Ethereal Lab: TCP

In this lab, we’ll investigate the behavior of TCP in detail. We’ll do so by analyzing a
trace of the TCP segments sent and received in transferring a 150KB file (containing the
text of Lewis Carrol’s Alice’s Adventures in Wonderland) from a computer to a remote
server. We’ll study TCP’s use of sequence and acknowledgement numbers for providing
reliable data transfer; we’ll see TCP’s congestion control algorithm — slow start and
congestion avoidance — in action; and we’ll look at TCP’s receiver-advertised flow
control mechanism. We’ll also briefly consider TCP connection setup and we’ll
investigate the performance (throughput and round-trip time) of the TCP connection
between the client computer and the server.

Before beginning this lab, you’ll probably want to review sections 3.5 and 3.7 in the text.

1. Capturing a bulk TCP transfer from the client computer to a remote
server

To allow you to investigate TCP’s behavior, Ethereal was used to obtain a packet trace of
the TCP transfer of a file from a client computer to a remote server. The trace was created
by accessing a Web page that will allowed the user to enter the name of a file stored on
the client computer (which contains the ASCII text of Alice in Wonderland), and then
transfer the file to a Web server using the HTTP POST method (see section 2.2.3 in the
text). The POST method was used rather than the GET method because we’d like to
transfer a large amount of data from the client computer to another computer. During the
transfer, Ethereal was running to obtain the trace of the TCP segments sent and received
from the client computer.

The ethereal packet trace was captured using the following steps:

* The user visited the URL http://gaia.cs.umass.edu/ethereal-labs/TCP-ethereal-
filel.html

* The user entered the name of the file containing the text of Alice in Wonderland.

» Before pressing the Upload button, the packet capture with Ethereal was started.

* Then the user pressed the “Upload alice.txt file” button to upload the file to the
gaia.cs.umass.edu server. Once the file had been uploaded, a short
congratulations message was be displayed in the browser window.

* Ethereal packet capture was then stopped.

If you load the ethereal_tcp_trace file into Ethereal, your Ethereal window should
look like the window shown below.

(@ lab3-1-trace - Ethereal

File Edit VYiew Go Capture Analyze Statistics Help
BE xS R DF L QAQARQ BOHHE X

@Eilter:'l L, *Expression... %\gear V ﬁpply'
No. - ITime ISource IDestination IProtocoI Ilnfo =
1 0.000000 192.168.1.102 128.119.245.12 TCP 1161 > http [SYN] Seq=232129012 Ack=0 win=16384 Len=0 MSS=1460
2 0.023172 128.119.245.12 192.168.1.102 TCP http > 1161 [SYN, ACK] Seq=883061785 Ack=232129013 win=5840 Len=
3 0.023265 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=232129013 Ack=883061786 win=17520 Len=0
4 0. . 168. 1. 8.119.245. POST /sethereal-labs/labs-l-reply.htm HTTP/ —
5 0.041737 192.168.1.102 128.119.245.12 HTTP continuation
6 0.053937 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232129578 win=6780 Len=0
7 0.054026 192.168.1.102 128.119.245.12 HTTP Continuation
8 0.054690 192.168.1.102 128.119.245.12 HTTP Continuation
9 0.077294 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 ack=232131038 win=8760 Len=0
10 0.077405 192.168.1.102 128.119.245.12 HTTP continuation
11 0.078157 192.168.1.102 128.119.245.12 HTTP Continuation
12 0.124085 128.119.245.12 152.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232132498 win=11680 Len=0
13 0.124185 192.168.1.102 128.119.245.12 HTTP continuation
14 0.169118 128.119.245.12 152.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232133958 win=14600 Len=0
15 0.217299 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232135418 win=17520 Len=0
16 0.267802 128.119.245.12 152.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232136878 win=20440 Len=0
17 0.304807 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232138025 win=23360 Len=0
18 0.305040 192.168.1.102 128.119.245.12 HTTP continuation
19 0.305813 192.168.1.102 128.119.245.12 HTTP Continuation
20 0.306692 152.168.1.102 128.119.245.12 HTTP Continuation
21 0.307571 192.168.1.102 128.119.245.12 HTTP Continuation
22 0.308699 192.168.1.102 128.119.245.12 HTTP continuation
23 0.300553 152.168.1.102 128.119.245.12 HTTP Continuation
24 0.356437 128.119.245.12 152.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232139485 win=26280 Len=0
25 0.400164 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232140945 win=29200 Len=0
26 0.448613 128.119.245.12 152.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232142405 win=32120 Len=0
27 0.500029 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232143865 win=35040 Len=0
28 0.545052 128.119.245.12 1592.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232145325 win=37960 Len=0
29 0.576417 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232146217 win=37960 Len=0
30 0.576671 192.168.1.102 128.119.245.12 HTTP continuation x|
Acknowledgement number: 883061786 =
Header length: 20 bytes
b Flaos: 0x0018 (PSH. ACK) ~
[« I i
0000 00 06 25 da af 73 00 20 e0 8a 70 la 08 00 45 00 ..%..5. ..p...E. ﬂ
0010 02 5d 1e 21 40 00 80 06 a2 e7 c0 a8 01 66 80 77 Jotaee.. Ll fuw
0020 f5 0c 04 89 00 50 0d d6 01 f5 34 a2 74 1la 50 18 A P 2
0030 44 70 1f bd 00 00 50 4f 53 54 20 2f 65 74 68 65 Dp....PO ST /fethe
0040 72 65 61 6¢ 2d 6¢ 61 62 73 2f 6¢ 61 62 33 2d 31 real-lab s/1ab3-1 -
NN E N 24 77 AE TN G~ TN I~ AQ 7A GAA 9N AQ EA €4 EA OF rrandie bo+m ouTTA S
File: lab3-1-trace 177 KB 00:00:07 :[P: 213D: 213 M: 0 4

2. Afirst look at the captured trace

Before analyzing the behavior of the TCP connection in detail, let’s take a high level
view of the trace. First, filter the packets displayed in the Ethereal window by entering
“tcp” into the display filter specification window towards the top of the Ethereal window.

What you should see is series of TCP and HT TP messages between the client computer
and gaia.cs.umass.edu. You should see the initial three-way handshake containing a SYN
message. You should see an HTTP POST message and a series of “HTTP Continuation”
messages being sent from the client computer to gaia.cs.umass.edu. Note that there is no
such thing as an HTTP Continuation message — this is Ethereal’s way of indicating that
there are multiple TCP segments being used to carry a single HTTP message. You should
also see TCP ACK segments being returned from gaia.cs.umass.edu to the client
computer.

Whenever possible, when answering a question you should hand in a printout of the
packet(s) within the trace that you used to answer the question asked. Annotate the

printout to explain your answer. To print a packet, use File->Print, choose Selected

packet only, choose Packet summary line, and select the minimum amount of packet
detail that you need to answer the question.

Since this lab is about TCP rather than HTTP, let’s change Ethereal’s “listing of captured
packets” window so that it shows information about the TCP segments containing the
HTTP messages, rather than about the HTTP messages. To have Ethereal do this, select
Analyze->Enabled Protocols. Then uncheck the HTTP box and select OK. Also, in this
lab we would like to see TCP’s sequence numbers (and not the relative sequence numbers
that Ethereal may instead display). To see the sequence numbers, go to
Edit>Preferences>Protocols>IP and uncheck “relative sequence numbers”. You should
now see an Ethereal window that looks like:

@ lab3-1-trace - Ethereal]

File Edit View Go Capture Analyze Statistics Help

=10lx]

