductive hypothesis: assume that $(L_1^* L_2^*)^k \in (L_1 \cup L_2)^*$ for $k = 1, 2, ..., n$

 Inductive Step: show that $(L_1^* L_2^*)^{n+1} \in (L_1 \cup L_2)^*$

5. (a) $(ab)^* a$
 (b) $(ab)^*$
 (c) λ

6. (a) $(L_1 \cup L_2)^R = L_1^R \cup L_2^R$

 If $x \in (L_1 \cup L_2)^R \iff x^R \in ((L_1 \cup L_2)^R)^R \iff x^R \in L_1 \cup L_2 \iff x^R \in L_1$ or $x^R \in L_2 \iff x \in L_1^R \cup L_2^R$

 (b) proof by induction or similar to the previous step

7. (a) $S \rightarrow AaA$

 $$A \rightarrow bA \mid \lambda$$

 (b) $S \rightarrow AaA$

 $$A \rightarrow aA \mid bA \mid \lambda$$
(c) \[S \to BABABAB \]
\[A \to a \mid \lambda \]
\[B \to bB \mid \lambda \]

(d) \[S \to BaBaBaB \]
\[B \to bB \mid aB \mid \lambda \]

8. We use induction to prove this. Consider \(x \) as the number of occurrences of \(ab \) in the \(w \).

Induction basis: for the first word \(ab \), \(x = 1 \) which is an odd number.

Inductive assumption: for word \(w \) of length \(n \), \(x \) is an odd number.

Inductive step: to increase the length of \(w \) to \(n + 1 \) we need to add a symbol. This symbol can be added in any of the following positions:
- between \(a \) and \(a \),
- between \(a \) and \(b \),
- between \(b \) and \(a \), or
- between \(b \) and \(b \).

Since we have two symbols in our alphabet, we will have eight different combinations.
It is easy to see that \(x \) is odd in each case.

9. We first show that the length of \(x \) is even. We use contradiction. Suppose that \(|x| \) is an odd number, so:
\[x^2 = wwx \implies 2|x| = |w| + |x| + |w| \implies 2|x| = 2|w| + |x| \]
It is clear that \(2|x| \) and \(2|w| \) are both even so \(|x| \) can not be odd.

Next, we split \(x \) in half such that \(x = yz \) and \(|y| = |z| \). So we will have \(yzyz = wyzw \)
Also we know that \(|y| = |z| \), and \(|yz| = |wy| = |zw| \) so it is easy to show that \(|y| = |z| = |w| \) and finally \(y = z = w \), so: \(x = yz = ww = w^2 \)

10. The answer is shown below: