
A Work-Efficient Parallel Breadth-First Search Algorithm
(or How to Cope with the Nondeterminism of Reducers)

Charles E. Leiserson
Tao B. Schardl

MIT Computer Science and Arti cial Intelligence Laboratory
32 Vassar Street

Cambridge, MA 02139

ABSTRACT
We have developed a multithreaded implementation of breadth-first
search (BFS) of a sparse graph using the Cilk++ extensions to C++.
Our PBFS program on a single processor runs as quickly as a stan-
dard C++ breadth-first search implementation. PBFS achieves high
work-efficiency by using a novel implementation of a multiset data
structure, called a “bag,” in place of the FIFO queue usually em-
ployed in serial breadth-first search algorithms. For a variety of
benchmark input graphs whose diameters are significantly smaller
than the number of vertices — a condition met by many real-world
graphs — PBFS demonstrates good speedup with the number of
processing cores.

Since PBFS employs a nonconstant-time “reducer” — a “hyper-
object” feature of Cilk++ — the work inherent in a PBFS execution
depends nondeterministically on how the underlying work-stealing
scheduler load-balances the computation. We provide a general
method for analyzing nondeterministic programs that use reduc-
ers. PBFS also is nondeterministic in that it contains benign races
which affect its performance but not its correctness. Fixing these
races with mutual-exclusion locks slows down PBFS empirically,
but it makes the algorithm amenable to analysis. In particular, we
show that for a graph G = (V,E) with diameter D and bounded out-
degree, this data-race-free version of PBFS algorithm runs in time
O((V + E)/P+ D lg3(V/D)) on P processors, which means that it
attains near-perfect linear speedup if P � (V +E)/D lg3(V/D).

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Nonnumerical Algorithms
and Problems—Computations on discrete structures; D.1.3
[Software]: Programming Techniques—Concurrent program-
ming; G.2.2 [Mathematics of Computing]: Graph Theory—
Graph Algorithms.

General Terms
Algorithms, Performance, Theory

This research was supported in part by the National Science Foundation
under Grant CNS-0615215. TB Schardl is an MIT Siebel Scholar.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

Keywords
Breadth-first search, Cilk, graph algorithms, hyperobjects, mul-
tithreading, nondeterminism, parallel algorithms, reducers, work-
stealing.

1. INTRODUCTION
Algorithms to search a graph in a breadth-first manner have been

studied for over 50 years. The first breadth-first search (BFS) al-
gorithm was discovered by Moore [26] while studying the problem
of finding paths through mazes. Lee [22] independently discov-
ered the same algorithm in the context of routing wires on circuit
boards. A variety of parallel BFS algorithms have since been ex-
plored [3, 9, 21, 25, 31, 32]. Some of these parallel algorithms are
work efficient, meaning that the total number of operations per-
formed is the same to within a constant factor as that of a com-
parable serial algorithm. That constant factor, which we call the
work efficiency, can be important in practice, but few if any papers
actually measure work efficiency. In this paper, we present a paral-
lel BFS algorithm, called PBFS, whose performance scales linearly
with the number of processors and for which the work efficiency is
nearly 1, as measured by comparing its performance on benchmark
graphs to the classical FIFO-queue algorithm [10, Section 22.2].

Given a graph G = (V,E) with vertex set V = V (G) and edge set
E = E(G), the BFS problem is to compute for each vertex v ∈ V
the distance v.dist that v lies from a distinguished source vertex
v0 ∈V . We measure distance as the minimum number of edges on
a path from v0 to v in G. For simplicity in the statement of results,
we shall assume that G is connected and undirected, although the
algorithms we shall explore apply equally as well to unconnected
graphs, digraphs, and multigraphs.

Figure 1 gives a variant of the classical serial algorithm [10, Sec-
tion 22.2] for computing BFS, which uses a FIFO queue as an aux-
iliary data structure. The FIFO can be implemented as a simple ar-
ray with two pointers to the head and tail of the items in the queue.
Enqueueing an item consists of incrementing the tail pointer and
storing the item into the array at the pointer location. Dequeueing
consists of removing the item referenced by the head pointer and
incrementing the head pointer. Since these two operations take only
Θ(1) time, the running time of SERIAL-BFS is Θ(V + E). More-
over, the constants hidden by the asymptotic notation are small due
to the extreme simplicity of the FIFO operations.

Although efficient, the FIFO queue Q is a major hindrance to
parallelization of BFS. Parallelizing BFS while leaving the FIFO
queue intact yields minimal parallelism for sparse graphs — those
for which |E| ≈ |V |. The reason is that if each ENQUEUE operation
must be serialized, the span1 of the computation — the longest
1Sometimes called critical-path length or computational depth.

303

SERIAL-BFS(G,v0)
1 for each vertex u ∈V (G)−{v0}
2 u.dist = ∞
3 v0.dist = 0
4 Q = {v0}
5 while Q �= /0
6 u = DEQUEUE(Q)
7 for each v ∈V such that (u,v) ∈ E(G)
8 if v.dist = = ∞
9 v.dist = u.dist +1

10 ENQUEUE(Q,v)

Figure 1: A standard serial breadth-first search algorithm operating on a
graph G with source vertex v0 ∈ V (G). The algorithm employs a FIFO
queue Q as an auxiliary data structure to compute for each v ∈ V (G) its
distance v.dist from v0.

serial chain of executed instructions in the computation — must
have length Ω(V). Thus, a work-efficient algorithm — one that
uses no more work than a comparable serial algorithm — can have
parallelism — the ratio of work to span — at most O((V +E)/V) =
O(1) if |E| = O(V).2

Replacing the FIFO queue with another data structure in order
to parallelize BFS may compromise work efficiency, however, be-
cause FIFO’s are so simple and fast. We have devised a multiset
data structure called a bag, however, which supports insertion es-
sentially as fast as a FIFO, even when constant factors are consid-
ered. In addition, bags can be split and unioned efficiently.

We have implemented a parallel BFS algorithm in Cilk++ [20,
23]. Our PBFS algorithm, which employs bags instead of a FIFO,
uses the “reducer hyperobject” [14] feature of Cilk++. Our im-
plementation of PBFS runs comparably on a single processor to a
good serial implementation of BFS. For a variety of benchmark
graphs whose diameters are significantly smaller than the number
of vertices — a common occurrence in practice — PBFS demon-
strates high levels of parallelism and generally good speedup with
the number of processing cores.

Figure 2 shows the typical speedup obtained for PBFS on a
large benchmark graph, in this case, for a sparse matrix called
Cage15 arising from DNA electrophoresis [30]. This graph has
|V | = 5,154,859 vertices, |E| = 99,199,551 edges, and a diameter
of D = 50. The code was run on an Intel Core i7 machine with
eight 2.53 GHz processing cores, 12 GB of RAM, and two 8 MB
L3-caches, each shared among 4 cores. As can be seen from the
figure, although PBFS scales well initially, it attains a speedup of
only about 5 on 8 cores, even though the parallelism in this graph is
nearly 700. The figure graphs the impact of artificially increasing
the computational intensity — the ratio of the number of CPU op-
erations to the number of memory operations, suggesting that this
low speedup is due to limitations of the memory system, rather than
to the inherent parallelism in the algorithm.

PBFS is a nondeterministic program for two reasons. First, be-
cause the program employs a bag reducer which operates in non-
constant time, the asymptotic amount of work can vary from run
to run depending upon how Cilk++’s work-stealing scheduler load-
balances the computation. Second, for efficient implementation,
PBFS contains a benign race condition, which can cause additional
work to be generated nondeterministically. Our theoretical anal-
ysis of PBFS bounds the additional work due to the bag reducer
when the race condition is resolved using mutual-exclusion locks.
Theoretically, on a graph G with vertex set V = V (G), edge set

2For convenience, we omit the notation for set cardinality within asymptotic
notation.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Processors

PBFS + comp
PBFS
Serial BFS

Figure 2: The performance of PBFS for the Cage15 graph showing speedup
curves for serial BFS, PBFS, and a variant of PBFS where the computa-
tional intensity has been artificially enhanced and the speedup normalized.

E = E(G), diameter D, and bounded out-degree, this “locking”
version of PBFS performs BFS in O((V + E)/P + D lg3(V/D))
time on P processors and exhibits effective parallelism Ω((V +
E)/D lg3(V/D)), which is considerable when D � V , even if the
graph is sparse. Our method of analysis is general and can be ap-
plied to other programs that employ reducers. We leave it as an
open question how to analyze the extra work when the race condi-
tion is left unresolved.

The remainder of this paper is divided into two parts. Part I con-
sists of Sections 2 through 5 and describes PBFS and its empirical
performance. Part II consists of Sections 6 through 9 and describes
how to cope with the nondeterminism of reducers in the theoretical
analysis of PBFS. Section 10 concludes by discussing thread-local
storage as an alternative to reducers.

Part I — Parallel Breadth-First Search
The first half of this paper consists of Sections 2 through 5 and

describes PBFS and its empirical performance. Section 2 provides
background on dynamic multithreading. Section 3 describes the
basic PBFS algorithm, and Section 4 describes the implementation
of the bag data structure. Section 5 presents our empirical studies.

2. BACKGROUND ON DYNAMIC
MULTITHREADING

This section overviews the key attributes of dynamic multi-
threading. The PBFS software is implemented in Cilk++ [14, 20,
23], which is a linguistic extension to C++ [28], but most of the va-
garies of C++ are unnecessary for understanding the issues. Thus,
we describe Cilk-like pseudocode, as is exemplified in [10, Ch. 27],
which the reader should find more straightforward than real code to
understand and which can be translated easily to Cilk++.

Multithreaded pseudocode
The linguistic model for multithreaded pseudocode in [10, Ch. 27]
follows MIT Cilk [15, 29] and Cilk++ [20, 23]. It augments ordi-
nary serial pseudocode with three keywords — spawn, sync, and
parallel — of which spawn and sync are the more basic.

Parallel work is created when the keyword spawn precedes the
invocation of a function. The semantics of spawning differ from a

304

1 x = 10
2 x++
3 x += 3
4 x += −2
5 x += 6
6 x−−
7 x += 4
8 x += 3
9 x++

10 x += −9

1 x = 10
2 x++
3 x += 3
4 x += −2
5 x += 6

x′ = 0
6 x′−−
7 x′ += 4
8 x′ += 3
9 x′++

10 x′ += −9
x += x′

1 x = 10
2 x++
3 x += 3

x′ = 0
4 x′ += −2
5 x′ += 6
6 x′−−

x′′ = 0
7 x′′ += 4
8 x′′ += 3
9 x′′++

10 x′′ += −9
x += x′
x += x′′

(a) (b) (c)

Figure 3: The intuition behind reducers. (a) A series of additive updates
performed on a variable x. (b) The same series of additive updates split
between two “views” x and x′. The two update sequences can execute in
parallel and are combined at the end. (c) Another valid splitting of these
updates among the views x, x′, and x′′.

C or C++ function call only in that the parent continuation — the
code that immediately follows the spawn — may execute in par-
allel with the child, instead of waiting for the child to complete,
as is normally done for a function call. A function cannot safely
use the values returned by its children until it executes a sync state-
ment, which suspends the function until all of its spawned children
return. Every function syncs implicitly before it returns, preclud-
ing orphaning. Together, spawn and sync allow programs contain-
ing fork-join parallelism to be expressed succinctly. The scheduler
in the runtime system takes the responsibility of scheduling the
spawned functions on the individual processor cores of the mul-
ticore computer and synchronizing their returns according to the
fork-join logic provided by the spawn and sync keywords.

Loops can be parallelized by preceding an ordinary for with the
keyword parallel, which indicates that all iterations of the loop
may operate in parallel. Parallel loops do not require additional
runtime support, but can be implemented by parallel divide-and-
conquer recursion using spawn and sync.

Cilk++ provides a novel linguistic construct, called a reducer
hyperobject [14], which allows concurrent updates to a shared vari-
able or data structure to occur simultaneously without contention.
A reducer is defined in terms of a binary associative REDUCE
operator, such as sum, list concatenation, logical AND, etc. Up-
dates to the hyperobject are accumulated in local views, which
the Cilk++ runtime system combines automatically with “up-calls”
to REDUCE when subcomputations join. As we shall see in Sec-
tion 3, PBFS uses a reducer called a “bag,” which implements an
unordered set and supports fast unioning as its REDUCE operator.

Figure 3 illustrates the basic idea of a reducer. The example in-
volves a series of additive updates to a variable x. When the code
in Figure 3(a) is executed serially, the resulting value is x = 16.
Figure 3(b) shows the same series of updates split between two
“views” x and x′ of the variable. These two views may be eval-
uated independently in parallel with an additional step to reduce
the results at the end, as shown in Figure 3(b). As long as the val-
ues for the views x and x′ are not inspected in the middle of the
computation, the associativity of addition guarantees that the final
result is deterministically x = 16. This series of updates could be
split anywhere else along the way and yield the same final result, as
demonstrated in Figure 3(c), where the computation is split across
three views x, x′, and x′′. To encapsulate nondeterminism in this
way, each of the views must be reduced with an associative RE-

PBFS(G,v0)
1 parallel for each vertex v ∈V (G)−{v0}
2 v.dist = ∞
3 v0.dist = 0
4 d = 0
5 V0 = BAG-CREATE()
6 BAG-INSERT(V0,v0)
7 while ¬BAG-IS-EMPTY(Vd)
8 Vd+1 = new reducer BAG-CREATE()
9 PROCESS-LAYER(revert Vd ,Vd+1,d)

10 d = d +1

PROCESS-LAYER(in-bag,out-bag,d)
11 if BAG-SIZE(in-bag) < GRAINSIZE
12 for each u ∈ in-bag
13 parallel for each v ∈ Adj[u]
14 if v.dist = = ∞
15 v.dist = d +1 �� benign race
16 BAG-INSERT(out-bag,v)
17 return
18 new-bag = BAG-SPLIT(in-bag)
19 spawn PROCESS-LAYER(new-bag,out-bag,d)
20 PROCESS-LAYER(in-bag,out-bag,d)
21 sync

Figure 4: The PBFS algorithm operating on a graph G with source vertex
v0 ∈ V (G). PBFS uses the recursive parallel subroutine PROCESS-LAYER
to process each layer. It contains a benign race in line 15.

DUCE operator (addition for this example) and intermediate views
must be initialized to the identity for REDUCE (0 for this example).

Cilk++’s reducer mechanism supports this kind of decomposi-
tion of update sequences automatically without requiring the pro-
grammer to manually create various views. When a function
spawns, the spawned child inherits the parent’s view of the hyper-
object. If the child returns before the continuation executes, the
child can return the view and the chain of updates can continue. If
the continuation begins executing before the child returns, however,
the continuation receives a new view initialized to the identity for
the associative REDUCE operator. Sometime at or before the sync
that joins the spawned child with its parent, the two views are com-
bined with REDUCE. If REDUCE is indeed associative, the result is
the same as if all the updates had occurred serially. Indeed, if the
program is run on one processor, the entire computation updates
only a single view without ever invoking the REDUCE operator, in
which case the behavior is virtually identical to a serial execution
that uses an ordinary object instead of a hyperobject. We shall for-
malize reducers in Section 7.

3. THE PBFS ALGORITHM
PBFS uses layer synchronization [3, 32] to parallelize breadth-

first search of an input graph G. Let v0 ∈V (G) be the source vertex,
and define layer d to be the set Vd ⊆V (G) of vertices at distance d
from v0. Thus, we have V0 = {v0}. Each iteration processes layer d
by checking all the neighbors of vertices in Vd for those that should
be added to Vd+1.

PBFS implements layers using an unordered-set data structure,
called a bag, which provides the following operations:

• bag = BAG-CREATE(): Create a new empty bag.
• BAG-INSERT(bag,x): Insert element x into bag.
• BAG-UNION(bag1,bag2): Move all the elements from bag2

to bag1, and destroy bag2.
• bag2 = BAG-SPLIT(bag1): Remove half (to within some

305

15.1 set = FALSE
15.2 if TRY-LOCK(v)
15.3 if v.dist = = ∞
15.4 v.dist = d +1
15.5 set = TRUE
15.6 RELEASE-LOCK(v)
15.7 if set
15.8 BAG-INSERT(out-bag,v)

Figure 5: Modification to the PBFS algorithm to resolve the benign race.

constant amount GRAINSIZE of granularity) of the elements
from bag1, and put them into a new bag bag2.

As Section 4 shows, BAG-CREATE operates in O(1) time, and
BAG-INSERT operates in O(1) amortized time. Both BAG-UNION
and BAG-SPLIT operate in O(lgn) time on bags with n elements.

Let us walk through the pseudocode for PBFS, which is shown in
Figure 4. For the moment, ignore the revert and reducer keywords
in lines 8 and 9.

After initialization, PBFS begins the while loop in line 7 which
iteratively calls the auxiliary function PROCESS-LAYER to process
layer d = 0,1, . . . ,D, where D is the diameter of the input graph G.
To process Vd = in-bag, PROCESS-LAYER uses parallel divide-
and-conquer, producing Vd+1 = out-bag. For the recursive case,
line 18 splits in-bag, removing half its elements and placing them
in new-bag. The two halves are processed recursively in parallel in
lines 19–20.

This recursive decomposition continues until in-bag has fewer
than GRAINSIZE elements, as tested for in line 11. Each vertex u in
in-bag is extracted in line 12, and line 13 examines each of its edges
(u,v) in parallel. If v has not yet been visited — v.dist is infinite
(line 14) — then line 15 sets v.dist = d +1 and line 16 inserts v into
the level-(d +1) bag. As an implementation detail, the destructive
nature of the BAG-SPLIT routine makes it particularly convenient
to maintain only two bags at a time, ignoring additional views set
up by the runtime system.