B EE*xRE Qe DF L QRAQA BN

X @

.
@Eilter: Ith ;‘ ‘ﬂh Expression... b.gear L Apply|
Mo, - | Time | Source | Destination | Protocol | Info =
1 0.000000 192.168.1.102 128.119.245.12 TCP 1161 > http [SYN] Seq=232129012 Ack=0 win=16384 Len=0 MSS=1460
2 0.023172 128.119.245.12 192.168.1.102 TCP http > 1161 [SYN, ACK] Seq=883061785 Ack=232129013 win=5840 Len= |
3 0.023265 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=232129013 Ack=883061786 win=17520 Len=0
4 0.026477 192.168.1.102 128.119.245.12 TCP 1161 > http [PSH, ACK] Seq=232129013 Ack=883061786 win=17520 Len
5 0.041737 1592.168.1.102 128.119.245.12 TCP 1161 > http [PSH, ACK] Seq=232129578 Ack=883061786 win=17520 Len
6 0.053‘337 128 11‘3 245.12 192.168.1.102 TCP http > 1161 ACK] Seq= 883061786 Ack= 232129578 win=6780 Len=0
Q. . .1, S, 9.240. ol >
8 0.054690 192 168 1.102 128.119.245.12 TCP 1161 > http [ACK] Seg= 2321324‘38 Ack= 883061786 win=17520 Len—1460
9 0.077294 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232131038 win=8760 Len=0
10 0.077405 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=232133958 Ack=883061786 win=17520 Len=1460
11 0.078157 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=232135418 Ack=883061786 win=17520 Len=1460
12 0.124085 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232132498 win=11680 Len=0
13 0.124185 152.168.1.102 128.119.245.12 TCP 1161 > http [PSH, ACK] Seq=232136878 ack=883061786 win=17520 Len
14 0.169118 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232133958 win=14600 Len=0
15 0.217299 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232135418 win=17520 Len=0
16 0.267802 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232136878 win=20440 Len=0
17 0.304807 128.119.245.12 192.168.1.102 TCP http > 1161 [ACK] Seq=883061786 Ack=232138025 win=23360 Len=0
18 0.305040 152.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=232138025 Ack=883061786 win=17520 Len=1460
19 0.305813 152.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=232139485 Ack=883061786 win=17520 Len=1460
20 0.306692 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=232140945 Ack=883061786 win=17520 Len=1460
21 0.307571 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=232142405 Ack=883061786 win=17520 Len=1460
22 0.308699 192.168.1.102 128.119.245.12 TCP 1161 > http [ACK] Seq=232143865 Ack=883061786 win=17520 Len=1460
23 0.300553 162.16K8.1.102 128.116.245.12 TCP 11ﬁ1> httn TPSH. ACK] SPn=232145325 Ack=RRI0617R8A Win=17520 | en (7]
P Frame 7 (1514 bytes on wire, 1514 hytes captured) -
P Ethernet II, Src: 00:20:e0:8a:70:1a, Dst: 00:06:25:da:af:73
P Internet Protocol, Src Addr: 192.168.1.102 (192.168.1.102), Dst Addr: 128.119.245.12 (128.119.245.12)
< Transmission Control Protocol, Src Port: 1161 (1161), Dst Port: http (80), Seq: 232131038, Ack: 883061786, Len: 1460
source port: 1161 (1161)
pestination port: http (80)
Sequence number: 232131038
[Next sequence number: 232132498]
Acknowledgement number: 883061786
Header length: 20 bytes
P Flags: 0x0010 (ACK) =l
0000 00 06 25 da af 73 00 20 e0 8a 70 1a 08 00 45 00 XS, .p...E.
0010 05 dc le 23 40 00 80 06 9f 66 cO a8 Q1 66 80 77 A P
0020 f5 0c 04 89 00 50 Od d6é 09 de 34 a2 74 la 50 10 PP N 4.t.P
0030 44 70 h9 8e 00 00 0d 0a Od Oa 57 65 20 61 72 65]« A we are
0040 20 6e 6f 77 20 74 72 79 69 6e 67 20 74 6f 20 72 now try ing to r
NNEN AE A~ AE @1 72 AR N A1 G~ G W0 GF 7E 7D 00 AT Alrasen 5 11 Am kb

File: lab3-1-trace 177 KB 00:00:07 :[P: 213 D: 202 M: 0

Sl

This is what we’re looking for - a series of TCP segments sent between the client
computer and gaia.cs.umass.edu. We will use the packet trace to study TCP behavior in
the rest of this lab.

3. TCP Basics

Answer the following questions for the TCP segments:

1. What is the IP address and TCP port number used by the client computer (source)
to transfer the file to gaia.cs.umass.edu? What is the IP address and port number
used by gaia.cs.umass.edu to receive the file?

