
Improving TCP Performance over Mobile Ad Hoc Networks
by Exploiting Cross-Layer Information Awareness

Xin Yu
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012

xinyu@cs.nyu.edu

ABSTRACT
TCP performance degrades significantly in mobile ad hoc networks
because most of packet losses occur as a result of route failures.
Prior work proposed to provide link failure feedback to TCP so that
TCP can avoid responding to route failures as if congestion had oc-
curred. However, after a link failure is detected, several packets will
be dropped from the network interface queue; TCP will time out
because of these losses. It will also time out for ACK losses caused
by route failures. In this paper, we propose to make routing pro-
tocols aware of lost data packets and ACKs and help reduce TCP
timeouts for mobility-induced losses. Toward this end, we present
two mechanisms: early packet loss notification (EPLN) and best-
effort ACK delivery (BEAD). EPLN seeks to notify TCP senders
about lost data packets. For lost ACKs, BEAD attempts to retrans-
mit ACKs at either intermediate nodes or TCP receivers. Both
mechanisms extensively use cached routes, without initiating route
discoveries at any intermediate node. We evaluate TCP-ELFN en-
hanced with the two mechanisms using two caching strategies for
DSR, path caches and a distributed cache update algorithm pro-
posed in our prior work. We show that TCP-ELFN with EPLN and
BEAD significantly outperforms TCP-ELFN under both caching
strategies. We conclude that cross-layer information awareness is
key to making TCP efficient in the presence of mobility.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing protocols; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design—Wireless communica-
tion

General Terms
Algorithms, Design, Performance

Keywords
Ad hoc networks, TCP, Mobility, Transport layer, Cross-layer, Early
packet loss notification, Best-effort ACK delivery

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’04, Sept. 26-Oct. 1, 2004, Philadelphia, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-868-7/04/0009 ...$5.00.

1. INTRODUCTION
TCP performance degrades significantly in mobile ad hoc net-

works [9, 6, 18]. In such networks, nodes move arbitrarily, cooper-
ating to forward packets to enable communication between nodes
not within wireless transmission range. Route failures due to mo-
bility are the primary reason for most of packet losses [6, 18]. Since
TCP assumes that packet losses occur because of congestion, it will
invoke congestion control mechanisms for packet losses caused by
route failures, resulting in the reduction in throughput.

Several transport layer mechanisms [3, 9, 4, 15] have been pro-
posed to address the problems caused by mobility. One of the
promising approaches is to provide link failure feedback to TCP so
that TCP can avoid responding to route failures as if congestion had
occurred. ELFN (Explicit Link Failure Notification) [9] is such a
mechanism. With ELFN, when a node detects a link failure, it will
notify the TCP sender about the link failure and the packet that en-
countered the failure. When receiving a notification, TCP freezes
its retransmission timer and periodically sends a probing packet un-
til it receives an ACK. TCP then restores its retransmission timer
and continues as normal. ELFN was shown to outperform TCP.

TCP benefits from link failure feedbacks but is still affected by
frequent route failures. Holland and Vaidya [9] observed that TCP
experiences repeated route failures due to the inability of a TCP
sender’s routing protocol to quickly recognize and remove stale
routes from its cache. This problem is complicated by allowing
nodes to respond to route discovery requests with routes from their
caches, because they often responds with stale routes. Holland and
Vaidya showed that turning off replying from caches improves TCP
performance for a network with a single TCP connection. But
this approach will degrade TCP performance when multiple traf-
fic sources exist because of increased routing overhead. Thus, stale
routes present a serious challenge to TCP.

To address the cache staleness issue in the context of DSR (the
Dynamic Source Routing protocol) [13, 14], we proposed a dis-
tributed cache update algorithm [21]. When a node detects a link
failure, our algorithm proactively notifies all reachable nodes that
have cached that link about the link failure. Therefore, it enables
the routing protocol at TCP senders and receivers to quickly re-
move stale routes from their caches. Proactive cache updating also
prevents stale routes from being propagated to other nodes. We
showed [22] that this algorithm significantly improves TCP through-
put, because it reduces route failures by making the network layer
more mobility-aware.

In this paper, we investigate how to make TCP perform well in
the presence of frequent packet losses due to mobility. In contrast
to prior work, we focus on issues at both the network layer and the
transport layer, as well as the interactions between these two layers.
We seek to answer two questions:

1. What should be the appropriate responses of TCP to frequent
route failures and packet losses? For example, is it always
good to freeze TCP when route failures occur? Or is it better
to freeze TCP only when packets losses occur?

2. How can TCP be made efficient through approaches at the
network layer and cross-layer?

To answer these questions, we first study how mobility affects
TCP through simulation of ELFN. We make several observations.
First, we find that, after congestion control mechanisms are re-
stored, keeping TCP’s state the same as it was when TCP was
frozen improves throughput and reduces TCP timeouts compared
with using default values. Second, we find that there is a trade-off
between freezing TCP upon route failures and upon packet losses.
Route failures do not imply packet losses because packets can be
salvaged by intermediate nodes using cached routes. If packets are
salvaged, freezing TCP may decrease throughput because TCP can
continue to send packets using other routes; however, if we do not
freeze TCP when packets are salvaged, TCP will time out if sal-
vaged packets are dropped. We observe that these two choices re-
sult in similar throughput, but freezing TCP upon route failures
reduces TCP timeouts. Finally, we identify two problems at the
network layer that affect the efficient operation of TCP:

• Unaware of lost data packets: Prior work mainly focused
on making TCP aware of route failures. However, after a
link failure is detected, a routing protocol will drop all the
data packets with the same next hop in the network interface
queue. TCP will time out because of these losses.

• Unaware of lost ACKs: Upon route failures, ACKs are also
dropped silently. As a result, TCP senders have to wait for
timeouts and retransmit unacknowledged packets. Waiting
for timeouts not only degrades TCP throughput but wastes
limited bandwidth; retransmitting the packets that have been
received wastes nodes’ energy.

We propose to make routing protocols aware of lost data pack-
ets and ACKs and help reduce TCP timeouts for mobility-induced
losses. Toward this end, we present two mechanisms: early packet
loss notification (EPLN) and best-effort ACK delivery (BEAD).

With EPLN, when a node detects a link failure, if it cannot sal-
vage data packets and the packets have not been salvaged, it sends
a notification to the TCP sender. The notification includes the se-
quence numbers of all dropped packets for that connection. For
the lost packets that were salvaged by an intermediate node, the
node sends a notification to the intermediate node, which attempts
to send a notification to the TCP sender using a cached route. When
the TCP sender’s routing protocol receives a notification, it notifies
TCP about all lost packets. TCP disables its retransmission timer,
records these lost packets, and retransmits the lost packet with the
lowest sequence number. When an ACK arrives, TCP restores its
retransmission timer and retransmits the remaining lost packets.

With BEAD, when a node detects a link failure, if it cannot sal-
vage ACKs, it sends a notification about the lost ACK either to
the TCP receiver if the ACKs have not been salvaged, or to the
intermediate node that salvaged the ACKs. When forwarding a
notification, a node attempts to retransmit an ACK with the high-
est sequence number among lost ACKs to the TCP sender using a
cached route. If the intermediate node that salvaged the ACKs can-
not retransmit an ACK, it sends a notification to the TCP receiver.
If none of the intermediate nodes is able to retransmit an ACK, the
TCP receiver’s routing protocol retransmits an ACK with the high-
est sequence number if it has a route to reach the TCP sender.

Since EPLN and BEAD extensively use cached routes, we eval-
uate the effectiveness of the mechanisms using different caching
strategies. We incorporate EPLN and BEAD into DSR with path
caches and into DSR with our distributed cache update algorithm.
Through detailed simulations, we compare the performance of TCP-
ELFN; TCP-ELFN with EPLN and BEAD; and TCP-ELFN with
EPLN, BEAD, and our cache update algorithm. We show that,
compared with TCP-ELFN, EPLN and BEAD significantly im-
prove TCP throughput under both caching strategies. For exam-
ple, for 100-node networks, TCP throughput is improved by up to
173% for DSR and up to 210% for DSR with our cache update al-
gorithm, both at node mean speed of 20 m/s. Moreover, EPLN and
BEAD considerably reduce TCP timeouts, by more than 33% for
DSR and 44% for DSR with our cache update algorithm for 100-
node networks. In addition, enhanced with our cache update algo-
rithm, TCP-ELFN with EPLN and BEAD outperforms TCP-ELFN
with EPLN, BEAD, and path caches by up to 43% in throughput.

The rest of this paper is organized as follows. In Section 2, we
present as background an overview of DSR, a summary of our dis-
tributed cache update algorithm, and a description of simulation
environment. We study how mobility affects TCP in Section 3.
In Section 4 we describe EPLN and BEAD, and in Section 5 we
present an evaluation of EPLN and BEAD. We discuss related work
in Section 6 and present our conclusions in Section 7.

2. BACKGROUND

2.1 Overview of DSR
We present a simplified description of DSR [13, 14]. DSR is

composed of two entirely on-demand mechanisms: Route Discov-
ery and Route Maintenance. When a source node wants to send
packets to a destination, it first checks whether it has a route in its
cache. If it does not have a route, it initiates a Route Discovery by
broadcasting a ROUTE REQUEST. When receiving a ROUTE RE-
QUEST, a node checks whether it has a route to the destination in its
cache. If it has, it sends a ROUTE REPLY to the source, including a
source route formed as the concatenation of the source route in the
ROUTE REQUEST and the cached route. Otherwise, the node adds
its address to the source route in the packet header and rebroadcasts
the ROUTE REQUEST. When the ROUTE REQUEST reaches the
destination, the destination sends a ROUTE REPLY containing the
source route to the source. Each node forwarding the ROUTE RE-
PLY caches the route starting from itself to the destination. When
receiving the ROUTE REPLY, the source caches the source route.

In Route Maintenance, a node forwarding a packet is responsi-
ble for confirming that the packet has reached the next hop in the
route. If no acknowledgement is received after the maximum num-
ber of retransmission attempts, this node assumes that the next hop
is unreachable and sends a ROUTE ERROR to the source node, in-
dicating the broken link. Each node receiving a ROUTE ERROR

removes from its cache the routes containing the broken link.
Besides Route Maintenance, DSR uses two mechanisms to re-

move stale routes from caches. First, a source node piggybacks
on the next ROUTE REQUEST the last known broken link informa-
tion (called a GRATUITOUS ROUTE ERROR). Second, DSR uses
heuristics: a small cache size with FIFO replacement policy for
path caches, and adaptive timeout mechanisms for link caches [11].

2.2 The Distributed Cache Update Algorithm
Cached routes easily become stale due to mobility. In our prior

work [21], we proposed to proactively disseminate the information
about a broken link to the nodes that have that link in their caches.
We defined a new cache structure, called a cache table, and pre-

sented a distributed cache update algorithm to make route caches
in DSR adapt quickly to topology changes.

In a cache table, a node not only stores routes but also main-
tains the information necessary for cache updates. A node gathers
two types of information for each route: (1) how well the routing
information is synchronized among the nodes on the route, which
means whether a link has been cached in only the upstream nodes,
or both the upstream and the downstream nodes, or neither; and
(2) which neighbor has learned which link of the route through a
ROUTE REPLY. Thus, for each cached link, a node knows a set of
neighborhood nodes that have that link in their caches.

The algorithm uses the local information kept by each node to
achieve distributed cache updating. The algorithm is started either
when a node detects a link failure or when a node receives a cache
update notification. In either case, it notifies only the neighbor-
hood nodes that have cached the broken link to update their caches.
Therefore, the information about a broken link will be propagated
to all reachable nodes that have that link in their caches.

The algorithm provides three benefits. First, it reduces packet
losses because of the improved cache correctness. Second, it re-
duces packet delivery latency, since detecting broken links is the
dominant factor of latency. Finally, it reduces ROUTE ERRORS

caused by the use of stale routes. We showed that the algorithm
outperforms DSR with path caches and with Link-MaxLife [11], an
adaptive timeout mechanism for link caches.

2.3 Simulation Environment
In this section, we introduce simulation environment, since we

will present a simulation study of how mobility affects TCP in the
next section. We will give a detailed description of our evaluation
methodology for the proposed mechanisms in Section 5.

We used ns-2 [5] network simulator with Monarch Project’s wire-
less and mobile extensions [2, 17]. The network interface is mod-
elled after the Lucent’s WaveLAN, which provides a 2Mbps trans-
mission rate and a nominal transmission range of 250m; the net-
work interface uses IEEE 802.11 DCF MAC protocol [12]. The
mobility model is random waypoint model [2] in a rectangular field.
In this model, a node starts at a random position, picks a random
destination, moves to it at a randomly chosen speed, and pauses for
a specified pause time. The node speed was randomly chosen from
v±1 m/s, where v is node mean speed. We used pause time 0 s for
all simulations. The two field configurations we used were 1500m
× 1000m field with 50 nodes and 2200m × 600m field with 100
nodes. We used TCP-Reno with the packet size of 1460 bytes. The
maximum size of both congestion window and receiver’s advertised
window is 8. FTP is the application that we used over TCP.

3. MOBILITY, TCP, AND ELFN
In this section, we study how mobility affects TCP through sim-

ulation of ELFN in a network with 50 nodes and one TCP connec-
tion. The node speed was randomly chosen from 10± 1 m/s. We
explore three issues: (1) how to set RTO and congestion window
size after congestion control mechanisms are restored; (2) whether
to freeze TCP upon route failures or upon packet losses; and (3) the
network layer is unaware of lost data packets and ACKs.

3.1 How to Set RTO and cwnd after Conges-
tion Control Mechanisms are Restored?

Node 0 starts a TCP connection to node 1 at 100 s. At 101.607677
s, node 31 detects that link (31, 1) is broken when transmitting
the packet with sequence number 39 using route 0–38–9–31–1, as
shown in Fig. 1. Node 31 salvages this packet and the packets from
40 to 46 in the network interface queue using route 31–39–1. It

�� ������ �

�	�
������� � �������

����	�
������� � �������
����� �"!#�$���%��&('#)(�+* ,�& ��-.�(� *�! /���
0����� �
&(�1-�� �%*�'� ���3254367*%��4�8��
�* ,(�7
 �%* 9���� �
�
.*�������.-��":3�(���(�3;

<	=$>?-���
�
(��- *�� ��
�@ 6�A	�.B

Figure 1: An Example of How Mobility Affects TCP

then sends a ROUTE ERROR to node 0, including the sender and
the receiver addresses, ports, and sequence number 39. This is an
ELFN message. However, link (31, 39) is also broken, and there-
fore node 31 drops all packets. At 101.621079 s, node 0 receives
the ROUTE ERROR; the routing protocol sends an ICMP message
to TCP. TCP disables its retransmission timer, starts a timer called
a thaw timer with timeout 2 s, and sets the sequence number of the
probing packet to 39. After TCP is frozen, it does not send any
packet until the thaw timer times out. Thus, at 103.621079 s, node
0 sends the probing packet 39. At 103.695992 s, node 0 receives
the ACK for packet 39 and restores TCP’s retransmission timer.

We consider two choices for setting RTO and congestion window
size, cwnd. One choice is to use the default value 6 s for RTO
and 2 for cwnd; the other choice is to keep TCP’s state the same
as it was when TCP was frozen. Both choices were discussed by
Holland and Vaidya [9]. They observed that adjusting window size
had little impact on throughput, but changing RTO resulted in more
reduction in throughput. They suspected that the impact of RTO
was most probably caused by the frequency at which routes break
and ARP’s proclivity to silently drop packets. If a restored route
breaks and results in a failed ARP lookup, the sender will likely
time out. They concluded that, given the length of timeout, using
default RTO does not dramatically affect performance.

We attribute a different reason to the reduced throughput when
default values are used. In our example, the sequence number of
the next packet to be sent, 47, is larger than the highest sequence
number of acknowledged packets, 39, plus the reset window size,
2. Therefore, TCP will not send any packet until an ACK arrives.
However, the packets with sequence numbers from 40 to 46 were
dropped, and thus no ACK will arrive. At 109.695992 s, the re-
transmission timer expires and TCP retransmits packet 40. Here,
reducing cwnd causes TCP to enter an idle state; if the packets al-
ready sent are lost, TCP has to wait for timeouts. Therefore, using
default values for RTO and cwnd degrades TCP throughput. Since
TCP relies on RTO to recover from an idle state, it is better to use a
smaller RTO, such as the “old” value, which is 0.8 s in this exam-
ple. We will present an evaluation of the two choices in Section 5.