This description skirts over two subtleties that require discus-
sion, both involving races.

First, the update of v.dist in line 15 creates a race, since two ver-
tices u and u′ may both be examining vertex v at the same time.
They both check whether v.dist is infinite in line 14, discover that
it is, and both proceed to update v.dist. Fortunately, this race is
benign, meaning that it does not affect the correctness of the al-
gorithm. Both u and u′ set v.dist to the same value, and hence
no inconsistency arises from both updating the location at the same
time. They both go on to insert v into bag Vd+1 = out-bag in line 16,
which could induce another race. Putting that issue aside for the
moment, notice that inserting multiple copies of v into Vd+1 does
not affect correctness, only performance for the extra work it will
take when processing layer d + 1, because v will be encountered
multiple times. As we shall see in Section 5, the amount of extra
work is small, because the race is rarely actualized.

Second, a race in line 16 occurs due to parallel insertions of ver-
tices into Vd+1 = out-bag. We employ the reducer functionality to
avoid the race by making Vd+1 a bag reducer, where BAG-UNION is
the associative operation required by the reducer mechanism. The
identity for BAG-UNION — an empty bag — is created by BAG-
CREATE. In the common case, line 16 simply inserts v into the
local view, which, as we shall see in Section 4, is as efficient as
pushing v onto a FIFO, as is done by serial BFS.

Unfortunately, we are not able to analyze PBFS due to unstruc-
tured nondeterminism created by the benign race, but we can ana-

Figure 6: Two pennants, each of size 2k, can be unioned in constant time
to form a pennant of size 2k+1.

lyze a version where the race is resolved using a mutual-exclusion
lock. The locking version involves replacing lines 15 and 16 with
the code in Figure 5. In the code, the call TRY-LOCK(v) in line 15.2
attempts to acquire a lock on the vertex v. If it is successful, we
proceed to execute lines 15.3–15.6. Otherwise, we can abandon
the attempt, because we know that some other processor has suc-
ceeded, which then sets v.dist = d +1 regardless. Thus, there is no
contention on v’s lock, because no processor ever waits for another,
and processing an edge (u,v) always takes constant time. The ap-
parently redundant lines 14 and 15.3 avoid the overhead of lock
acquisition when v.dist has already been set.

4. THE BAG DATA STRUCTURE
This section describes the bag data structure for implement-

ing a dynamic unordered set. We first describe an auxiliary data
structure called a “pennant.” We then show how bags can be im-
plemented using pennants, and we provide algorithms for BAG-
CREATE, BAG-INSERT, BAG-UNION, and BAG-SPLIT. Finally,
we discuss some optimizations of this structure that PBFS employs.

Pennants
A pennant is a tree of 2k nodes, where k is a nonnegative integer.
Each node x in this tree contains two pointers x. left and x.right to
its children. The root of the tree has only a left child, which is a
complete binary tree of the remaining elements.

Two pennants x and y of size 2k can be combined to form a
pennant of size 2k+1 in O(1) time using the following PENNANT-
UNION function, which is illustrated in Figure 6.

PENNANT-UNION(x,y)
1 y. right = x. left
2 x. left = y
3 return x

The function PENNANT-SPLIT performs the inverse operation of
PENNANT-UNION in O(1) time. We assume that the input pennant
contains at least 2 elements.

PENNANT-SPLIT(x)
1 y = x. left
2 x. left = y. right
3 y. right = NULL
4 return y

Each of the pennants x and y now contains half the elements.

Bags
A bag is a collection of pennants, no two of which have the same
size. PBFS represents a bag S using a fixed-size array S[0 . .r],
called the backbone, where 2r+1 exceeds the maximum number of
elements ever stored in a bag. Each entry S[k] in the backbone con-
tains either a null pointer or a pointer to a pennant of size 2k. Fig-
ure 7 illustrates a bag containing 23 elements. The function BAG-
CREATE allocates space for a fixed-size backbone of null pointers,
which takes Θ(r) time. This bound can be improved to O(1) by
keeping track of the largest nonempty index in the backbone.

306

Figure 7: A bag with 23 = 0101112 elements.

The BAG-INSERT function employs an algorithm similar to that
of incrementing a binary counter. To implement BAG-INSERT, we
first package the given element as a pennant x of size 1. We then
insert x into bag S using the following method.

BAG-INSERT(S,x)
1 k = 0
2 while S[k] �= NULL
3 x = PENNANT-UNION(S[k],x)
4 S[k++] = NULL
5 S[k] = x

The analysis of BAG-INSERT mirrors the analysis for increment-
ing a binary counter [10, Ch. 17]. Since every PENNANT-UNION
operation takes constant time, BAG-INSERT takes O(1) amortized
time and O(lgn) worst-case time to insert into a bag of n elements.

The BAG-UNION function uses an algorithm similar to ripple-
carry addition of two binary counters. To implement BAG-UNION,
we first examine the process of unioning three pennants into two
pennants, which operates like a full adder. Given three pennants x,
y, and z, where each either has size 2k or is empty, we can merge
them to produce a pair of pennants (s,c), where s has size 2k or is
empty, and c has size 2k+1 or is empty. The following table details
the function FA(x,y,z) in which (s,c) is computed from (x,y,z),
where 0 means that the designated pennant is empty, and 1 means
that it has size 2k:

x y z s c
0 0 0 NULL NULL
1 0 0 x NULL
0 1 0 y NULL
0 0 1 z NULL
1 1 0 NULL PENNANT-UNION(x,y)
1 0 1 NULL PENNANT-UNION(x,z)
0 1 1 NULL PENNANT-UNION(y,z)
1 1 1 x PENNANT-UNION(y,z)

With this full-adder function in hand, BAG-UNION can be im-
plemented as follows:

BAG-UNION(S1,S2)
1 y = NULL �� The “carry” bit.
2 for k = 0 to r
3 (S1[k],y) = FA(S1[k],S2[k],y)

Because every PENNANT-UNION operation takes constant time,
computing the value of FA(x,y,z) also takes constant time. To com-
pute all entries in the backbone of the resulting bag takes Θ(r) time.
This algorithm can be improved to Θ(lgn), where n is the num-
ber of elements in the smaller of the two bags, by maintaining the
largest nonempty index of the backbone of each bag and unioning
the bag with the smaller such index into the one with the larger.

The BAG-SPLIT function operates like an arithmetic right shift:

BAG-SPLIT(S1)
1 S2 = BAG-CREATE()
2 y = S1[0]
3 S1[0] = NULL
4 for k = 1 to r
5 if S1[k] �= NULL
6 S2[k−1] = PENNANT-SPLIT(S1[k])
7 S1[k−1] = S1[k]
8 S1[k] = NULL
9 if y �= NULL

10 BAG-INSERT(S1,y)
11 return S2

Because PENNANT-SPLIT takes constant time, each loop itera-
tion in BAG-SPLIT takes constant time. Consequently, the asymp-
totic runtime of BAG-SPLIT is O(r). This algorithm can be im-
proved to Θ(lgn), where n is the number of elements in the input
bag, by maintaining the largest nonempty index of the backbone of
each bag and iterating only up to this index.

Optimization
To improve the constant in the performance of BAG-INSERT, we
made some simple but important modifications to pennants and
bags, which do not affect the asymptotic behavior of the algorithm.
First, in addition to its two pointers, every pennant node in the bag
stores a constant-size array of GRAINSIZE elements, all of which
are guaranteed to be valid, rather than just a single element. Our
PBFS software uses the value GRAINSIZE = 128. Second, in addi-
tion to the backbone, the bag itself maintains an additional pennant
node of size GRAINSIZE called the hopper, which it fills gradu-
ally. The impact of these modifications on the bag operations is as
follows.

First, BAG-CREATE must allocate additional space for the hop-
per. This overhead is small and is done only once per bag.

Second, BAG-INSERT first attempts to insert the element into
the hopper. If the hopper is full, then it inserts the hopper into
the backbone of the data structure and allocates a new hopper into
which it inserts the element. This optimization does not change
the asymptotic runtime analysis of BAG-INSERT, but the code runs
much faster. In the common case, BAG-INSERT simply inserts the
element into the hopper with code nearly identical to inserting an
element into a FIFO. Only once in every GRAINSIZE insertions
does a BAG-INSERT trigger the insertion of the now full hopper
into the backbone of the data structure.

Third, when unioning two bags S1 and S2, BAG-UNION first de-
termines which bag has the less full hopper. Assuming that it is S1,
the modified implementation copies the elements of S1’s hopper
into S2’s hopper until it is full or S1’s hopper runs out of elements.
If it runs out of elements in S1 to copy, BAG-UNION proceeds to
merge the two bags as usual and uses S2’s hopper as the hopper
for the resulting bag. If it fills S2’s hopper, however, line 1 of BAG-
UNION sets y to S2’s hopper, and S1’s hopper, now containing fewer
elements, forms the hopper for the resulting bag. Afterward, BAG-
UNION proceeds as usual.

