Problem 1 [20 points total] In Lake Wobegon, all the women are strong, all the men are good-looking, and all the children are above average. Well, everyone can’t be above average—but here we’ll count how many are.

We have \(n \) kids and \(p \) processors. Each processor starts out with \(n/p \) elements of a vector \(\text{IQ} \) of the \(n \) kids’ IQ values. Your goal is to compute the average of all \(n \) IQs (that is, their sum divided by \(n \)), and also to figure out how many of the \(n \) IQs are larger than average. The results, called \(\text{averageIQ} \) and \(\text{numHighIQ} \), should end up on processor 0. For example, if the entries in \(\text{IQ[]} \) are 110, 90, 120, and 100, then the \(\text{averageIQ} \) is \(420/4 = 105 \), and the \(\text{numHighIQ} \) is 2 (since two values, 110 and 120, are larger than average). A sequential algorithm to do this on one processor would be as follows. Note that \(\text{IQ[]} \) and \(\text{averageIQ} \) are doubles, not integers.

\[
\text{double sum = 0;}
\text{for (int i = 0; i < n; i++)}
 \text{sum += IQ[i];}
\text{double averageIQ = sum / n;}
\text{int numHighIQ = 0;}
\text{for (int i = 0; i < n; i++)}
 \text{if (IQ[i] > averageIQ) numHighIQ ++;}
\]

For this problem only, you don’t have to worry about the efficiency of your code.

(1a) [10 points] Using pseudo-code, show how to do this in MPI using send and recv.

(1b) [10 points] Using pseudo-code, show how to do this in MPI using broadcast and reduce.
Problem 2 [20 points total] This problem compares two different data layouts for matrix-vector multiplication on a message-passing machine. All \(n \) elements of a vector \(x \) are on processor 0. The elements of an \(n \)-by-\(n \) array \(A \) are divided evenly among \(p \) processors, with \(n^2/p \) elements per processor. The goal is to have all \(n \) elements of the product \(A^t x \) end up on processor 0. For Algorithm 1, each processor has \(n/p \) rows of \(A \). For Algorithm 2, each processor has a square block of \(A \) with \(n/\sqrt{p} \) rows and \(n/\sqrt{p} \) columns. Assume that \(n \) is divisible by \(p \), and that \(p \) is a perfect square. You don’t have to show the code for the two algorithms; just answer these questions.

(2a) [2 1/2 points] Draw a clearly labeled diagram of the data layout for Algorithm 1.

(2b) [2 1/2 points] Draw a clearly labeled diagram of the data layout for Algorithm 2.

(2c) [15 points] Complete the following table with the parallel time \(t_p \), the span \(t_\infty \), and the total communication volume \(v \) for each algorithm. For \(t \), we count only multiplication operations (which is why the work \(t_1 \) is \(n^2 \)). You can omit lower-order terms in your answer, for example by writing \(n^2 \) instead of something like \(n^2 - n + 1 \).

<table>
<thead>
<tr>
<th></th>
<th>Work (t_1)</th>
<th>Parallel time (t_p)</th>
<th>Span (t_\infty)</th>
<th>Comm volume (v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm 1</td>
<td>(n^2)</td>
<td>(n^2 / p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithm 2</td>
<td>(n^2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 3 [20 points] Suppose you have p processors, $P(0)$ through $P(p-1)$, each with local (double) variables x, y, and d (plus any other local variables you need). Each (x, y) represents a point in the plane, so each processor has one point. The goal is for each processor to set its own d to the shortest distance between its point and any other processor’s point. For example, if there are three processors with points

$P(0): x = 1, y = 1$
$P(1): x = -1, y = 0$
$P(2): x = 0, y = 0$

then $(1,1)$’s closest point is $(0,0)$, and $(-1,0)$’s closest point is $(0,0)$, and $(0,0)$’s closest point is $(-1,0)$, so the result should be

$P(0): d = \sqrt{2}$
$P(1): d = 1$
$P(2): d = 1$

Write message-passing code (pseudocode is fine) to achieve this. Rules:

- Use *blocking* send and receive calls for all communication.
- Each processor $P(i)$ should only send to / receive from its neighbors $P(i-1)$ and $P(i+1)$, where we also include $P(p-1)$ and $P(0)$ as neighbors of each other.
- For full credit, your algorithm should use no more than $2p$ rounds of message-passing, and should have parallel computation time $t_p = O(p)$.

Hint: Send copies of all the processors’ (x, y) values around a merry-go-round ring.

(Note: It’s an interesting problem in computational geometry to do this in *less* than $O(p)$ parallel time; but you don’t have to do that for the exam problem.)
Problem 4 [20 points total] You have a function called findmax that computes the largest element in an array of size $n = 2^k$. The serial version of your code looks like the following:

```c
double findmax(double * array, int n) {
    double max = array[0];
    for (int i = 1; i < n; i++)
        if (array[i] > max) max = array[i];
    return max;
}
```

(4a) [10 points] Explain briefly why you can’t parallelize this function in cilk++ by just changing the for loop to a cilk_for. Give a small example (say $n = 3$ or 4) of what can go wrong.

(4b) [10 points] Describe a way to parallelize this function using cilk_spawn. (You don’t have to write syntactically correct cilk++ code, just be sure your description is clear.)

Problem 5 [20 points total] Short answer questions.

(5a) [10 points] What is an embarrassingly parallel problem? Give an example.

(5b) [10 points] A sequential program spends 99% of its time on a computation that could be done efficiently in parallel, and the other 1% on a computation that can’t be parallelized at all. What can you say about maximum speedup for a parallel version of this program?