3.2 When should TCP be Frozen?
In ELFN, TCP will be frozen either when a TCP sender initiates

a route discovery, or when a TCP sender receives an ELFN message
indicating a link failure. A TCP sender will receive a notice only
when a data packet encounters a link failure for the first time. If the
packet encountering a link failure was salvaged before the occur-
rence of this failure, then only the node salvaging the packet can
receive a notice, since ELFN piggybacks a notice on the ROUTE

ERROR sent by DSR. For example, in Fig. 1, after link (31, 39)
is detected as broken, node 31 does not send a ROUTE ERROR to
node 0, since it is the source node of route 31–39–1. Thus, node 0
will not know about the link failure.

ELFN does not distinguish packet losses from link failures; it
freezes TCP even if packets are salvaged. At 109.695992 s, TCP re-

transmits packet 40 using route 0–38–9–31–39–1. However, this is
a stale route, since link (0, 38) is detected as broken at 109.728763
s. TCP is frozen because no route is available in node 0’s cache. At
109.738086 s, node 0 sends the packet using the discovered route
0–22–16–1. But this is also a stale route, since link (22, 16) has
broken. Node 22 salvages this packet using another route and sends
a ROUTE ERROR to node 0. No changes are made to TCP’s state
because TCP has been frozen.

At 109.924568 s, node 0 receives the ACK for packet 40. TCP’s
state is restored: RTO is set to 6 s and cwnd is set to 2. The se-
quence number of the next packet to be sent, 41, is less than the
highest sequence number of acknowledged packets, 40, plus the
reset window size, 2. Thus, TCP sends the packets 41 and 42 using
route 0–9–16–1. (When TCP is in the slow-start phase, it sends
two packets for one ACK.) However, link (9, 16) is broken. Node
9 salvages the two packets using another route and sends a ROUTE

ERROR to node 0. TCP is frozen although the packets have been
salvaged. TCP remains frozen till the ACK for packet 41 arrives.

As we discussed in Section 1, if packets are salvaged, freezing
TCP upon route failures may decrease TCP throughput; if we do
not freeze TCP when packets are salvaged, TCP will time out if the
salvaged packets are dropped. We observed that freezing TCP upon
route failures reduces TCP timeouts; therefore, we believe that this
is a conservative but reliable approach because route failures are
frequent. Thus, we will use this option in our simulations.

3.3 Unaware of Lost Data Packets and ACKs
As we showed, ELFN notifies a TCP sender about a link failure

only when a packet encounters a link failure for the first time; a
notification does not indicate whether the packet is lost. Another
problem exists at the network layer: upon route failures, a rout-
ing protocol silently drops all the packets with the same next hop
in the network interface queue. Since TCP does not know about
these losses, it has to time out. If an intermediate node notifies
TCP senders about packet losses, TCP senders will retransmit lost
packets earlier and thus avoid waiting for timeouts.

We show another example in which TCP times out because RTO
and cwnd are set to default values and because data packets are
dropped silently. At 120.140313 s, node 16 attempts to transmit
packet 409 using route 0–25–16–1 but detects that link (16, 1) is
broken. It salvages this packet using route 16–34–1 and sends a
ROUTE ERROR to node 0. TCP is frozen and the sequence num-
ber of the probing packet is set to 409. At 120.164540 s, node 0
receives the ACK for packet 408, and thus TCP’s state is restored.
The next packet to be sent is 412, larger than 408 plus the reset
window size. Therefore, TCP enters an idle state, although node 0
has routes to reach node 1 and the window size before being reset
allows TCP to send more packets. At 120.239832 s, node 16 de-
tects that link (16, 34) is broken and drops the packets 409 and 410.
As a result, TCP times out at 126.164540 s.

If we keep TCP’s state the same as it was when TCP was frozen,
TCP will be able to send packet 412. If this packet is delivered, a
duplicate ACK with sequence number 408 will be returned because
packet 409 was dropped. Three duplicate ACKs trigger TCP’s fast
retransmission; however, fast retransmission recovers only the first
lost packet. Thus, TCP still will time out if there are multiple
losses. Therefore, it is necessary to let TCP know about lost packets
whether TCP’s state is set to default values or not.

ACKs are also dropped silently; therefore, TCP senders will
time out and retransmit unacknowledged packets. Due to mobility,
retransmitted data packets and ACKs could be salvaged multiple
times until they reach their destinations, or they could be dropped
and thus TCP would time out and start another retransmission.

4. EARLY PACKET LOSS NOTIFICATION
AND BEST-EFFORT ACK DELIVERY

It is important for the network layer to be aware of lost data
packets and ACKs and to help reduce TCP timeouts for mobility-
induced losses. To achieve this goal, we present two mechanisms:
early packet loss notification (EPLN) and best-effort ACK delivery
(BEAD). In this section, we describe the two mechanisms in detail
with examples.

4.1 Overview
The key idea of EPLN and BEAD is that intermediate nodes no-

tify TCP senders about lost data packets and retransmit ACKs for
lost ACKs by extensively using cached routes. No route discovery
is initiated at any intermediate node. It is simple to find a route by
initiating a route discovery, but such an approach is not efficient,
because packet losses are frequent and route discoveries introduce
significant overhead.

We consider three types of packets that will encounter route fail-
ures: data packets, ACKs, and packet loss notifications. We sum-
marize the operations of the two mechanisms as follows:

1. If data packets or ACKs are dropped and this is the first time
they encounter a link failure, then the current node sends a
notification to the TCP sender for lost data packets or to the
TCP receiver for lost ACKs, using the route obtained by re-
versing the source route.

2. If data packets are dropped after being salvaged by an inter-
mediate node, then the current node notifies the intermediate
node about lost packets. The intermediate node sends a noti-
fication to the TCP sender if it has a cached route.

3. If ACKs are dropped after being salvaged by an intermediate
node, then the current node notifies the intermediate node
about lost ACKs. That node first attempts to retransmit an
ACK with the highest sequence number among lost ACKs
using a cached route; if it cannot, it sends a notification about
lost ACKs to the TCP receiver.

4. When forwarding a notification about lost ACKs, a node at-
tempts to retransmit an ACK with the highest sequence num-
ber among lost ACKs to the TCP sender using a cached route.
If it can do so, it marks the notification to indicate that an
ACK has been retransmitted. If none of the intermediate
nodes is able to retransmit an ACK, the routing protocol at
the TCP receiver retransmits an ACK if it has a cached route.

5. If a notification packet is dropped due to a link failure, the
node detecting the link failure notifies the node that is the
source of the notification. That source node will send another
notification to the TCP sender or the TCP receiver using a
cached route.

Thus, the network layer tries its best to let TCP senders know
about lost data packets and to retransmit ACKs for lost ACKs. The
two feedback mechanisms are applicable to any routing protocol,
as they address general problems that occur at the network layer.

Route caches play an important role in both EPLN and BEAD,
due to the extensive use of cached routes. Our prior work [21]
has addressed the cache staleness issue; we will use our distributed
cache update algorithm as one caching strategy in our evaluation of
EPLN and BEAD. For DSR with path caches, our mechanisms pro-
vide another benefit: quick detection and eviction of stale routes.

4.2 Packet Loss Notifications
We define a data structure called drop list to record dropped

packets. Before a node drops a data packet or an ACK, it records
in its drop list the following information about the packet: source
address, source port, destination address, destination port, packet
type (data or ACK), TCP sequence number, and the source route
used in routing the packet. A node uses the information recorded
in its drop list to construct packet loss notifications.

We define another structure called conn info to record in a no-
tification the connection information about lost packets originat-
ing from the same connection. The information includes source
address, source port, destination address, destination port, packet
type (data or ACK), and the TCP sequence numbers of lost pack-
ets. When possible, we piggyback the information about lost pack-
ets on a ROUTE ERROR sent by DSR; otherwise, a notification will
be sent as a ROUTE ERROR. We extend the format of a ROUTE

ERROR to include an optional field called conn list, which contains
one or more conn info structures.

4.3 EPLN and BEAD
In this section, we describe EPLN and BEAD together and elab-

orate on each when necessary, since they have common operations
at the node detecting a link failure and different operations at the
node forwarding or receiving a notification.