Finally, rather than storing S1[0] into y in line 2 of BAG-SPLIT
for later insertion, BAG-SPLIT sets the hopper of S2 to be the pen-
nant node in S1[0] before proceeding as usual.

5. EXPERIMENTAL RESULTS
We implemented optimized versions of both the PBFS algorithm

in Cilk++ and a FIFO-based serial BFS algorithm in C++. This sec-
tion compares their performance on a suite of benchmark graphs.
Figure 8 summarizes the results.

307

Implementation and Testing
Our implementation of PBFS differs from the abstract algorithm
in some notable ways. First, our implementation of PBFS does
not use locks to resolve the benign races described in Section 3.
Second, our implementation of PBFS does not use the BAG-SPLIT
routine described in Section 4. Instead, our implementation uses a
“lop” operation to traverse the bag. It repeatedly divides the bag
into two approximately equal halves by lopping off the most sig-
nificant pennant from the bag. After each lop, the removed pen-
nant is traversed using a standard parallel tree walk. Third, our
implementation assumes that all vertices have bounded out-degree,
and indeed most of the vertices in our benchmark graphs have rel-
atively small degree. Finally, our implementation of PBFS sets
GRAINSIZE = 128, which seems to perform well in practice. The
FIFO-based serial BFS uses an array and two pointers to implement
the FIFO queue in the simplest way possible. This array was sized
to the number of vertices in the input graph.

These implementations were tested on eight benchmark graphs,
as shown in Figure 8. Kkt�power, Cage14, Cage15, Freescale1,
Wikipedia (as of February 6, 2007), and Nlpkkt160 are all from the
University of Florida sparse-matrix collection [11]. Grid3D200 is
a 7-point finite difference mesh generated using the Matlab Mesh
Partitioning and Graph Separator Toolbox [16]. The RMat23 ma-
trix [24], which models scale-free graphs, was generated by using
repeated Kronecker products [2]. Parameters A = 0.7, B =C = D =
0.1 for RMat23 were chosen in order to generate skewed matrices.
We stored these graphs in a compressed-sparse-rows (CSR) format
in main memory for our empirical tests.

Results
We ran our tests on an Intel Core i7 quad-core machine with a to-
tal of eight 2.53-GHz processing cores (hyperthreading disabled),
12 GB of DRAM, two 8-MB L3-caches each shared between 4
cores, and private L2- and L1-caches with 256 KB and 32 KB, re-
spectively. Figure 8 presents the performance of PBFS on eight
different benchmark graphs. (The parallelism was computed using
the Cilkview [19] tool and does not take into account effects from
reducers.) As can be seen in Figure 8, PBFS performs well on these
benchmark graphs. For five of the eight benchmark graphs, PBFS
is as fast or faster than serial BFS. Moreover, on the remaining
three benchmarks, PBFS is at most 15% slower than serial BFS.

Figure 8 shows that PBFS runs faster than a FIFO-based serial
BFS on several benchmark graphs. This performance advantage
may be due to how PBFS uses memory. Whereas the serial BFS
performs a single linear scan through an array as it processes its
queue, PBFS is constantly allocating and deallocating fixed-size
chunks of memory for the bag. Because these chunks do not change
in size from allocation to allocation, the memory manager incurs
little work to perform these allocations. Perhaps more importantly,
PBFS can reuse previously allocated chunks frequently, making
it more cache-friendly. This improvement due to memory reuse
is also apparent in some serial BFS implementations that use two
queues instead of one.

Although PBFS generally performs well on these benchmarks,
we explored why it was only attaining a speedup of 5 or 6 on 8
processor cores. Inadequate parallelism is not the answer, as most
of the benchmarks have parallelism over 100. Our studies indicate
that the multicore processor’s memory system may be hurting per-
formance in two ways.

First, the memory bandwidth of the system seems to limit per-
formance for several of these graphs. For Wikipedia and Cage14,
when we run 8 independent instances of PBFS serially on the 8 pro-
cessing cores of our machine simultaneously, the total runtime is at

Name

Spy Plot

|V | Work SERIAL-BFS T1
Description |E| Span PBFS T1

D Parallelism PBFS T1/T8

Kkt�power 2.05M 241M 0.504
Optimal power flow, 12.76M 2.3M 0.359
nonlinear opt. 31 103.85 5.983

Freescale1 3.43M 349M 0.285
Circuit simulation 17.1M 2.3M 0.327

128 152.72 5.190

Cage14 1.51M 390M 0.262
DNA electrophoresis 27.1M 1.6M 0.283

43 245.70 5.340

Wikipedia 2.4M 606M 0.914
Links between 41.9M 3.4M 0.721
Wikipedia pages 460 178.73 6.381

Grid3D200 8M 1,009M 1.544
3D 7-point 55.8M 12.7M 1.094
finite-diff mesh 598 79.27 4.862

RMat23 2.3M 1,050M 1.100
Scale-free 77.9M 11.3M 0.936
graph model 8 93.22 6.500

Cage15 5.15M 1,410M 1.065
DNA electrophoresis 99.2M 2.1M 1.142

50 674.65 5.263

Nlpkkt160 8.35M 3,060M 1.269
Nonlinear optimization 225.4M 9.2M 1.448

163 331.45 5.983

Figure 8: Performance results for breadth-first search. The vertex and edge
counts listed correspond to the number of vertices and edges evaluated by
SERIAL-BFS. The work and span are measured in instructions. All run-
times are measured in seconds.

least 20% worse than the expected 8T1. This experiment suggests
that the system’s available memory bandwidth limits the perfor-
mance of the parallel execution of PBFS.

Second, for several of these graphs, it appears that contention
from true and false sharing on the distance array constrains the
speedups. Placing each location in the distance array on a differ-
ent cache line tends to increase the speedups somewhat, although
it slows down overall performance due to the loss of spatial local-
ity. We attempted to modify PBFS to mitigate contention by ran-
domly permuting or rotating each adjacency list. Although these
approaches improve speedups, they slow down overall performance
due to loss of locality. Thus, despite its somewhat lower relative
speedup numbers, the unadulterated PBFS seems to yield the best
overall performance.

PBFS obtains good performance despite the benign race which
induces redundant work. On none of these benchmarks does PBFS
examine more than 1% of the vertices and edges redundantly. Us-
ing a mutex lock on each vertex to resolve the benign race costs a
substantial overhead in performance, typically slowing down PBFS
by more than a factor of 2.

Yuxiong He [18], formerly of Cilk Arts and Intel Corporation,
used PBFS to parallelize the Murphi model-checking tool [12].
Murphi is a popular tool for verifying finite-state machines and is
widely used in cache-coherence algorithms and protocol design,
link-level protocol design, executable memory-model analysis, and
analysis of cryptographic and security-related protocols. As can be
seen in Figure 9, a parallel Murphi using PBFS scales well, even

308

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

Sp
ee

du
p

Number of Cores

BFS
DFS

Figure 9: Multicore Murphi application speedup on a 16-core AMD pro-
cessor [18]. Even though the DFS implementation uses a parallel depth-first
search for which Cilk++ is particularly well suited, the BFS implementa-
tion, which uses the PBFS library, outperforms it.

outperforming a version based on parallel depth-first search and at-
taining the relatively large speedup of 15.5 times on 16 cores.

Part II — Nondeterminism of Reducers
The second half of this paper consists of Sections 6 through 9

and describes how to cope with the nondeterminism of reducers in
the theoretical analysis of PBFS. Section 6 provides background
on the theory of dynamic multithreading. Section 7 gives a formal
model for reducer behavior, Section 8 develops a theory for analyz-
ing programs that use reducers, and Section 9 employs this theory
to analyze the performance of PBFS.

6. BACKGROUND ON THE DAG MODEL
This section overviews the theoretical model of Cilk-like parallel

computation. We explain how a multithreaded program execution
can be modeled theoretically as a dag using the framework of Blu-
mofe and Leiserson [7], and we overview assumptions about the
runtime environment. We define deterministic and nondeterminis-
tic computations. Section 7 will describe how reducer hyperobjects
fit into this theoretical framework.

The dag model
We shall adopt the dag model for multithreading similar to the
one introduced by Blumofe and Leiserson [7]. This model was
designed to model the execution of spawns and syncs. We shall
extend it in Section 7 to deal with reducers.

The dag model views the executed computation resulting from
the running of a multithreaded program3 as a dag (directed acyclic
graph) A, where the vertex set consists of strands — sequences
of serially executed instructions containing no parallel control —
and the edge set represents parallel-control dependencies between
strands. We shall use A to denote both the dag and the set of strands
in the dag. Figure 10 illustrates such a dag, which can be viewed
as a parallel program “trace,” in that it involves executed instruc-
tions, as opposed to source instructions. A strand can be as small
as a single instruction, or it can represent a longer computation.
We shall assume that strands respect function boundaries, meaning
3When we refer to the running of a program, we shall generally assume that
we mean “on a given input.”

