1. Do Problem 5, Section 9.2 of the text.

2. Write (formally and completely) a Turing Machine program that computes the function \(f \) which adds three nonzero integers in unary. Assume the input strings are separated by 0's (e.g. \(f(11101011) = 111111 \).)

3. Consider the binary encoding \(< M >\) of a TM \(M \) (to be) described in class (Recall that \(Q = \{ q_1, q_2, \ldots, q_n \} \), \(\Gamma = \{ a_1, a_2, \ldots, a_m \} \) with \(a_m = \square \), initial state \(q_1 \) and final state \(q_2 \), \(L = 0 \), \(R = 00 \).) For
\[
< M > = 1110101010010011010010010111
\]
(a) With initial ID \(q_1a_1a_1a_2 \), construct the sequence of IDs of \(M \). Does \(M \) accept the string \(a_1a_1a_1a_2 \)? (Hint: The sequence starts as \(q_1a_1a_1a_2 \rightarrow a_2q_1a_1a_1a_2 \).)
(b) Repeat part (a) with the initial ID \(q_1a_1a_1a_1a_1 \). Does \(M \) accept the string \(a_1a_1a_1a_1 \)?
(c) Does \(M \) always halt?
(d) Determine the language accepted by \(M \). Is this language regular?

4. Suppose the transition function of a TM \(M \) with tape alphabet \(\{ 0, 1, \square \} \) contains no triplet \((q_i, X_j, D_k)\) where \(D_k = L \) (for Left). Show that \(L(M) \) is regular.

5. Write (formally and completely) a Turing Machine program that computes the function \(g \) which adds 1 to a nonzero binary number (e.g. \(g(10010) = 10011 \), \(g(10011) = 10100 \), \(g(111) = 1000 \)).

6. Suppose \(M \) is a Turing Machine (TM) that recognizes the language \(\mathcal{L} \). Are the following statements true or false? Be sure to give reasons for your answers. (Note: A language is called decidable (recursive) if it is recognized by a TM that always halts.)
(a) \(M \) halts on every \(w \in \mathcal{L} \).
(b) If \(\mathcal{L} \) is decidable, then \(M \) always halts.
(c) If \(M \) always halts, then \(\mathcal{L} \) is decidable.
(d) If \(\mathcal{L} \) is nonempty, then \(M \) halts on some \(w \).
(e) There is a TM that recognizes the language \(\overline{\mathcal{L}} \).
(f) There is a TM that recognizes the language \(\mathcal{L}^* \).

7. Do Problem 6, Section 11.1 of the text.

8. Show how to simulate a standard TM that always halts by a TM which always leaves its tape blank before it halts.