4.3.1 At the node detecting a link failure
When a node detects a link failure, it attempts to salvage the

data packet or ACK encountering the broken link. If it cannot
salvage the packet, it creates an entry in the drop list, recording
the information about the packet. The node then checks the net-
work interface queue for the packets that have the same next hop in
their routes. For the data packets or ACKs to be dropped, the node
records the information about the packets in the drop list.

If the node is the TCP sender of the packet encountering the bro-
ken link, it sends an ICMP message to TCP including the sequence
number of the packet. ELFN uses this operation to freeze TCP. The
node then tries to find a route either from its cache or by initiating
a route discovery. We focus on the operation at the network layer
first and will describe the responses of TCP to an ICMP message
in Section 4.3.5.

If the node is not the source node of the packet, it will send a
ROUTE ERROR to the source node. This source node is a TCP
sender, or a TCP receiver, or an intermediate node that salvaged the
packet before this link failure. The node piggybacks on the ROUTE

ERROR the information about the lost packets that have the same
source node as the packet encountering the broken link. It creates
one entry in the conn list of the ROUTE ERROR for the lost pack-
ets originating from the same connection. The node then sends the
notification using the route obtained by reversing the source route.
For the lost packets that have different source nodes, the node sends
one notification to each source. If the packet encountering the bro-
ken link is a data packet and is salvaged, the node also adds the TCP
connection information to the ROUTE ERROR, since we choose to
freeze TCP upon route failures as done in ELFN.

If the node is the source node of a lost packet but not the TCP
sender or the TCP receiver, then it is the intermediate node that
salvaged the packet. The node attempts to send a notification to
the TCP sender for lost data packets or to the TCP receiver for lost
ACKs using a cached route. If no route can be found, the node will
not process the information about lost packets. An extension to this
approach is to record all nodes that salvaged a packet in the packet
header, so that these nodes can relay a notification until it reaches
the TCP sender or the TCP receiver.

4.3.2 At the node forwarding a notification
When a node forwards a notification about lost ACKs, it checks

whether it can retransmit an ACK to the TCP sender using a cached
route. If it finds a route, it sends an ACK with the highest sequence
number among lost ACKs to the TCP sender. The node then marks
a field called ack sent as true in the corresponding entry of the
conn list, indicating that an ACK has been sent. Thus, other nodes
forwarding the notification only attempt a retransmission for the
entries in which ack sent is false.

If a retransmitted ACK is dropped due to a link failure, a ROUTE

ERROR is sent to the node that retransmitted the ACK. That node
attempts to retransmit another ACK using a cached route. If the
node does not have a route to reach the TCP sender, it sends a noti-
fication to the TCP receiver. If the notification to the TCP receiver
encounters a link failure and is dropped, the node detecting the link
failure sends a ROUTE ERROR to the source node of the notifica-
tion, which will attempt to send another notification to the TCP
receiver using a cached route. This is Best-Effort ACK Delivery.

We use the nested ROUTE ERROR technique of DSR. With this
technique, when a ROUTE ERROR encounters a link failure, the
node detecting the broken link sends a ROUTE ERROR to the source
of the previous ROUTE ERROR, including the information about
both broken links. That source node will send another ROUTE ER-
ROR to the previously intended destination. We modify this tech-
nique: if no cached route is available, an intermediate node does
not initiate any route discovery in order to send a notification. This
is because our mechanisms generate more ROUTE ERRORS than
DSR and route discoveries introduce significant overhead.

4.3.3 At the node receiving a notification
The destination of a notification is a TCP sender, or a TCP re-

ceiver, or an intermediate node that salvaged either data packets or
ACKs. For each entry in the conn list of the notification, the node
does the following steps:

1. If the node is a TCP sender, it sends an ICMP message to
TCP for each sequence number, notifying TCP about each
lost packet.

2. If the node is a TCP receiver and no ACK was retransmitted,
the node checks whether it has a cached route to reach the
TCP sender. If it has a route, it sends an ACK with the high-
est sequence number among lost ACKs to the TCP sender.

3. If the node is an intermediate node, it handles two cases: (1)
If the lost packets are ACKs and no ACK was retransmitted,
the node first checks whether it has a route to reach the TCP
sender. If it has a route, it sends an ACK with the highest
sequence number to the TCP sender; otherwise, if it has a
route to the TCP receiver, it sends a notification to the TCP
receiver. If the node cannot reach either of them, it will not
process the information about lost ACKs. (2) If lost packets
are data packets, the node checks whether it has a route to
reach the TCP sender. If it has a route, it sends a notification
to the TCP sender.

If the node is an intermediate node, it will send a notification to
either a TCP sender or a TCP receiver only when the notification
received is not a nested ROUTE ERROR, indicated by a field called
num route error shown in the pseudo code. If the notification is
a nested ROUTE ERROR, we piggyback the information about lost
packets on the ROUTE ERROR sent by DSR. We will show an ex-
ample for this case in the next section.

Variables:
iph: IP header; tcph: TCP header; srh: source route header;
p: the current packet; new p: a new packet;
deliver to dest: whether to send an ACK to the TCP sender;

if has conn info then
for all entry e ∈ conn list do

if e.src = net id then
p.iph.saddr ⇐ e.src
p.iph.sport ⇐ e.sport
p.iph.daddr ⇐ e.dst
p.iph.d port ⇐ e.d port
if e.ptype = TCP then

for all seq no ∈ e do
new p⇐ p.copy()
new p.tcph.seqno⇐ seq no
sendICMPtoTCP(new p)

end for
end if
if e.ptype = ACK and e.ack sent = FALSE then

new p⇐ p.copy()
new p.tcph.seqno⇐max(seq no ∈ e)
new p.srh.has conn in f o⇐ FALSE
new p.src⇐ net id
new p.dest ⇐ p.iph.daddr
if findRoute(new p.dest,new p.route) then

sendOutPacketWithRoute(new p)
end if

end if
else

deliver to dest ⇐ FALSE
new p⇐ p.copy()
if e.ptype = ACK and e.ack sent = FALSE then

if findRoute(e.dst,new p.route) then
new p.dest ⇐ e.dst
deliver to dest ⇐ TRUE

else if findRoute(e.src,new p.route) then
new p.dest ⇐ e.src

end if
else if e.ptype = TCP then

if findRoute(e.src,new p.route) then
new p.dest ⇐ e.src

end if
end if
if new p.route 6= /0 then

new p.src⇐ net id
if e.ptype = ACK and deliver to dest = TRUE then

new p.tcph.seqno⇐ max(seq no ∈ e)
new p.iph.saddr⇐ e.src
new p.iph.sport ⇐ e.sport
new p.iph.daddr⇐ e.dst
new p.iph.d port ⇐ e.d port
new p.srh.has conn in f o⇐ FALSE
sendOutPacketWithRoute(new p)

else if num route error = 1 then
new p.srh.conn list[0]⇐ e
new p.srh.has conn in f o⇐ TRUE
sendOutPacketWithRoute(new p)

end if
end if

end if
end for

end if
Algorithm 1: At the Node Receiving a Packet Loss Notification

C DEF G

H I

J	K L M�N�O�K P Q R�S�T

J	K L�M�N�O�K P Q�R�SVU

W�X�Y K N�K Z1O Y%K X�L[T$\](^ _7`

W�X�Y K N�K Z1O%Y K X3LaU�\ _$^ bc`

d�O%Y�O$e(O�Z+M(S%Y fgO�R�S
h R�X�e3e(S h i

d�O%Y�O$e(O1Z�M S%Y f7\ b�^3j�`

Figure 2: An Example of Early Packet Loss Notification

k lmn o
p	q r s�t%u�q v w�x%yaz

p#q r s�t�u�q v w3x�y"{

|�}+~�q t�q ��u�~ q }�r[z$� � ���$�

|�}�~%q t�q �1u%~ q }3ra{�� �$� �#�

�	��y"���V��q �
� x�}�� �0y � �

���"��� �	�����

� �

� � �Vra�c�"��q �
x%y%~ x�u�r0����q ~ ~%y �c� �a���

�c�"�

���$�

Figure 3: An Example of Best-Effort ACK Delivery

4.3.4 Examples
We show an example of EPLN in Fig. 2. Node A starts a TCP

connection to node E using route A–B–C–D–E. When node C de-
tects that link (C, D) is broken, it salvages the packet using route
C–F–G–E. The information about the TCP connection remains un-
changed in the IP header of the packet, but node C becomes the
source node of the new route in the source route header.

