1. What is $L(G)$?
$L(G) = \{ w \in \{a,b\}^* | n_a(w) = 2k, n_b(w) = 2l, k, l \in \mathbb{N} \}$, i.e. the language of strings containing an even number of a’s and an even number of b’s.

Consider the following invariant on the sentential forms of $L(G)$: all sentential forms w of $L(G)$ contain one variable, S or A, and the parity of $n_a(w)$ and $n_b(w)$ are even if w contains S and odd if w contains A.

Initially, the sentential form $w = S$ contains the variable S and $n_a(w)$ and $n_b(w)$ are both even. For an arbitrary sentential form w with one variable S where $n_a(w)$ and $n_b(w)$ are even, applying $S \rightarrow abA$ or $S \rightarrow baA$ makes the parity of $n_a(w)$ and $n_b(w)$ odd and the resulting sentential form will contain the variable A. For an arbitrary sentential form w with one variable A where $n_a(w)$ and $n_b(w)$ are odd, applying $A \rightarrow abS$ or $A \rightarrow baS$, makes the parity of $n_a(w)$ and $n_b(w)$ even and the resulting sentential form will contain the variable S. The other non-terminal production rules do not change the parity of $n_a(w)$ and $n_b(w)$ or the variable in the sentential form. Thus, the invariant holds.

The only way to produce a sentence (a string of terminals) is by applying $S \rightarrow \lambda$, where the invariant states $n_a(w)$ and $n_b(w)$ are both even in all strings containing S. Thus all productions of this grammar have an even number of a’s and b’s.

2. Construct CFGs for the following languages

 (a) $\{a^ib^ie^{i+j} | i, j \geq 0\} $

 Let $G = (\{S, S_1\}, \{a, b\}, S, P)$ with productions
 $S \rightarrow aSc \mid bS_1c \mid \lambda$
 $S_1 \rightarrow bS_1c \mid \lambda$

 (b) $\{a^ib^j | 0 \leq i \leq j\}$

 Let $G = (\{S\}, \{a, b\}, S, P)$ with productions
 $S \rightarrow aSb \mid Sb \mid \lambda$

3. Consider the language $L = \{a^ib^je^k | i, j, k > 0, i = j \lor j = k\}$
(a) Is \(L \) regular?
Assume \(L \) is regular. Let \(L' = (L \cap a^*b^*c) - a^*bc = \{a^n b^n c \mid n > 1\} \).
\(L' \) is regular by the closure properties of regular languages under intersection and set difference, but \(L' \) can be shown to be non regular by the pumping lemma. This is a contradiction, thus \(L \) is not regular.

(b) Is \(L \) context-free?
Yes. The CFG in Example 5.13 on page 149 of the textbook produces \(L \).

4. For each word, determine whether or not it is generated by each CFG. If it is, draw a derivation tree for the word.

(a) \(aabb \)
1) \(S \Rightarrow aSb \Rightarrow aabb \), 2) No, 3) No, 4) No

(b) \(abaa \)
1) No, 2) \(S \Rightarrow aS \Rightarrow abS \Rightarrow abaa \), 3) No, 4) No

(c) \(abba \)
1) No, 2) \(S \Rightarrow aS \Rightarrow abS \Rightarrow abba \), 3) No, 4) No

(d) \(aaaa \)
1) No, 2) \(S \Rightarrow aS \Rightarrow aaS \Rightarrow aaaaS \Rightarrow aaaa \),
3) \(S \Rightarrow aS \Rightarrow aX \Rightarrow aaXa \Rightarrow aaaa, 4) No

5. Consider the CFG given.

(a) Show that \(G \) is ambiguous.
\(aaaa \) can be derived two ways.
1) \(S \Rightarrow aSA \Rightarrow aaSAA \Rightarrow aaaaA \Rightarrow aaaa \)
2) \(S \Rightarrow aSA \Rightarrow aaA \Rightarrow aaaa \Rightarrow aaaa \)

(b) Find an unambiguous CFG equivalent to \(G \).
The following grammar is generated from a DFA that recognizes \(L(G) \), thus it is unambiguous.
\(S \rightarrow aA \mid \lambda \)
\(A \rightarrow aB \)
\(B \rightarrow aB \mid \lambda \)

(c) Find an unambiguous CFG that generates \(L(G) \setminus \lambda \)
The following grammar is generated from a DFA that recognizes \(L(G) \setminus \lambda \), thus it is unambiguous.
\(S \rightarrow aA \)
\(A \rightarrow aB \)
\(B \rightarrow aB \mid \lambda \)

6. Do Problem 6, Section 6.1 of the text.
\(S \rightarrow aS \mid \lambda \). This language is \(a^* \).

7. Consider the CFG \(G \) given.
(a) Eliminate λ-productions from G.

\[
S \rightarrow AbB \mid B \mid bB \\
A \rightarrow C \mid a \\
B \rightarrow S \mid b \\
C \rightarrow BbS
\]

(b) Eliminate unit productions from (a)

\[
S \rightarrow AbB \mid b \mid bB \\
A \rightarrow BbS \mid a \\
B \rightarrow AbB \mid b \mid bB \\
C \rightarrow BbS
\]

(c) Eliminate useless productions from (b)

\[
S \rightarrow AbB \mid b \mid bB \\
A \rightarrow BbS \mid a \\
B \rightarrow AbB \mid b \mid bB
\]

8. Construct a reduced grammar for the grammar given.

\[
S \rightarrow bbc
\]