Figure 10: A dag representation of a multithreaded execution. Each ver-
tex represents a strand, and edges represent parallel-control dependencies
between strands.

that calling or spawning a function terminates a strand, as does re-
turning from a function. Thus, each strand belongs to exactly one
function instantiation. A strand that has out-degree 2 is a spawn
strand, and a strand that resumes the caller after a spawn is called
a continuation strand. A strand that has in-degree at least 2 is a
sync strand.

Generally, we shall dice a chain of serially executed instructions
into strands in a manner that is convenient for the computation we
are modeling. The length of a strand is the time it takes for a pro-
cessor to execute all its instructions. For simplicity, we shall as-
sume that programs execute on an ideal parallel computer, where
each instruction takes unit time to execute, there is ample memory
bandwidth, there are no cache effects, etc.

Determinacy
We say that a dynamic multithreaded program is deterministic (on
a given input) if every memory location is updated with the same
sequence of values in every execution. Otherwise, the program
is nondeterministic. A deterministic program always behaves the
same, no matter how the program is scheduled. Two different mem-
ory locations may be updated in different orders, but each location
always sees the same sequence of updates. Whereas a nondetermin-
istic program may produce different dags, i.e., behave differently, a
deterministic program always produces the same dag.

Work and span
The dag model admits two natural measures of performance which
can be used to provide important bounds [6, 8, 13, 17] on perfor-
mance and speedup. The work of a dag A, denoted by Work(A),
is the sum of the lengths of all the strands in the dag. Assuming
for simplicity that it takes unit time to execute a strand, the work
for the example dag in Figure 10 is 19. The span4 of A, denoted
by Span(A), is the length of the longest path in the dag. Assuming
unit-time strands, the span of the dag in Figure 10 is 10, which is
realized by the path 〈1,2,3,6,7,8,10,11,18,19〉. Work/span anal-
ysis is outlined in tutorial fashion in [10, Ch. 27] and [23].

Suppose that a program produces a dag A in time TP when run on
P processors of an ideal parallel computer. We have the following
two lower bounds on the execution time TP:

Tp ≥ Work(A)/P , (1)
TP ≥ Span(A) . (2)

Inequality (2), which is called the Work Law, holds in this simple
performance model, because each processor executes at most 1 in-
struction per unit time, and hence P processors can execute at most
4The literature also uses the terms depth [4] and critical-path length [5].

309

P instructions per unit time. Inequality (2), called the Span Law,
holds because no execution that respects the partial order of the dag
can execute faster than the longest serial chain of instructions.

We define the speedup of a program as T1/TP — how much faster
the P-processor execution is than the serial execution. Since for
deterministic programs, all executions produce the same dag A, we
have that T1 = Work(A), and T∞ = Span(A) (assuming no overhead
for scheduling). Rewriting the Work Law, we obtain T1/TP ≤ P,
which is to say that the speedup on P processors can be at most P.
If the application obtains speedup P, which is the best we can do in
our model, we say that the application exhibits linear speedup. If
the application obtains speedup greater than P (which cannot hap-
pen in our model due to the Work Law, but can happen in models
that incorporate caching and other processor effects), we say that
the application exhibits superlinear speedup.

The parallelism of the dag is defined as Work(A)/Span(A). For
a deterministic computation, the parallelism is therefore T1/T∞.
The parallelism represents the maximum possible speedup on any
number of processors, which follows from the Span Law, because
T1/TP ≤ T1/Span(A) = Work(A)/Span(A). For example, the par-
allelism of the dag in Figure 10 is 19/10 = 1.9, which means that
any advantage gained by executing it with more than 2 processors
is marginal, since the additional processors will surely be starved
for work.

Scheduling
A randomized “work-stealing” scheduler [1, 7], such as is pro-
vided by MIT Cilk and Cilk++, operates as follows. When the
runtime system starts up, it allocates as many operating-system
threads, called workers, as there are processors (although the pro-
grammer can override this default decision). Each worker’s stack
operates like a deque, or double-ended queue. When a subroutine
is spawned, the subroutine’s activation frame containing its local
variables is pushed onto the bottom of the deque. When it returns,
the frame is popped off the bottom. Thus, in the common case,
the parallel code operates just like serial code and imposes little
overhead. When a worker runs out of work, however, it becomes
a thief and “steals” the top frame from another victim worker’s
deque. In general, the worker operates on the bottom of the deque,
and thieves steal from the top. This strategy has the great advantage
that all communication and synchronization is incurred only when
a worker runs out of work. If an application exhibits sufficient par-
allelism, stealing is infrequent, and thus the cost of bookkeeping,
communication, and synchronization to effect a steal is negligible.

Work-stealing achieves good expected running time based on the
work and span. In particular, if A is the executed dag on P proces-
sors, the expected execution time TP can be bounded as

TP ≤ Work(A)/P+O(Span(A)) , (3)

where we omit the notation for expectation for simplicity. This
bound, which is proved in [7], assumes an ideal computer, but
it includes scheduling overhead. For a deterministic computa-
tion, if the parallelism exceeds the number P of processors suf-
ficiently, Inequality (3) guarantees near-linear speedup. Specifi-
cally, if P � Work(A)/Span(A), then Span(A) � Work(A)/P, and
hence Inequality (3) yields TP ≈ Work(A)/P, and the speedup is
T1/TP ≈ P.

For a nondeterministic computation such as PBFS, however, the
work of a P-processor execution may not readily be related to the
serial running time. Thus, obtaining bounds on speedup can be
more challenging. As Section 9 shows, however, PBFS achieves

TP(A) ≤ Work(Aυ)/P+O(τ2 ·Span(Aυ)) , (4)

where Aυ is the “user dag” of A — the dag from the programmer’s
perspective — and τ is an upper bound on the time it takes to per-
form a REDUCE, which may be a function of the input size. (We
shall formalize these concepts in Sections 7 and 8.) For nondeter-
ministic computations satisfying Inequality (4), we can define the
effective parallelism as Work(Aυ)/(τ2 · Span(Aυ)). Just as with
parallelism for deterministic computations, if the effective paral-
lelism exceeds the number P of processors by a sufficient mar-
gin, the P-processor execution is guaranteed to attain near-linear
speedup over the serial execution.

Another relevant measure is the number of steals that occur dur-
ing a computation. As is shown in [7], the expected number of
steals incurred for a dag A produced by a P-processor execution is
O(P ·Span(A)). This bound is important, since the number of RE-
DUCE operations needed to combine reducer views is bounded by
the number of steals.

7. MODELING REDUCERS
This section reviews the definition of reducer hyperobjects from

[14] and extends the dag model to incorporate them. We define
the notion of a “user dag” for a computation, which represents the
strands that are visible to the programmer. We also define the no-
tion of a “performance dag,” which includes the strands that the
runtime system implicitly invokes.

A reducer is defined in terms of an algebraic monoid: a triple
(T,⊗,e), where T is a set and ⊗ is an associative binary opera-
tion over T with identity e. From an object-oriented programming
perspective, the set T is a base type which provides a member func-
tion REDUCE implementing the binary operator ⊗ and a member
function CREATE-IDENTITY that constructs an identity element of
type T . The base type T also provides one or more UPDATE func-
tions, which modify an object of type T . In the case of bags, the
REDUCE function is BAG-UNION, the CREATE-IDENTITY func-
tion is BAG-CREATE, and the UPDATE function is BAG-INSERT.
As a practical matter, the REDUCE function need not actually be as-
sociative, although in that case, the programmer typically has some
idea of “logical” associativity. Such is the case, for example, with
bags. If we have three bags B1, B2, and B3, we do not care whether
the bag data structures for (B1 ∪B2)∪B3 and B1 ∪ (B2 ∪B3) are
identical, only that they contain the same elements.

To specify the nondeterministic behavior encapsulated by reduc-
ers precisely, consider a computation A of a multithreaded program,
and let V (A) be the set of executed strands. We assume that the im-
plicitly invoked functions for a reducer — REDUCE and CREATE-
IDENTITY — execute only serial code. We model each execution
of one of these functions as a single strand containing the instruc-
tions of the function. If an UPDATE causes the runtime system to
invoke CREATE-IDENTITY implicitly, the serial code arising from
UPDATE is broken into two strands sandwiching the point where
CREATE-IDENTITY is invoked.

We partition V (A) into three classes of strands:
• Vι: Init strands arising from the execution of CREATE-

IDENTITY when invoked implicitly by the runtime system,
which occur when the user program attempts to update a re-
ducer, but a local view has not yet been created.

• Vρ: Reducer strands arising from the execution of REDUCE,
which occur implicitly when the runtime system combines
views.

• Vυ: User strands arising from the execution of code explic-
itly invoked by the programmer, including calls to UPDATE.