Then node F detects that link (F, G) is broken and finds that it
cannot salvage the packet. Before dropping the packet, F records
the information about the packet in its drop list. It then checks the
network interface queue for the data packets or ACKs that have the
same next hop in their routes. For simplicity, we assume that this
packet is the only packet to be dropped. Otherwise, F needs to send
a notification to each TCP sender, TCP receiver, or intermediate
node that salvaged the packets, but sends only one notification for
the packets with the same source node. Node F piggybacks the
packet loss information on the ROUTE ERROR sent to node C, the
intermediate node that salvaged the packet. When receiving the
notification, node C finds that it is not the TCP sender of the packet.
It checks its cache and finds a route to the TCP sender; it then
sends a notification to node A. If this notification encounters a link
failure, for instance, link (B, A) is detected as broken, node B sends
a ROUTE ERROR to C, which is a nested ROUTE ERROR. Node C
attempts to send another notification to node A using cached routes.

Next, we show an example of BEAD. As shown in Fig. 3, node E
sends an ACK to node A using route E–D–C–B–A. Node C detects
that the link (C, B) is broken and salvages the ACK using route C–
I–H–A. Then node I detects that link (I, H) is broken. It piggybacks
the information about the lost ACK on the ROUTE ERROR sent
to node C, the intermediate node that salvaged the ACK. When C
receives the notification, it first checks whether it has a route to
reach the TCP sender, node A. We assume that it does not have
such a route. So node C sends a notification to the TCP receiver,

node E. When node D forwards this notification, it checks whether
it has a route to reach the TCP sender and finds that it has a route
D–K–J–B–A. Node D retransmits an ACK to A. If node D does
not have a route to reach A, node E will attempt to retransmit an
ACK to A using a cached route. If multiple ACKs from the same
connection are dropped, an intermediate node or a TCP receiver
retransmits an ACK with the highest sequence number among the
lost ACKs recorded in a notification, without any delay.

4.3.5 At a TCP sender: cross-layer interactions
We have presented the operation designed at the network layer.

In this section, we show how the transport layer makes use of the in-
formation provided by the network layer to achieve efficient adap-
tation to packet losses.

In BEAD, the routing protocol attempts to retransmit an ACK for
lost ACKs, exploiting cross-layer information awareness, without
cross-layer information exchange. Cross-layer interactions exist in
EPLN at a TCP sender. We modify the operation of ELFN at a TCP
sender to make TCP respond to packet losses. Instead of notifying
TCP about the packet encountering a link failure, the network layer
sends an ICMP message to TCP for each lost packet. An ICMP
message includes the sequence number of a lost packet. However,
it is insufficient to notify TCP only about a sequence number. Since
we choose to freeze TCP upon route failures, the network layer will
send an ICMP message to TCP even if the packet encountering
a link failure is salvaged. If a packet is salvaged, TCP does not
need to retransmit the packet; if a packet is dropped, TCP needs to
retransmit the packet. Therefore, an ICMP message also contains
the information indicating whether a packet is lost.

As shown in the pseudo code, when TCP receives an ICMP
packet, it does the following steps:

1. If the sequence number in the packet is less than or equal
to the highest sequence number of acknowledged packets, or
larger than the sequence number that the congestion window
allows to send, then drop this packet.

2. If TCP is not frozen, then freeze TCP by disabling its retrans-
mission timer. If the thaw timer is idle, then start the timer
with timeout value 2 s and set thaw seqno to be the sequence
number in the ICMP packet. If the original packet is lost,
then retransmit the packet, rather than wait for the timeout of
the thaw timer as done in ELFN.

3. If TCP is frozen and the sequence number is less than or
equal to the thaw seqno, then update the thaw seqno to be
the sequence number in the ICMP packet. If the original
packet is lost, then retransmit the packet.

4. If TCP is frozen, the sequence number is larger than the
thaw seqno, and the original packet is lost, then record the
lost packet in an array, called lost pkt, but do not retransmit
it now. In this case, TCP was frozen by a previous ICMP
packet either because of a link failure and the packet with
the thaw seqno was salvaged, or because of a lost packet and
TCP has retransmitted that packet. In either case, a packet is
on its way to the TCP receiver. Due to possible stale routes,
it is better to wait for the arrival of an ACK.

When an ACK arrives, TCP restores congestion control mech-
anisms and retransmits the remaining lost packets recorded in the
lost pkt. Thus, TCP adapts fast to packet losses.

TCP-Reno recv():
Variables:
tcph: TCP header; icmp: ICMP header;
p: the current packet;
thaw timer: the thaw timer in ELFN;
t thaw: the probing interval;
thaw seqno: the sequence number of the probing packet;
lost pkt: an array recording the lost packets that have not been
retransmitted;
num lost pkt: the number of packets in lost pkt;
tcp melt: whether TCP’s state is restored or not;

if p.ptype = ICMP then
if not (p.tcph.seqno > highest ack and

p.tcph.seqno <= highest ack+window()) then
f ree(p)
return

end if
if not f rozen() then

f reeze()
end if
if thaw timer.status() = TIMER IDLE then

thaw timer.resched(t thaw)
thaw seqno⇐ p.tcph.seqno
if p.icmp.pkt lost = TRUE then

out put(thaw seqno)
end if

else if p.tcph.seqno < thaw seqno then
thaw seqno⇐ p.tcph.seqno
if p.icmp.pkt lost = TRUE then

out put(thaw seqno)
end if

else if p.tcph.seqno = thaw seqno then
if p.icmp.pkt lost = TRUE then

out put(thaw seqno)
end if

else if p.tcph.seqno > thaw seqno then
if p.icmp.pkt lost = TRUE and

p.tcph.seqno 6∈ lost pkt then
lost pkt[num lost pkt]⇐ p.tcph.seqno
num lost pkt ⇐ num lost pkt +1

end if
f ree(p)

end if
else if f rozen() then

melt()
end if
if tcp melt = TRUE then

if num lost pkt 6= 0 then
for all seqno ∈ lost pkt do

if seqno > last ack then
out put(seqno)

end if
end for
num lost pkt ⇐ 0
tcp melt ⇐ FALSE

end if
end if
{/*followed by the operation executed by TCP when it receives
an ACK.*/}

Algorithm 2: At a TCP Sender

5. PERFORMANCE EVALUATION

5.1 Evaluation Methodology
We performed two sets of experiments. In the first set of experi-

ments, we evaluated the effects of two choices for setting RTO and
cwnd on TCP performance. One choice is to use the default value 6
s for RTO and 2 for cwnd; the other choice is to use the values com-
puted before TCP is frozen. In the second set of experiments, we
evaluated the effectiveness of EPLN and BEAD under two caching
strategies for DSR: path caches and our distributed cache update
algorithm, which we call DSR-Update. We used the basic opera-
tion of ELFN: freezing TCP upon route failures, sending a probing
packet every time a thaw timer expires, and restoring TCP’s state
when an ACK arrives. As we described, we modified the operation
of ELFN at a TCP sender to make TCP adapt to packet losses.

We compared the performance of TCP enhanced with three com-
binations of the mechanisms at the transport layer and the network
layer: (1) TCP-ELFN with default RTO 6 s and cwnd 2, and DSR;
(2)TCP-ELFN with RTO and cwnd set to the values computed be-
fore TCP is frozen, and DSR with EPLN and BEAD; (3) TCP-
ELFN with RTO and cwnd set to the values computed before TCP
is frozen, and DSR with EPLN, BEAD, and DSR-Update. In addi-
tion, we evaluated TCP performance for DSR under both promis-
cuous and non-promiscuous mode. Promiscuous mode, also called
tapping, is an optimization for DSR [14], which disables the net-
work interface’s address filtering function and thus causes the rout-
ing protocol to receive all packets overheard by the interface. This
optimization allows the routing protocol to get all useful routing
information in the packet header.

We studied the effects of traffic load on TCP enhanced with dif-
ferent mechanisms by investigating scenarios with 1, 5, and 10 TCP
connections. We did not use higher traffic load in order to factor
out the effect of congestion. We used node mean speed of 5 m/s,
10 m/s, 15 m/s, and 20 m/s. Node pause time was 0 s for all scenar-
ios. Each simulation ran for 900 s. Each data point represents an
average of 10 runs of different randomly generated scenarios. The
probing interval of ELFN was 2 s.

