CS 111: Review Quiz: Answer key

1.
 \[A^T = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 1 & 0 \\ 2 & 2 & -1 \end{pmatrix}, \ A^2 = \begin{pmatrix} 11 & -4 & 2 \\ 2 & 1 & 0 \\ 2 & 2 & -1 \end{pmatrix}, \ A^T A = \begin{pmatrix} 10 & -3 & 5 \\ -3 & 2 & 0 \\ 5 & 0 & 9 \end{pmatrix}. \]

2. \[||(3, 1, 4, 1, 5)^T||_2 = \sqrt{52} \approx 7.2111 \]

3.
 \[
 \begin{pmatrix} 2 & -3 & 1 \\ 0 & 2 & 3 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 7 \\ 4 \end{pmatrix}
 \]

4.
 \[x = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \]

5. There are many answers to this. Here’s one: In Matlab notation, take \(A = [1, 2; 2, 4] \) and \(b = [3; 3] \). Explanation 1 (column view): Matrix \(A \) is singular, so the space spanned by its columns is only one-dimensional, and it consists of multiples of the vector \([1; 2] \), which do not include \(b \). Explanation 2 (row view): The two lines described by the row form of \(Ax = b \) are parallel and hence do not intersect. Explanation 3 (brute force view): No matter what \(x \) is, the second entry of \(Ax \) will be equal to twice the first entry of \(Ax \), which rules out \(b \).

6. There are many answers to this. Here’s one: In Matlab notation, take \(A = [1, 2; 2, 4] \) and \(b = [3; 6] \). Two solutions are \(x = [1; 1] \) and \(x = [3; 0] \).

7. No, it’s not possible to have exactly two solutions to \(Ax = b \). If \(x \) and \(y \) are two different solutions, then there are infinitely many solutions: \(x + \alpha(y - x) \) is a solution for every \(\alpha \).

8. \(A \) has two eigenvalues, 3 and 5. Any multiple of \([1; 1] \) is an eigenvector corresponding to 3, and any multiple of \([1; -1] \) is an eigenvector corresponding to 5.

9. \(f'(x) = 21x^2 - 4x + 4 \).

10. \(\partial z/\partial x = e^{y/2} \), and \(\partial z/\partial y = (x/2)e^{y/2} \).

11. \(f(x) = x^3/3 - \cos x + c \) for some constant \(c \) (any constant will do).

12. The height is maximum when the derivative \(dh/dt \) is zero. \(dh/dt = 1280 - 32t \), which is zero when \(t = 40 \), at which time the height is \(h = 25600 \) feet. The bullet hits the ground when \(h = 0 \), which means \(1280t = 16t^2 \), which means \(t = 1280/16 = 80 \) seconds after firing. (The other solution to \(h = 0 \) is of course \(t = 0 \).)

13. \(y = e^{x^2/2} \).