We call Vι ∪Vρ the set of runtime strands.
Since, from the programmer’s perspective, the runtime strands

310

are invoked “invisibly” by the runtime system, his or her under-
standing of the program generally relies only on the user strands.
We capture the control dependencies among the user strands by
defining the user dag Aυ =(Vυ,Eυ) for a computation A in the same
manner as we defined an ordinary multithreaded dag. For example,
a spawn strand e1 has out-degree 2 in Aυ with an edge (v1,v2) go-
ing to the first strand v2 of the spawned child and the other edge
(v2,v3) going to the continuation v3; if v1 is the final strand of a
spawned subroutine and v2 is the sync strand with which v1 syncs,
then we have (v1,v2) ∈ Eυ; etc.

To track the views of a reducer h in the user dag, let h(v) denote
the view of h seen by a strand v∈Vυ. The runtime system maintains
the following invariants:

1. If u ∈Vυ has out-degree 1 and (u,v) ∈ Eυ, then h(v) = h(u).
2. Suppose that u ∈ Vυ is a spawn strand with outgoing edges

(u,v),(u,w) ∈ Eυ, where v ∈ Vυ is the first strand of the
spawned subroutine and w ∈ Vυ is the continuation in the
parent. Then, we have h(v) = h(u) and

h(w) =
j

h(u) if u was not stolen;
new view otherwise.

3. If v ∈ Vυ is a sync strand, then h(v) = h(u), where u is the
first strand of v’s function.

When a new view h(w) is created, as is inferred by Invariant 2, we
say that the old view h(u) dominates h(w), which we denote by
h(u) � h(w). For a set H of views, we say that two views h1,h2 ∈
H, where h1 � h2, are adjacent if there does not exist h3 ∈ H such
that h1 � h3 � h2.

A useful property of sync strands is that the views of strands
entering a sync strand v ∈ Vυ are totally ordered by the “domi-
nates” relation. That is, if k strands each have an edge in Eυ to
the same sync strand v ∈ Vυ, then the strands can be numbered
u1,u2, . . . ,uk ∈ Vυ such that h(u1) � h(u2) � ·· · � uk. Moreover,
h(u1) = h(v) = h(u), where u is the first strand of v’s function.
These properties can be proved inductively, noting that the views
of the first and last strands of a function must be identical, because
a function implicitly syncs before it returns. The runtime system
always reduces adjacent pairs of views in this ordering, destroying
the dominated view in the pair.

If a computation A does not involve any runtime strands, the
“delay-sequence” argument in [7] can be applied to Aυ to bound the
P-processor execution time: TP(A)≤Work(Aυ)/P+O(Span(Aυ)).
Our goal is to apply this same analytical technique to computations
containing runtime strands. To do so, we augment the Aυ with the
runtime strands to produce a performance dag Aπ = (Vπ,Eπ) for
the computation A, where

• Vπ = V (A) = Vυ ∪Vι ∪Vρ,
• Eπ = Eυ ∪Eι ∪Eρ,

where the edge sets Eι and Eρ are constructed as follows.
The edges in Eι are created in pairs. For each init strand v ∈ Vι,

we include (u,v) and (v,w) in Eι, where u,w ∈ Vυ are the two
strands comprising the instructions of the UPDATE whose execu-
tion caused the invocation of the CREATE-IDENTITY correspond-
ing to v.

The edges in Eρ are created in groups corresponding to the set of
REDUCE functions that must execute before a given sync. Suppose
that v ∈Vυ is a sync strand, that k strands u1,u2, . . . ,uk ∈ Aυ join at
v, and that k′ < k reduce strands r1,r2, . . . ,rk′ ∈ Aρ execute before
the sync. Consider the set U = {u1,u2, . . . ,uk}, and let h(U) =
{h(u1),h(u2), . . . ,h(uk)} be the set of k′ + 1 views that must be
reduced. We construct a reduce tree as follows:

1 while |h(U)| ≥ 2
2 Let r ∈ {r1,r2, . . . ,rk′ } be the reduce strand that reduces a “min-

imal” pair h j,h j+1 ∈ h(U) of adjacent strands, meaning that if
a distinct r′ ∈ {r1,r2, . . . ,rk′ } reduces adjacent strands hi,hi+1 ∈
h(U), we have hi � h j

3 Let Ur =
˘

u ∈U : h(u) = h j or h(u) = h j+1
¯

4 Include in Eρ the edges in the set {(u,r) : u ∈Ur}
5 U = U −Ur ∪{r}
6 Include in Eρ the edges in the set {(r,v) : r ∈U}

Since the reduce trees and init strands only add more dependen-
cies between strands in the user Aυ that are already in series, the
performance dag Aπ is indeed a dag.

Since the runtime system performs REDUCE operations oppor-
tunistically, the reduce strands in the performance dag may execute
before their predecessors have completed. The purpose of perfor-
mance dags, as Section 8 shows, is to account for the cost of the
runtime strands, not to describe how computations are scheduled.

8. ANALYSIS OF PROGRAMS WITH
NONCONSTANT-TIME REDUCERS

This section provides a framework for analyzing programs that
contain reducers whose REDUCE functions execute in more than
constant time.

We begin with a lemma that bounds the running time of a com-
putation in terms of the work and span of its performance dag.

LEMMA 1. Consider the execution of a computation A on a
parallel computer with P processors using a work-stealing sched-
uler. The expected running time of A is TP(A) ≤ Work(Aπ)/P +
O(Span(Aπ)).

PROOF. The proof follows those of [7] and [14], with some
salient differences. As in [7], we use a delay-sequence argument,
but we base it on the performance dag.

The normal delay-sequence argument involves only a user dag.
This dag is augmented with “deque” edges, each running from a
continuation on the deque to the next in sequence from top to bot-
tom. These deque edges increase the span of the dag by at most a
constant factor. The argument then considers a path in the dag, and
it defines an instruction as being critical if all its predecessors in the
augmented dag have been executed. The key property of the work-
stealing algorithm is that every critical instruction sits atop of some
deque (or is being executed by a worker). Thus, whenever a worker
steals, it has a 1/P chance of executing a critical instruction. With
constant probability, P steals suffice to reduce the span of the dag of
the computation that remains to be executed by 1. Consequently,
the expected number of steals is O(P · Span(Aπ)). A similar but
slightly more complex bound holds with high probability.

This argument can be modified to work with performance dags
containing reducers that operate in nonconstant-time. As instruc-
tions in the computation are executed, we can mark them off in
the performance dag. Since we have placed reduce strands af-
ter strands in the performance dag before which they may have
actually executed, some reduce strands may execute before all of
their predecessors in the performance dag complete. That is okay.
The main property is that if an instruction is critical, it has a 1/P
chance of being executed upon a steal, and that P steals have a
constant expectation of reducing the span of the dag that remains
to execute by 1. The crucial observation is that if an instruc-
tion in a reduce strand is critical, then its sync node has been
reached, and thus a worker must be executing the critical instruc-
tion, since reduces are performed eagerly when nothing impedes
their execution. It follows that the expected running time of A is
TP(A) ≤ Work(Aπ)/P+O(Span(Aπ)).

311

We want to ensure that the runtime system joins strands quickly
when reducers are involved. Providing a guarantee requires that we
examine the specifics of how the runtime system handles reducers.

First, we review how the runtime system handles spawns and
steals, as described by Frigo et al. [14]. Every time a Cilk func-
tion is stolen, the runtime system creates a new frame.5 Although
frames are created and destroyed dynamically during a program ex-
ecution, the ones that exist always form a rooted spawn tree. Each
frame F provides storage for temporary values and local variables,
as well as metadata for the function, including the following:

• a pointer F. lp to F’s left sibling, or if F is the first child, to
F’s parent;

• a pointer F.c to F’s first child;
• a pointer F.r to F’s right sibling.

These pointers form a left-child right-sibling representation of the
part of the spawn tree that is distributed among processors, which
is known as the steal tree.

To handle reducers, each worker in the runtime system uses a
hash table called a hypermap to map reducers into its local views.
To allow for lock-free access to the hypermap of a frame F while
siblings and children of the frame are terminating, F stores three
hypermaps, denoted F.hu, F.hr, and F.hc. The F.hu hypermap is
used to look up reducers for the user’s program, while the F.hr and
F.hc hypermaps store the accumulated values of F’s terminated
right siblings and terminated children, respectively.

When a frame is initially created, its hypermaps are empty. If a
worker using a frame F executes an UPDATE operation on a reducer
h, the worker tries to get h’s current view from the F.hu hypermap.
If h’s view is empty, the worker performs a CREATE-IDENTITY
operation to create an identity view of h in F.hu.

When a worker returns from a spawn, first it must perform up
to two REDUCE operations to reduce its hypermaps into its neigh-
boring frames, and then it must eliminate its current frame. To
perform these REDUCE operations and elimination without races,
the worker grabs locks on its neighboring frames. The algorithm
by Frigo et al. [14] uses an intricate protocol to avoid long waits
on locks, but the analysis of its performance assumes that each RE-
DUCE takes only constant time.