We used three metrics:

• TCP Throughput: the amount of data transferred by TCP di-
vided by the duration of the TCP connection. For multiple
TCP connections, it refers to the aggregate throughput.

• Average Number of Slow-starts: the average number of TCP
slow-starts among all TCP connections.

• Packet Overhead: the total number of routing packets trans-
mitted (both sent and forwarded), including ROUTE ERRORS

used by EPLN and BEAD. For DSR-Update, this metric in-
cludes ROUTE ERRORS used for cache updates.

5.2 Two Choices for Setting RTO and cwnd
Fig. 4 shows TCP throughput and the average number of slow-

starts for the first set of experiments. For the 50-node scenarios
with one TCP connection, using “old” values for RTO and cwnd
improves TCP throughput by up to 17% for DSR with promis-
cuous mode and up to 21% for DSR without promiscuous mode,
compared with using default values. As we discussed in Section 3,
reducing congestion window size may cause TCP to stop sending
packets, because the sequence number of the next packet to be sent
could be larger than that congestion window allows to send. Thus,
TCP has to rely on retransmission timeout to recover from an idle
state if the packets already sent or ACKs are lost. The smaller the
RTO is, the faster TCP resumes transmission if no ACK arrives.

Using “old” values for RTO and cwnd reduces the average num-
ber of slow-starts by up to 70% for DSR with and without promis-
cuous mode. This is because using “old” window size reduces the
occurrences of TCP entering an idle state and hence reduces time-
outs. DSR with promiscuous mode has fewer timeouts than DSR
without promiscuous mode, since promiscuous mode allows DSR
to cache more routes, which helps salvage packets.

As traffic load increases, the improvement in TCP throughput
decreases. As we analyzed, when using default values, TCP will
spend more time in an idle state only if data packets or ACKs are
lost. If an ACK arrives soon, this choice has less impact on through-
put. The validity of cached routes plays an important role. As traf-
fic load increases, FIFO evicts stale routes faster; thus more data
packets or ACKs can be delivered. As a result, the improvement is
not as high as that for low traffic load scenarios.

For the 100-node scenarios with one TCP connection, using “old”
values improves TCP throughput by up to 21% and 29% for DSR
with and without promiscuous mode. Moreover, there is a large
reduction in the average number of slow-starts. For 10 connec-
tion scenarios, TCP throughput decreases slightly when using “old”
RTO and cwnd values. We found that this choice causes more route
discoveries than using default values because TCP is more aggres-
sive to send packets. The overhead introduced by route discoveries
results in more MAC contention, which somewhat offsets the im-
provement in throughput due to the fast recovery from the idle state.
But using “old” values significantly reduces TCP timeouts, whether
for higher traffic load or larger network scenarios.

5.3 The Evaluation of EPLN and BEAD
In this section, we present the results for the second set of exper-

iments, in which we evaluated TCP performance for three combi-
nations of mechanisms: TCP-ELFN, TCP-ELFN with EPLN and
BEAD, TCP-ELFN with EPLN, BEAD, and DSR-Update.

5.3.1 TCP Throughput
Fig. 5 shows TCP throughput. For the 50-node scenarios with 1

TCP connection, when used with DSR under promiscuous mode,
EPLN and BEAD improve TCP throughput by up to 30% com-
pared with TCP-ELFN. When used with DSR-Update, these two
mechanisms improve throughput by 81% over TCP-ELFN at node
mean speed of 20 m/s. Without promiscuous mode, EPLN and
BEAD achieve the similar improvement. For example, TCP-ELFN
with EPLN, BEAD, and DSR-Update outperforms TCP-ELFN by
63%; TCP-ELFN with EPLN and BEAD performs 70% better than
TCP-ELFN. EPLN and BEAD also provide significant improve-
ment over TCP-ELFN as traffic load increases. For example, for
the 50-node scenarios with 5 TCP connections, without promiscu-
ous mode, EPLN and BEAD improve TCP throughput by 24% with
path caches and by 27% with DSR-Update.

For the 100-node scenarios, EPLN and BEAD achieve much
higher improvement. For example, under non-promiscuous mode,
the maximum improvement is 173% for path caches and is 210%
for DSR-Update, both at node mean speed of 20 m/s. Under promis-
cuous mode, the maximum improvement is 62%, the same for both
caching strategies. Such significant improvement demonstrates the
effectiveness of our mechanisms. The higher improvement in larger
networks is due to this fact: as network size increases, nodes will
cache more routes and thus will deliver more packet loss notifica-
tions and retransmit more ACKs for lost ACKs.

EPLN and BEAD with DSR-Update always outperform the two
mechanisms with path caches under non-promiscuous mode. Due
to on-demand Route Maintenance, a node is not notified when a
cached route becomes stale until it uses that route to send pack-

 0

 50

 100

 150

 200

 250

 300

 350

 400

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(a) 50 nodes, 1 TCP connection

TCP-ELFN w default RTO/cwnd
TCP-ELFN w old RTO/cwnd

TCP-ELFN w default RTO/cwnd, no tapping
TCP-ELFN w old RTO/cwnd, no tapping

 0

 200

 400

 600

 800

 1000

 1200

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(b) 50 nodes, 5 TCP connections

 0

 200

 400

 600

 800

 1000

 1200

 1400

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(c) 50 nodes, 10 TCP connections

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(d) 50 nodes, 1 TCP connection

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(e) 50 nodes, 5 TCP connections

 0

 5

 10

 15

 20

 25

 30

 35

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(f) 50 nodes, 10 TCP connections

 0

 50

 100

 150

 200

 250

 300

 350

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(j) 100 nodes, 1 TCP connection

 0

 200

 400

 600

 800

 1000

 1200

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(k) 100 nodes, 5 TCP connections

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(l) 100 nodes, 10 TCP connections

 0

 5

 10

 15

 20

 25

 30

 35

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(g) 100 nodes, 1 TCP connection

 0

 5

 10

 15

 20

 25

 30

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(h) 100 nodes, 5 TCP connections

 0

 5

 10

 15

 20

 25

 30

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(i) 100 nodes, 10 TCP connections

Figure 4: TCP Throughput and Average Number of Slows-starts vs. Mobility under Two Choices for Setting RTO and cwnd

ets. Thus DSR has delayed awareness of mobility. FIFO has little
control of evicting which route at what time and therefore cannot
quickly remove stale routes. In contrast, our cache update algo-
rithm proactively notifies all reachable nodes that have cached a
broken link to update their caches, thus enabling route caches to
adapt fast to topology changes. Making caches more up-to-date not
only reduces route failures and packet losses, but also allows EPLN
and BEAD to use more valid routes, contributing to the higher im-
provement in throughput. For example, EPLN and BEAD with
DSR-Update outperform the two mechanisms with path caches by
up to 43% and 34% for the 50 and 100 node scenarios respectively.

Under promiscuous mode, EPLN and BEAD with DSR-Update

outperform EPLN and BAED with path caches for the single TCP
connection scenarios, and perform almost the same as the latter for
the 5 and 10 TCP connection scenarios. We attribute the following
reason to this observation. DSR caches the routes a node over-
hears in a secondary cache and the overheard routes learned from
ROUTE REPLIES in a primary cache, whereas DSR-Update caches
all overheard routes in a secondary cache. A source node adds an
overheard route to a cache table only when it is going to use that
route. As traffic load increases, nodes will overhear more routes.
As a result, EPLN and BEAD with path caches store more over-
heard routes and thus benefit more from promiscuous mode than
EPLN and BEAD with DSR-Update.

