Lecture 2: Introduction to C++, testing and debugging

1.3

Introduction to C++
Introduction to C++

• Where did C++ come from?
 – Derived from the C language
 – C was derived from the B language
 – B was derived from the BCPL language

• Why the ‘++’?
 – ++ is an operator in C++ and results in a cute pun

C++ History

• C developed by Dennis Ritchie at AT&T Bell Labs in the 1970s.
 – Used to maintain UNIX systems
 – Many commercial applications written in C
• C++ developed by Bjarne Stroustrup at AT&T Bell Labs in the 1980s.
 – Overcame several shortcomings of C
 – Incorporated object oriented programming
 – C remains a subset of C++
A Sample C++ Program

- A simple C++ program begins this way
  ```cpp
  #include <iostream>
  using namespace std;

  int main()
  {
  
  - And ends this way
    ```cpp
 return 0;
  ```cpp
  ```

Layout of a Simple C++ Program

```cpp
#include <iostream>
using namespace std;

int main()
{
    Variable_Declarations
    
    Statement_1
    Statement_2
    ...
    Statement_Last

    return 0;
}
```
A Sample C++ Program

#include <iostream>
using namespace std;

int main()
{
 int number_of_pods, peas_per_pod, total_peas;
 cout << "Press return after entering a number.\n";
 cout << "Enter the number of pods:\n";
 cin >> number_of_pods;
 cout << "Enter the number of peas in a pod:\n";
 cin >> peas_per_pod;
 total_peas = number_of_pods * peas_per_pod;
 cout << "If you have ";
 cout << number_of_pods;
 cout << " pea pods\n";
 cout << "and ";
 cout << peas_per_pod;
 cout << " peas in each pod, then\n";
 cout << "you have ";
 cout << total_peas;
 cout << " peas in all the pods.\n";
 return 0;
}

Sample Dialogue

Press return after entering a number.
Enter the number of pods:
10
Enter the number of peas in a pod:
9
If you have 10 pea pods and 9 peas in each pod, then you have 90 peas in all the pods.

Explanation of code (1/5)

• Variable declaration line

 int number_of_pods, peas_per_pod, total_peas;

 – Identifies names of three variables to name numbers
 – int means that the variables represent integers
Explanation of code (2/5)

• Program statement

  ```cpp
  cout << "Press return after entering a number.\n";
  ```

 – `cout` (see-out) used for output to the monitor

 – `<<` inserts "Press…a number.\n" in the data bound for the monitor

 – Think of `cout` as a name for the monitor
 • `<<` points to where the data is to end up

 – `\n` causes a new line to be started on the monitor

Explanation of code (3/5)

• Program statement

  ```cpp
  cin >> number_of_pods;
  ```

 – `cin` (see-in) used for input from the keyboard

 – `>>` extracts data from the keyboard

 – Think of `cin` as a name for the keyboard
 • `>>` points from the keyboard to a variable where the data is stored
Explanation of code (4/5)

• Program statement

 total_peas = number_of_pods * peas_per_pod;

 – Performs a computation
 – ‘*’ is used for multiplication
 – ‘=’ causes total_peas to get a new value based on the calculation shown on the right of the equal sign

Explanation of code (5/5)

• Program statement

 cout << number_of_pods;

 – Sends the value of variable number_of_pods to the monitor
Program Layout (1/3)

- Compiler accepts almost any pattern of line breaks and indentation

- Programmers format programs so they are easy to read
 - Place opening brace '{' and closing brace '}' on a line by themselves
 - Indent statements
 - Use only one statement per line

Program Layout (2/3)

- Variables are declared before they are used
 - Typically variables are declared at the beginning of the program
 - Statements (not always lines) end with a semi-colon

- Include Directives
 #include <iostream>
 - Tells compiler where to find information about items used in the program
 - iostream is a library containing definitions of cin and cout
Program Layout (3/3)

- `using namespace std;`
 - Tells the compiler to use names in `iostream` in a "standard" way

- To begin the main function of the program
  ```
  int main()
  {
  ```

- To end the main function
  ```
  return 0;
  }
  ```
 - Main function ends with a return statement

Running a C++ Program

- C++ source code is written with a text editor

- The compiler on your system converts source code to object code.

- The linker combines all the object code into an executable program.
C++11

- C++11 (formerly known as C++0x) is the most recent version of the standard of the C++ programming language.
 - Approved on August 12, 2011 by the International Organization for Standardization.

- C++11 language features are not supported by older compilers

- Check the documentation with your compiler to determine if special steps are needed to compile C++11 programs
 - e.g. with g++, use extra flags of `--std=c++11`

Run a Program

- Enter the code below in a file
- Compile the code
- Fix any errors the compiler indicates and re-compile the code
- Run the program
- Now you know how to run a program on your system

Testing Your C++ Setup

```cpp
#include <iostream>
using namespace std;

int main()
{
    cout << "Testing 1, 2, 3\n";
    return 0;
}
```

Sample Dialogue

Testing 1, 2, 3

If you cannot compile and run this program, then see the programming tip entitled "Getting Your Program to Run." It suggests some things you might do to get your C++ programs to run on your particular computer setup.
Section 1.3 Conclusion

• Can you…

 – Describe the output of this line?

 `cout << "C++ is easy to understand.";`

 – Explain what this line does?

 `cin >> peas_per_pod;`

 – Explain this?

 `#include <iostream>`

1.4

Testing and Debugging
Software Bugs

• Programming is not easy

• Software developers make many mistakes

• Software errors cost a lot:
 https://raygun.com/blog/2014/05/10-costly-software-errors-history/

• A software bug is an error in a program

First Computer Bug

Photo # NH 96566-KN First Computer "Bug", 1945

First actual case of bug being found.
First Computer Bug

• In 1947, Grace Murray Hopper was working on the Harvard University Mark II Aiken Relay Calculator (a primitive computer).
• On the 9th of September, 1947, when the machine was experiencing problems, an investigation showed that there was a moth trapped between the points of Relay #70, in Panel F.
• The operators removed the moth and affixed it to the log. The entry reads: "First actual case of bug being found."
• The word went out that they had "debugged" the machine and the term "debugging a computer program" was born.

Bugs, Testing and Debugging

• Bug
 – A mistake in a program

• Testing
 – Searching for bugs

• Debugging
 – Eliminating bugs in programs once the bug is found
Program Errors

- **Syntax errors**
 - Violation of the grammar rules of the language
 - Discovered by the compiler
 - Error messages may not always show correct location of errors

- **Run-time errors**
 - Error conditions detected by the computer at run-time

- **Logic errors**
 - Errors in the program’s algorithm
 - Most difficult to diagnose
 - Computer does not recognize an error

Software Testing

- In order to eliminate software bugs as much as possible, we need to test the program

- Testing involves:
 - running the program on sample data
 - checking the results to make sure that the results produced by the program match what we expect the result should be for the sample data
Section 1-4 Conclusion

• Can you…
 – Describe the three kinds of program errors?
 – Tell what kind of errors the compiler catches?
 – What kind of error is produced if you forget a punctuation symbol such as a semi-colon?
 – Tell what type of error is produced when a program runs but produces incorrect results?