To support nonconstant-time REDUCE functions, we modify the
locking protocol. To eliminate a frame F , the worker first reduces
F.hu ⊗= F.hr. Second, the worker reduces F. lp.hc ⊗= F.hu or
F. lp.hr ⊗= F.hu, depending on whether F is a first child.

Workers eliminating F. lp and F.r might race with the elimina-
tion of F . To resolve these races, Frigo et al. describe how to ac-
quire an abstract lock between F and these neighbors, where an
abstract lock is a pair of locks that correspond to an edge in the
steal tree. We shall use these abstract locks to eliminate a frame F
according to the locking protocol shown in Figure 11.

The next lemma analyzes the work required to perform all elim-
inations using this locking protocol.

LEMMA 2. Consider the execution of a computation A on a
parallel computer with P processors using a work-stealing sched-
uler. The total work involved in joining strands is O(τP ·Span(Aπ)),
where τ is the worst-case cost of any REDUCE or CREATE-
IDENTITY for the given input.

PROOF. Since lines 3–15 in the new locking protocol all require
O(1) work, each abstract lock is held for a constant amount of time.

The analysis of the time spent waiting to acquire an abstract
lock in the new locking protocol follows the analysis of the lock-
ing protocol in [14]. The key issue in the proof is to show that
5When we refer to frames in this paper, we specifically mean the “full”
frames described in [14].

1 while TRUE
2 Acquire the abstract locks for edges (F,F. lp) and (F,F. r) in an

order chosen uniformly at random
3 if F is a first child
4 L = F. lp.hc
5 else L = F. lp.hr
6 R = F.hr
7 if L = = /0 and R = = /0
8 if F is a first child
9 F. lp.hc = F.hu

10 else F. lp.hr = F.hu
11 Eliminate F
12 break
13 R′ = R; L′ = L
14 R = /0; L = /0
15 Release the abstract locks
16 for each reducer h ∈ R
17 if h ∈ F.hu
18 F.hu(h) ⊗= R(h)
19 else F.hu(h) = R(h)
20 for each reducer h ∈ L
21 if h ∈ F.hu
22 F.hu(h) = L(h)⊗F.hu(h)
23 else F.hu(h) = L(h)
24

Figure 11: A modified locking protocol for managing reducers, which
holds locks for O(1) time.

the time for the ith abstract lock acquisition by some worker w
is independent of the time for w’s jth lock acquisition for all
j > i. To prove this independence result, we shall argue that
for two workers w and v, we have Pr

˘
v delays w j|v delays wi

¯
=

Pr
˘

v delays w j|v does not delay wi
¯

= Pr
˘

v delays w j
¯

, where wi
and w j are w’s ith and jth lock acquisitions, respectively.

We shall consider each of these cases separately. First, sup-
pose that v delays wi. After wi, v has succeeded in acquir-
ing and releasing its abstract locks, and all lock acquisitions in
the directed path from w’s lock acquisition to v’s have also suc-
ceeded. For v to delay w j, a new directed path of dependen-
cies from w to v must occur. Each edge in that path is ori-
ented correctly with a 1/2 probability, regardless of any previ-
ous interaction between v and w. Similarly, suppose that v does
not delay wi. For v to delay w j, a chain of dependencies must
form from one of w’s abstract locks to one of v’s abstract locks
after wi completes. Forming such a dependency chain requires
every edge in the chain to be correctly oriented, which occurs
with a 1/2 probability per edge regardless of the fact that v did
not delay wi. Therefore, we have Pr

˘
v delays w j|v delays wi

¯
=

Pr
˘

v delays w j|v does not delay wi
¯

= Pr
˘

v delays w j
¯

.
For all workers v �= w, the probability that v delays w j is indepen-

dent of whether v delays wi. Consequently, every lock acquisition
by some worker is independent of all previous acquisitions, and
by the analysis in [14], the total time a worker spends in abstract
lock acquisitions is O(m) in expectation, where m is the number
of abstract lock acquisitions that worker performs. Moreover, the
total time spent in abstract lock acquisitions is proportional to the
number of elimination attempts.

Next, we bound the total number of elimination attempts per-
formed in this protocol. Since each successful steal creates a frame
in the steal tree that must be eliminated, the number of elimination
attempts is at least as large as the number M of successful steals.
Each elimination of a frame may force two other frames to repeat
this protocol. Therefore, each elimination increases the number of
elimination attempts by at most 2. Thus, the total number of elimi-
nation attempts is no more than 3M.

312

Finally, we bound the total work spent joining strands using this
protocol. The total time spent acquiring abstract locks and per-
forming the necessary operations while the lock is held is O(M).
Each failed elimination attempt triggers at most two REDUCE op-
erations, each of which takes τ work in the worst case. Therefore,
the total expected work spent joining strands is O(τM). Using the
analysis of steals from [7], the total work spent joining strands is
O(τP ·Span(Aπ)).

The following two lemmas bound the work and span of the per-
formance dag in terms of the span of the user dag. For simplicity,
assume that A makes use of a single reducer. (These proofs can be
extended to handle many reducers within a computation.)

LEMMA 3. Consider a computation A with user dag Aυ and
performance dag Aπ, and let τ be the worst-case cost of any
CREATE-IDENTITY or REDUCE operation for the given input.
Then, we have Span(Aπ) = O(τ ·Span(Aυ)).

PROOF. Each successful steal in the execution of A may force
one CREATE-IDENTITY. Each CREATE-IDENTITY creates a
nonempty view that must later be reduced using a REDUCE op-
eration. Therefore, at most one REDUCE operation may occur per
successful steal, and at most one reduce strand may occur in the
performance dag for each steal. Each spawn in Aυ provides an op-
portunity for a steal to occur. Consequently, each spawn operation
in A may increase the size of the dag by 2τ in the worst case.

Consider a critical path in Aπ, and let pυ be the corresponding
path in Aυ. Suppose that k steals occur along pυ. The length
of that corresponding path in Aπ is at most 2kτ + |pυ| ≤ 2τ ·
Span(Aυ)+ |pυ| ≤ 3τ ·Span(Aυ). Therefore, we have Span(Aπ) =
O(τ ·Span(Aυ)).

LEMMA 4. Consider a computation A with user dag Aυ, and
let τ be the worst-case cost of any CREATE-IDENTITY or RE-
DUCE operation for the given input. Then, we have Work(Aπ) =
Work(Aυ)+O(τ2P ·Span(Aυ)).

PROOF. The work in Aπ is the work in Aυ plus the work
represented in the runtime strands. The total work in reduce
strands equals the total work to join stolen strands, which is
O(τP · Span(A)) by Lemma 2. Similarly, each steal may cre-
ate one init strand, and by the analysis of steals from [7], the
total work in init strands is O(τP · Span(A)). Thus, we have
Work(Aπ) = Work(Aυ) + O(τP · Span(Aπ)). Applying Lemma 3
yields the lemma.

We now prove Inequality (4), which bounds the runtime of a
computation whose nondeterminism arises from reducers.

THEOREM 5. Consider the execution of a computation A on a
parallel computer with P processors using a work-stealing sched-
uler. Let Aυ be the user dag of A. The total running time of A is
TP(A) ≤ Work(Aυ)/P+O(τ2 ·Span(Aυ)).

PROOF. The proof follows from Lemmas 1, 3, and 4.

9. ANALYZING PBFS
This section applies the results of Section 8 to bound the ex-

pected running time of the locking version of PBFS.
First, we bound the work and span of the user dag for PBFS.

LEMMA 6. Suppose that the locking version of PBFS is run on
a connected graph G = (V,E) with diameter D. The total work in
PBFS’s user dag is O(V + E), and the total span of PBFS’s user
dag is O(D lg(V/D)+D lgΔ), where Δ is the maximum out-degree
of any vertex in V .

PROOF. In each layer, PBFS evaluates every vertex v in that
layer exactly once, and PBFS checks every vertex u in v’s adja-
cency list exactly once. In the locking version of PBFS, each u is
assigned its distance exactly once and added to the bag for the next
layer exactly once. Since this holds for all layers of G, the total
work for this portion of PBFS is O(V +E).

PBFS performs additional work to create a bag for each layer
and to repeatedly split the layer into GRAINSIZE pieces. If D is the
number of layers in G, then the total work PBFS spends in calls
to BAG-CREATE is O(D lgV). The analysis for the work PBFS
performs to subdivide a layer follows the analysis for building a
binary heap [10, Ch. 6]. Therefore, the total time PBFS spends in
calls to BAG-SPLIT is O(V).

The total time PBFS spends executing BAG-INSERT depends on
the parallel execution of PBFS. Since a steal resets the contents of a
bag for subsequent update operations, the maximum running time
of BAG-INSERT depends on the steals that occur. Each steal can
only decrease the work of a subsequent BAG-INSERT, and there-
fore the amortized running time of O(1) for each BAG-INSERT still
applies. Because BAG-INSERT is called once per vertex, PBFS
spends O(V) work total executing BAG-INSERT, and the total work
of PBFS is O(V +E).