 0

 100

 200

 300

 400

 500

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(a) 50 nodes, 1 TCP connection

TCP-ELFN
TCP-ELFN & EPLN & BEAD

TCP-ELFN & EPLN & BEAD & DSR-Update
TCP-ELFN (no tapping)

TCP-ELFN & EPLN & BEAD (no tapping)
TCP-ELFN & EPLN & BEAD & DSR-Update (no tapping)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(d) 100 nodes, 1 TCP connection

 300

 400

 500

 600

 700

 800

 900

 1000

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(b) 50 nodes, 5 TCP connections

 0

 200

 400

 600

 800

 1000

 1200

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(e) 100 nodes, 5 TCP connections

 600

 700

 800

 900

 1000

 1100

 1200

 1300

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(c) 50 nodes, 10 TCP connections

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

5 10 15 20

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

(f) 100 nodes, 10 TCP connections

Figure 5: TCP Throughput vs. Mobility (mean speed (m/s))

5.3.2 Average Number of Slow-starts
Fig. 6 shows average number of slow-starts. EPLN and BEAD

considerably reduce TCP timeouts under both caching strategies
and under both promiscuous and non-promiscuous mode. For ex-
ample, for the 50-node scenarios with one TCP connection, un-
der promiscuous mode, EPLN and BEAD reduce TCP timeouts
by 60% with path caches and 90% with DSR-Update compared
with TCP-ELFN. Moreover, EPLN and BEAD with DSR-Update
have less timeouts than EPLN and BEAD with path caches, giv-
ing the reduction by 90% and 74% under promiscuous and non-
promiscuous mode respectively.

Note that TCP has only twice slow-starts when EPLN and BEAD
use DSR-Update as a caching strategy, which means that TCP in-

vokes congestion control mechanisms for packet losses caused by
route failures only twice during a 900 s simulation. These results
not only show that EPLN and BEAD significantly reduce TCP
timeouts for mobility-induced losses, but also show that our cache
update algorithm is very efficient in dealing with route failures.

As traffic load increases, EPLN and BEAD achieve the reduc-
tion in timeouts by more than 35% with path caches and 40% with
DSR-Update. As network size increases, EPLN and BEAD obtain
the reduction in timeouts by more than 33% with path caches and
44% with DSR-Update. EPLN actively delivers packet loss notifi-
cations and BEAD retransmits ACKs for lost ACKs in a best-effort
way. Thus, TCP either starts retransmissions earlier or continues to
advance congestion window without awareness of lost ACKs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(a) 50 nodes, 1 TCP connection

 0

 5

 10

 15

 20

 25

 30

 35

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(d) 100 nodes, 1 TCP connection

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(b) 50 nodes, 5 TCP connections

TCP-ELFN
TCP-ELFN & EPLN & BEAD

TCP-ELFN & EPLN & BEAD & DSR-Update
TCP-ELFN (no tapping)

TCP-ELFN & EPLN & BEAD (no tapping)
TCP-ELFN & EPLN & BEAD & DSR-Update (no tapping)

 0

 5

 10

 15

 20

 25

 30

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(e) 100 nodes, 5 TCP connections

 0

 5

 10

 15

 20

 25

 30

 35

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(c) 50 nodes, 10 TCP connections

 0

 5

 10

 15

 20

 25

5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 S

lo
w

-s
ta

rt
s

(f) 100 nodes, 10 TCP connections

Figure 6: Average Number of Slow-starts vs. Mobility (mean speed (m/s))

5.3.3 Packet Overhead
Fig. 7 shows packet overhead. For the 50-node scenarios with

one TCP connection, TCP-ELFN with EPLN and BEAD has higher
overhead than TCP-ELFN under both caching strategies due to
packet loss notifications. But as traffic load increases, the overhead
of TCP-ELFN increases faster than that of TCP-ELFN with EPLN
and BEAD and is higher than the latter for 10 TCP connections at
node speed of 20 m/s. For these scenarios, DSR initiates more route
discoveries than DSR with EPLN and BEAD. The reason is this: as
mobility increases, route failures become more frequent and thus
more route discoveries take place; as traffic load increases, more
routes need to be stored and FIFO speeds up cache turnover. FIFO
evicts many valid routes because of the small cache size.

When incorporated into DSR, EPLN and BEAD also use path
caches, but DSR with EPLN and BEAD has much lower overhead
than DSR without them for high traffic load and high mobility sce-
narios. This is because EPLN and BEAD actively detect and evict
stale routes due to the extensive use of cached routes.

We further confirm this analysis through the results for the 100-
node scenarios, as shown in Figs. 7 (d)–(f). For one TCP connec-
tion and without promiscuous mode, TCP-ELFN has lower over-
head than EPLN and BEAD with DSR-Update under low mobility,
but has higher overhead than the latter under high mobility. This is
also due to the small cache size used in DSR, which cannot hold all
useful routes and thus results in more route discoveries, even under
low traffic load. Under promiscuous mode, the overhead of TCP-

 0

 5000

 10000

 15000

 20000

5 10 15 20

Pa
ck

et
 O

ve
rh

ea
d

(a) 50 nodes, 1 TCP connection

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

5 10 15 20

Pa
ck

et
 O

ve
rh

ea
d

(d) 100 nodes, 1 TCP connection

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

5 10 15 20

Pa
ck

et
 O

ve
rh

ea
d

(b) 50 nodes, 5 TCP connections

TCP-ELFN
TCP-ELFN & EPLN & BEAD

TCP-ELFN & EPLN & BEAD & DSR-Update
TCP-ELFN (no tapping)

TCP-ELFN & EPLN & BEAD (no tapping)
TCP-ELFN & EPLN & BEAD & DSR-Update (no tapping)

 0

 50000

 100000

 150000

 200000

 250000

 300000

5 10 15 20

Pa
ck

et
 O

ve
rh

ea
d

(e) 100 nodes, 5 TCP connections

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

5 10 15 20

Pa
ck

et
 O

ve
rh

ea
d

(c) 50 nodes, 10 TCP connections

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

5 10 15 20

Pa
ck

et
 O

ve
rh

ea
d

(f) 100 nodes, 10 TCP connections

Figure 7: Packet Overhead vs. Mobility (mean speed (m/s))

ELFN decreases significantly, because DSR uses a secondary cache
to store more routes, which helps reduce route discoveries. For the
100-node scenarios, TCP-ELFN also has a fast increase in over-
head under high mobility. For 10 TCP connections, TCP-ELFN
has significantly higher overhead than TCP-ELFN with EPLN and
BEAD under both caching strategies.

DSR-Update dynamically adjusts its cache size as needed: the
cache size increases as new routes are discovered and decreases as
stale routes are removed. Thus, the cache size adapts to mobility,
traffic load, and network size. As shown in Fig. 7 (f), under non-
promiscuous mode, EPLN and BEAD with DSR-Update have the
lowest overhead among the three. Under promiscuous mode, EPLN
and BEAD with DSR-Update have a slightly higher overhead than

EPLN and BEAD with path caches because of cache update noti-
fications. Under promiscuous mode, EPLN and BEAD obtain the
maximum reduction in overhead for the 10 TCP connection scenar-
ios: 71% with path caches and 62% with DSR-Update.

6. RELATED WORK
TCP performance over ad hoc networks has been an active re-

search area. Gerla et al. [8] investigated the impact of MAC pro-
tocol on TCP performance. Holland and Vaidya [10] studied the
effect of routing and link layers on TCP performance in mobile ad
hoc networks. Fu et al. [7] studied the effect of wireless channel on
TCP throughput and loss and proposed two link layer techniques

to improve TCP throughput. Xu et al. [20] studied the TCP fair-
ness issue in ad hoc networks and proposed a neighborhood RED
(Randomly Early Detection) scheme to improve TCP unfairness.

Most of prior work focused on transport layer mechanisms. The
major approach was to provide link failure feedback to TCP so as
to prevent TCP from falsely invoking congestion control mecha-
nisms. Chandran et al. [3] proposed a feedback-based technique
called TCP-Feedback. An intermediate node that detects a broken
link sends a route failure notification (RFN) to the TCP sender.
TCP freezes its state and resumes transmission only when it re-
ceives a route reestablishment notification (RRN) from the inter-
mediate node. This technique was not evaluated in mobile ad hoc
networks. Holland and Vaidya [9] proposed to use explicit link fail-
ure notification (ELFN) to counter the effects of link failures due to
mobility. ELFN freezes TCP upon route failures and periodically
sends a probing packet until a TCP sender receives an ACK. ELFN
was shown to outperform TCP in mobile ad hoc networks.

Monks et al. [16] studied ELFN in both static and dynamic net-
works and proposed hop-by-hop rate control based mechanisms
along with ELFN for congestion control. Dyer and Boppana [4]
evaluated TCP performance over three routing protocols and pro-
posed a heuristic called fixed RTO to distinguish route failures from
congestion. Liu and Singh [15] introduced a thin layer between
TCP and the network layer, which listens to the network feedback
information provided by explicit congestion notification (ECN) and
by destination unreachable message and puts TCP into an appropri-
ate state. Wang and Zhang [19] proposed to improve TCP perfor-
mance by detecting and responding to out-of-order packet delivery
events, which are the results of frequent route changes.