2. What is the sequence number of the TCP SYN segment that is used to initiate the
TCP connection between the client computer and gaia.cs.umass.edu? What is it
in the segment that identifies the segment as a SYN segment?

3. What is the sequence number of the SYNACK segment sent by gaia.cs.umass.edu
to the client computer in reply to the SYN? What is the value of the
ACKnowledgement field in the SYNACK segment? How did gaia.cs.umass.edu
determine that value? What is it in the segment that identifies the segment as a
SYNACK segment?

4. What is the sequence number of the TCP segment containing the HTTP POST
command? Note that in order to find the POST command, you’ll need to dig into
the packet content field at the bottom of the Ethereal window, looking for a
segment with a “POST” within its DATA field.

5. Consider the TCP segment containing the HTTP POST as the first segment in the

TCP connection. What are the sequence numbers of the first six segments in the

TCP connection (including the segment containing the HTTP POST)? At what

time was each segment sent? When was the ACK for each segment received?

Given the difference between when each TCP segment was sent, and when its

acknowledgement was received, what is the RTT value for each of the six

segments? What is the EstimatedRTT value (see page 237 in text) after the
receipt of each ACK? Assume that the value of the EstimatedRTT is equal to
the measured RTT for the first segment, and then is computed using the

EstimatedRTT equation on page 237 for all subsequent segments.

Note: Ethereal has a nice feature that allows you to plot the RTT for each
of the TCP segments sent. Select a TCP segment in the “listing of
captured packets” window that is being sent from the client to the
gaia.cs.umass.edu server. Then select: Statistics->TCP Stream Graph-
>Round Trip Time Graph.

What is the length of each of the first six TCP segments?*

What is the minimum amount of available buffer space advertised at the received

for the entire trace? Does the lack of receiver buffer space ever throttle the

sender?

8. Are there any retransmitted segments in the trace file? What did you check for (in
the trace) in order to answer this question?

9. How much data does the receiver typically acknowledge in an ACK? Can you
identify cases where the receiver is ACKing every other received segment (see
Table 3.2 on page 245 in the text).

10. What is the throughput (bytes transferred per unit time) for the TCP connection?
Explain how you calculated this value.

~No

! The TCP segments in the tcp-ethereal-trace-1 trace file are all less that 1460 bytes. This is because the
computer on which the trace was gathered has an Ethernet card that limits the length of the maximum IP
packet to 1500 bytes (40 bytes of TCP/IP header data and 1460 bytes of TCP payload). This 1500 byte
value is the standard maximum length allowed by Ethernet.

4. TCP congestion control in action

Let’s now examine the amount of data sent per unit time from the client to the server.
Rather than (tediously!) calculating this from the raw data in the Ethereal window, we’ll
use one of Ethereal’s TCP graphing utilities - Time-Sequence-Graph(Stevens) - to plot
out data.
* Select a TCP segment in the Ethereal’s “listing of captured-packets” window.
Then select the menu : Statistics->TCP Stream Graph-> Time-Sequence-
Graph(Stevens). You should see a plot that looks similar to the following plot:

@ TCP Graph 11:lab3-1-trace 192.168.1.102:1161 -> 128.119.245.12 . =]]

Sequence
number[B]

Time/Sequence Graph

Time[s]

Here, each dot represents a TCP segment sent, plotting the sequence number of
the segment versus the time at which it was sent. Note that a set of dots stacked
above each other represents a series of packets that were sent back-to-back by the
sender.

Answer the following questions:
11. Use the Time-Sequence-Graph(Stevens) plotting tool to view the sequence
number versus time plot of segments being sent from the client to the
gaia.cs.umass.edu server. Can you identify where TCP’s slowstart phase begins

and ends, and where congestion avoidance takes over? Note that in this “real-
world” trace, not everything is quite as neat and clean as in Figure 3.51 (also note
that the y-axis labels for the Time-Sequence-Graph(Stevens) plotting tool and
Figure 3.51 are different).

12. Comment on ways in which the measured data differs from the idealized behavior
of TCP that we’ve studied in the text.