The sequence of splits performed in each layer cause the ver-
tices of the layer to be processed at the leaves of a balanced binary
tree of height O(lgVd), where Vd is the set of vertices in the dth
layer. Since the series of syncs that PBFS performs mirror this split
tree, the divide-and-conquer computation to visit the vertices in a
layer and then combine the results has span O(lgVd). Each leaf
of this tree processes at most a constant number of vertices and
looks at the outgoing edges of those vertices in a similar divide-
and-conquer fashion. This divide-and-conquer evaluation results in
a computation at each leaf with span O(lgΔ). Each edge evaluated
performs some constant-time work and may trigger a call to BAG-
INSERT, whose worst-case running time would be O(lgVd+1).
Consequently, the span of PBFS for processing the dth layer is
O(lgVd + lgVd+1 + lgΔ). Summing this quantity over all layers
in G, the maximum span for PBFS is O(D lg(V/D)+D lgΔ).

We now bound the expected running time of PBFS.

THEOREM 7. Consider the parallel execution of PBFS on a
connected graph G = (V,E) with diameter D running on a par-
allel computer with P processors using a work-stealing sched-
uler. The expected running time of the locking version of PBFS
is TP(PBFS) ≤ O(V + E)/P + O(D lg2(V/D)(lg(V/D) + lgΔ)),
where Δ is the maximum out-degree of any vertex in V . If we have
Δ = O(1), then the expected running time of PBFS is TP(PBFS) ≤
O(V +E)/P+O(D lg3(V/D)).

PROOF. To maximize the cost of all CREATE-IDENTITY
and REDUCE operations in PBFS, the worst-case cost of each
of these operations must be O(lg(V/D)). Applying Theo-
rem 5 with τ = O(lg(V/D)), Work(PBFS) = O(V + E), and
Span(PBFS) = O(D lg(V/D) + D lgΔ), we get TP(PBFS) ≤
O(V + E)/P + O(D lg2(V/D)(lg(V/D) + lgΔ)). If we have Δ =
O(1), this formula simplifies to TP(PBFS) ≤ O(V + E)/P +
O(D lg3(V/D)).

10. CONCLUSION
Thread-local storage [27], or TLS, presents an alternative to bag

reducers for implementing the layer sets in a parallel breadth-first
search. The bag reducer allows PBFS to write the vertices of a layer
in a single data structure in parallel and later efficiently traverse
them in parallel. As an alternative to bags, each of the P workers

313

could store the vertices it encounters into a vector within its own
TLS, thereby avoiding races. The set of elements in the P vectors
could then be walked in parallel using divide-and-conquer. Such
a structure appears simple to implement and practically efficient,
since it avoids merging sets.

Despite the simplicity of the TLS solution, reducer-based solu-
tions exhibit some advantages over TLS solutions. First, reducers
provide a processor-oblivious alternative to TLS, enhancing porta-
bility and simplifying reasoning of how performance scales. Sec-
ond, reducers allow a function to be instantiated multiple times in
parallel without interference. To support simultaneous running of
functions that use TLS, the programmer must manually ensure that
the TLS regions used by the functions are disjoint. Third, reducers
require only a monoid — associativity and an identity — to ensure
correctness, whereas TLS also requires commutativity. The cor-
rectness of some applications, including BFS, is not compromised
by allowing commutative updates to its shared data structure. With-
out commutativity, an application cannot easily use TLS, whereas
reducers seem to be good whether commutativity is allowed or not.
Finally, whereas TLS makes the nondeterminism visible to the pro-
grammer, reducers encapsulate nondeterminism. In particular, re-
ducers hide the particular nondeterministic manner in which asso-
ciativity is resolved, thereby allowing the programmer to assume
specific semantic guarantees at well-defined points in the compu-
tation. This encapsulation of nondeterminism simplifies the task
of reasoning about the program’s correctness compared to a TLS
solution.

Nondeterminism can wreak havoc on the ability to reason about
programs, to test their correctness, and to ascertain their perfor-
mance, but it also can provide opportunities for additional paral-
lelism. Well-structured linguistic support for encapsulating nonde-
terminism may allow parallel programmers to enjoy the benefits of
nondeterminism without suffering unduly from the inevitable com-
plications that nondeterminism engenders. Reducers provide an ef-
fective way to encapsulate nondeterminism. We view it as an open
question whether a semantics exists for TLS that would encapsu-
late nondeterminism while providing a potentially more efficient
implementation in situations where commutativity is allowed.

11. ACKNOWLEDGMENTS
Thanks to Aydın Buluç of University of California, Santa Bar-

bara, who helped us obtain many of our benchmark tests. Pablo G.
Halpern of Intel Corporation and Kevin M. Kelley of MIT CSAIL
helped us debug PBFS’s performance bugs. Matteo Frigo of Axis
Semiconductor helped us weigh the pros and cons of reducers ver-
sus TLS. We thank the referees for their excellent comments.
Thanks to the Cilk team at Intel and the Supertech Research Group
at MIT CSAIL for their support.

12. REFERENCES
[1] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling

for multiprogrammed multiprocessors. In SPAA, pp. 119–129, 1998.
[2] D. Bader, J. Feo, J. Gilbert, J. Kepner, D. Keoster, E. Loh,

K. Madduri, B. Mann, and T. Meuse. HPCS scalable synthetic
compact applications #2, 2007. Available at
�����������	
������
������
	��������
�������������
�
��������
�� ����!��.

[3] D. A. Bader and K. Madduri. Designing multithreaded algorithms for
breadth-first search and st-connectivity on the Cray MTA-2. In ICPP,
pp. 523–530, 2006.

[4] G. E. Blelloch. Programming parallel algorithms. CACM, 39(3),
1996.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime
system. JPDC, 37(1):55–69, 1996.

[6] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of
multithreaded computations. SIAM J. on Comput., 27(1):202–229,
1998.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. JACM, 46(5):720–748, 1999.

[8] R. P. Brent. The parallel evaluation of general arithmetic expressions.
JACM, 21(2):201–206, 1974.

[9] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and
T. Wen. Solving large, irregular graph problems using adaptive
work-stealing. In ICPP, pp. 536–545, 2008.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, third edition, 2009.

[11] T. A. Davis. University of Florida sparse matrix collection, 2010.
Available at
����������������"#
��!"�
����
������
������
�����.

[12] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol
verification as a hardware design aid. In ICCD, pp. 522–525, 1992.

[13] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus
efficiency in parallel systems. IEEE Trans. Comput., 38(3):408–423,
1989.

[14] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers
and other Cilk++ hyperobjects. In SPAA, pp. 79–90, 2009.

[15] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of
the Cilk-5 multithreaded language. In PLDI, pp. 212–223, 1998.

[16] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh
partitioning: Implementation and experiments. SIAM J. on Sci.
Comput., 19(6):2091–2110, 1998.

[17] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell
Sys. Tech. J., 45:1563–1581, 1966.

[18] Y. He. Multicore-enabling the Murphi verification tool. Available
from ���������#���
������
��������"���
���
���
�"
����
������
��	������"
���� �
�#�����������
�,
2009.

[19] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview
scalability analyzer. In SPAA, 2010.

[20] Intel Corporation. Intel Cilk++ SDK Programmer’s Guide, 2009.
Document Number: 322581-001US.

[21] R. E. Korf and P. Schultze. Large-scale parallel breadth-first search.
In AAAI, pp. 1380–1385, 2005.

[22] C. Y. Lee. An algorithm for path connection and its applications. IRE
Trans. on Elec. Comput., EC-10(3):346–365, 1961.

[23] C. E. Leiserson. The Cilk++ concurrency platform. J. Supercomput.,
51(3):244–257, 2010.

[24] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos.
Realistic, mathematically tractable graph generation and evolution,
using Kronecker multiplication. In PKDD, pp. 133–145, 2005.

[25] J. B. Lubos, L. Brim, and J. Chaloupka. Parallel breadth-first search
LTL model-checking. In ASE, pp. 106–115, 2003.

[26] E. F. Moore. The shortest path through a maze. In Int. Symp. on Th.
of Switching, pp. 285–292, 1959.

[27] D. Stein and D. Shah. Implementing lightweight threads. In USENIX,
pp. 1–9, 1992.

[28] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
third edition, 2000.

[29] Supertech Research Group, MIT/LCS. Cilk 5.4.6 Reference Manual,
1998. Available from
��������"��
���������
������!"���
��.

[30] A. van Heukelum, G. T. Barkema, and R. H. Bisseling. Dna
electrophoresis studied with the cage model. J. Comput. Phys.,
180(1):313–326, 2002.

[31] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and
U. Catalyurek. A scalable distributed parallel breadth-first search
algorithm on BlueGene/L. In SC ’05, p. 25, 2005.

[32] Y. Zhang and E. A. Hansen. Parallel breadth-first heuristic search on
a shared-memory architecture. In AAAI Workshop on Heuristic
Search, Memory-Based Heuristics and Their Applications, 2006.

314