Fu et al. [6] observed that mobility has the most significant im-
pact on TCP performance. TCP achieves only about 10% of a ref-
erence TCP’s throughput; TCP throughput degrades by 1000% in
highly mobile scenarios where node speed is 20 m/s. In contrast,
congestion and mild channel errors have less effect on TCP, with
less than 10% performance drop compared with the reference TCP.

Anantharaman and Sivakumar [1] identified several problems at
the MAC and the network layers and proposed a framework called
ATRA. ATRA includes three mechanisms: reducing route failures
by ensuring that ACK path is always the same as data path, pre-
dicting route failures before they occur based on the progression of
signal strength of packet receptions from the concerned neighbor,
and reducing the latency for route error propagation. Sundaresan et
al. [18] studied the behavior of TCP over mobile ad hoc networks
and argued that a majority of the components of TCP are inappro-
priate for such networks. They developed a new transport protocol
called ATP to achieve effective congestion control and reliability.

Prior work that modified TCP to react to route failures ignored
an important fact: route failures are not equivalent to packet losses.
Route failures do not imply that packets are lost; many packets are
dropped without being noticed. In contrast, we aim to make routing
protocols efficiently deal with packet losses.

7. CONCLUSIONS
In this paper, we presented a detailed study of how mobility af-

fects TCP. We proposed to make routing protocols aware of lost
data packets and ACKs and help reduce TCP timeouts for mobility-
induced losses. To achieve this goal, we presented two mecha-
nisms: early packet loss notification (EPLN) and best-effort ACK
delivery (BEAD).

We made several observations through simulation of TCP-ELFN.
First, we found that, when congestion control mechanisms are re-
stored, keeping TCP’s state the same as it was when TCP was
frozen improves TCP throughput when traffic load is not high, and

significantly reduces TCP timeouts compared with using default
values. Second, we found that there is a trade-off between freez-
ing TCP upon route failures and upon packet losses; freezing TCP
upon route failures reduces TCP timeouts. Finally, we found that it
is insufficient to notify TCP only about link failures, because many
packets are dropped from the network interface queue without ex-
periencing link failure detections. TCP will time out because of
these losses. Upon route failures, ACKs are also dropped silently;
therefore, TCP has to wait for timeouts.

EPLN and BEAD reduce TCP timeouts for mobility-induced
losses by exploiting cross-layer information awareness. With EPLN,
intermediate nodes seek to notify TCP senders about lost packets
so that TCP can start retransmission earlier. With BEAD, interme-
diate nodes or TCP receivers retransmit ACKs for lost ACKs in a
best-effort way. Both mechanisms extensively use cached routes,
without initiating route discoveries at any intermediate node. The
two feedback mechanisms are applicable to any routing protocol,
as they address general problems that occur at the network layer.

We incorporated EPLN and BEAD into DSR with path caches
and into DSR with our distributed cache update algorithm [21].
We showed that, compared with TCP-ELFN, EPLN and BEAD not
only significantly improve TCP throughput but also considerably
reduce TCP timeouts. Moreover, EPLN and BEAD with our cache
update algorithm outperform EPLN and BEAD with path caches,
because proactive cache updating is more efficient than FIFO in
removing stale routes.

Our results lead to the following conclusions:

• Cross-layer information awareness is key to making TCP ef-
ficient in the presence of mobility. It is necessary for the
network layer to notify TCP senders about lost packets and
to retransmit ACKs for lost ACKs, so that TCP reacts quickly
to frequent packet losses and is unaware of lost ACKs.

• It is important to make route caches adapt fast to topology
changes, because the validity of cached routes affects not
only TCP performance but also the effectiveness of the mech-
anisms used to improve TCP performance, whether at the
network layer or cross-layer.

Acknowledgements
We thank the anonymous reviewers for their helpful comments. We
also thank David Johnson from Rice University for his helpful com-
ments on the final version of this paper.

8. REFERENCES
[1] V. Anantharaman and R. Sivakumar. A microscopic analysis

of TCP performance over wireless ad-hoc networks.
Presented in 2nd ACM SIGMETRICS (Poster Paper), 2002.

[2] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva. A
performance comparison of multi-hop wireless ad hoc
network routing protocols. In Proceedings of 4th ACM
MobiCom, pp. 85–97, 1998.

[3] K. Chandran, S. Raghunathan, S. Venkatesan, and
R. Prakash. A feedback based scheme for improving TCP
performance in ad-hoc wireless networks. In Proceedings of
18th IEEE ICDCS, pp. 472–479, 1998.

[4] T. Dyer and R. Boppana. A comparision of TCP performance
over three routing protocols for mobile ad hoc networks. In
Proceedings of 2nd ACM MobiHoc, pp. 56–66, 2001.

[5] K. Fall and K. Varadhan, Eds. ns notes and documentation.
The VINT Project, UC Berkeley, LBL, USC/ISI, and Xerox
PARC, 1997.

[6] Z. Fu, X. Meng, and S. Lu. How bad TCP can perform in
mobile ad hoc networks. In Proceedings of 7th IEEE ISCC,
2002.

[7] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. The
impact of multihop wireless channel on TCP throughput and
loss. In Proceedings of 22nd IEEE INFOCOM, 2003.

[8] M. Gerla, K. Tang, and R. Bagrodia. TCP performance in
wireless multi hop networks. In Proceedings of 2nd IEEE
WMCSA, 1999.

[9] G. Holland and N. Vaidya. Analysis of TCP performance
over mobile ad hoc networks. In Proceedings of 5th ACM
MobiCom, pp. 219–230, 1999.

[10] G. Holland and N. Vaidya. Impact of routing and link layers
on TCP performance in mobile ad hoc networks. In
Proceedings of IEEE WCNC, 1999.

[11] Y.-C. Hu and D. Johnson. Caching strategies in on-demand
routing protocols for wireless ad hoc networks. In
Proceedings of 6th ACM MobiCom, pp. 231–242, 2000.

[12] IEEE Computer Society LAN MAN Standards Committee.
Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications, IEEE Std 802.11-1997. The
Institute of Electrical and Electronics Engineers, New York,
New York, 1997.

[13] D. Johnson and D. Maltz. Dynamic source routing in ad hoc
wireless networks. In Mobile Computing, T. Imielinski and
H. Korth, Eds, Ch. 5, pp. 153–181, Kluwer, 1996.

[14] D. Johnson, D. Maltz, Y.-C. Hu. The dynamic source routing
for mobile ad hoc networks, IETF Internet Draft.

http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-
10.txt, July 2004

[15] J. Liu and S. Singh. ATCP: TCP for mobile ad hoc networks.
IEEE Journal on Selected Areas in Communication,
19(7):1300–1315, 2001.

[16] J. Monks, P. Sinha, and V. Bharghavan. Limitations of
TCP-ELFN for ad hoc networks. In Proceedings of 5th
Workshop on Mobile and Multimedia Communication, 2000.

[17] The Monarch Project. Rice Monarch Project: Mobile
networking architectures. http://www.monarch.cs.rice.edu/.

[18] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and
R. Sivakumar. ATP: A reliable transport protocol for ad-hoc
networks. In Proceedings of 4th ACM MobiHoc, pp. 64–75,
2003.

[19] F. Wang and Y. Zhang. Improving TCP performance over
mobile ad-hoc networks with out-of-order detection and
response. In Proceedings of 3rd ACM MobiHoc,
pp. 217–225, 2002.

[20] K. Xu, M. Gerla, L. Qi, and Y. Shu. Enhancing TCP fairness
in ad hoc wireless networks using neighborhood RED. In
Proceedings of 9th ACM MobiCom, pp. 16–28, 2003.

[21] X. Yu and Z. Kedem. A distributed adaptive cache update
algorithm for the dynamic source routing protocol. NYU
Computer Science Department Technical Report
TR2003-842, July 2003.

[22] X. Yu and Z. Kedem. Reducing the effect of mobility on TCP
by making route caches quickly adapt to topology changes.
In Proceedings of 40th IEEE ICC, 2004.

