1. Since L is a regular language, we can construct a corresponding DFA, M, such that $L(M) = L$. By definition, L^R consists of all strings in language L in reverse order. We will construct an NFA, M_R, representing L^R such that $L(M_R) = L^R$. M_R will contain an additional start state with λ-transitions to the final states of M. The direction of every transition in M is reversed. Also, the start state of M will be the final state of M_R. The construction of the NFA M_R is as follows:

Let $M = (Q, \Sigma, \delta, q_L, F)$

$M_R = (Q \cup \{q_0\}, \Sigma_r, \delta_r, q_0, \{q_L\})$ and $q_0 \notin Q$

$p \in \delta(q, a) \iff q \in \delta_r(p, a)$ for $a \in \Sigma$

Now we need to show that $w \in L$ iff $w^R \in L^R$

2. Let L be a regular language. This implies that there exists a DFA, $M = (Q, \Sigma, \delta, q_0, F)$ which accepts L. We need to construct another DFA $M' = (Q, \Sigma, \delta, q_0, F')$ which accepts $\text{chopright}(L)$ from M. To do so, we need to make the states which can transition to the final states by one move, to the final states F' of M'. Clearly M' accepts $\text{chopright}(L)$. Hence $\text{chopright}(L)$ is regular.

$\forall \delta(q_i, a_i) = q_j : q_j \in F \implies$ remove q_j from F and add q_i to F

3. $a(aa)^*(bb)^* + (aa)^*b(bb)^*$

4. (a) $(1 + 0)^*(10)$

 (b) $\lambda + 0 + 1 + (0 + 1)^*(00 + 01 + 11)$

 (c) $1^*0(1 + 01^*0)^*$

5. The NFA is as follows:

 ![NFA Diagram](image)
6. The DFA is as follows:

7. (a) $S \rightarrow aS|b$

 (b) $S \rightarrow S_1b$

 $S_1 \rightarrow S_1a|\lambda$

8.

Figure 1: (a)
Figure 2: (b)
Figure 3: (c)

9.

10. (a) The DFA is as follows:
(b) $a(aba)^*b$

(c) $S \rightarrow S_1b$

$S_1 \rightarrow S_1aba|a$