
1

VAIDYA’S PRECONDITIONERS:
IMPLEMENTATION AND EXPERIMENTAL STUDY

DORON CHEN† AND SIVAN TOLEDO‡

Abstract. We describe the implementation and performance of a novel class of preconditioners.
These preconditioners were proposed and theoretically analyzed by Pravin Vaidya in 1991, but
no report on their implementation or performance in practice has ever been published. We show
experimentally that these preconditioners have some remarkable properties. We show that within the
class of diagonally-dominant symmetric matrices, the cost and convergence of these preconditioners
depends almost only on the nonzero structure of the matrix, but not on its numerical values. In
particular, this property leads to robust convergence behavior on difficult 3-dimensional problems
that cause stagnation in incomplete-Cholesky preconditioners (more specifically, in drop-tolerance
incomplete Cholesky without diagonal modification, with diagonal modification, and with relaxed
diagonal modification). On such problems, we have observed cases in which a Vaidya-preconditioned
solver is more than 6 times faster than an incomplete-Cholesky-preconditioned solver, when we
allow similar amounts of fill in the factors of both preconditioners. We also show that Vaidya’s
preconditioners perform and scale similarly or better than drop-tolerance relaxed-modified incomplete
Cholesky preconditioners on a wide range of 2-dimensional problems. In particular, on anisotropic
2D problems, Vaidya delivers robust convergence independently of the direction of anisotropy and
the ordering of the unknowns. However, on many 3D problems in which incomplete-Cholesky-
preconditioned solvers converge without stagnating, Vaidya-preconditioned solvers are much slower.
We also show how the insights gained from this study can be used to design faster and more robust
solvers for some difficult problems.

1. Introduction. A decade ago Pravin Vaidya proposed an intriguing family of
preconditioners for symmetric diagonally-dominant (SDD) matrices [26]. He presented
his ideas in a scientific meeting but never published a paper on the topic. Neither
he nor others ever described an implementation or an experimental study of these
preconditioners.1

We have implemented Vaidya’s preconditioners. We experimentally compare the
effectiveness of Vaidya’s preconditioners to that of incomplete-factorization precondi-
tioners, including no-fill and drop-tolerance preconditioners, both modified and un-
modified. The objective of the comparison is not to study the behavior of incomplete
Cholesky but to provide a qualitative and quantitative context for our experiments
with Vaidya’s preconditioners. Our main findings are that Vaidya’s preconditioners:

• converge at an almost constant rate on a variety of problems, a behavior very
different from the convergence behavior of incomplete Cholesky precondition-

∗This research was supported by Israel Science Foundation founded by the Israel Academy of
Sciences and Humanities (grant number 572/00 and grant number 9060/99) and by the University
Research Fund of Tel-Aviv University.

†School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
‡School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:

stoledo@tau.ac.il. Home page: http://www.tau.ac.il/ stoledo.
1We note that Vaidya founded a company called Computational Applications and System Inte-

gration Inc. (www.casicorp.com). Pravin Vaidya is the president of the company and a former PhD
student of his, Anil Joshi, whose thesis [15] contains some analysis of Vaidya’s preconditioners, is the
company’s vice president. According to its marketing materials, the company is developing and li-
censing proprietary iterative linear solvers. Two papers describe the performance of the code [22, 23]
but without any details on the algorithms that the code uses. Therefore, it is possible that Vaidya’s
algorithms have been implemented in this proprietary software, but nothing has been published in
the scientific literature. Also, since these two papers [22, 23] provide no algorithmic details, it is
impossible to determine whether they actually describe the performance of Vaidya’s preconditioners
or of some other algorithm or variant.

1

2 CHEN AND TOLEDO

ers.
• are sensitive only to the nonzero structure of the coefficient matrix and not to

the values of its entries (within the class of SDD matrices), again a different
behavior than that of incomplete Cholesky.
• deliver similar or better performance to that of incomplete Cholesky on a

wide variety of two-dimensional problems.
• deliver poorer performance than incomplete Cholesky on some three-dimensional

problems but dramatically better performance on other three dimensional
problems.

Vaidya proposed constructing a preconditioner M for an SDD matrix A by dropping
off-diagonal nonzeros from A and factoring M (completely). John Gilbert coined
the term complete factorization of incomplete matrices to describe such precondi-
tioners, as opposed to conventional incomplete factorizations of the complete matrix.
(The same term also describes some existing preconditioners, such as block Jacobi
preconditioners.) Vaidya proposed a sophisticated dropping algorithm that balances
the amount of fill in M with the condition number of the preconditioned matrix
M−1/2AM−1/2. Perhaps the most remarkable theoretical aspect of Vaidya’s precon-
ditioners is that for many classes of SDD matrices, the condition number of the pre-
conditioned matrix depends only on the size of A and is independent of the condition
number κ(A) of A.

In this paper we focus on applying Vaidya’s preconditioners to a subclass of SDD
matrices, the class of SDD matrices with nonpositive offdiagonal elements. A non-
singular SDD matrix with nonpositive offdiagonal elements is a Steiltjes matrix, so
from now on we refer to this class of matrices as diagonally-dominant Stieltjes matri-
ces, which we denote by SPDDD (symmetric positive-definite diagonally-dominant).
Many of the SDD matrices that arise in applications belong to the class of SDD matri-
ces. When restricted to SPDDD matrices, Vaidya’s preconditioners are fairly simple
to describe, analyze and construct. Vaidya preconditioners for general SDD matrices
are analyzed in [8].

We now describe how Vaidya preconditioners for an SPDDD matrix are con-
structed. Let A be an SPDDD matrix and let GA be the underlying graph of
A. The underlying graph GA = (VA, EA) of an n-by-n symmetric matrix A is a
weighted undirected graph whose vertex set is VA = {1, 2, . . . , n} and whose edge set
is EA = {(i, j) : i 6= j and Ai,j 6= 0}; The weight of an edge (i, j) is −Ai,j . Given a
parameter t, the method works by constructing a maximum spanning tree T of GA

and splitting T into roughly t connected components of roughly the same size. The
method then adds the heaviest edge in GA between every pair of subtrees if there is
an edge between them in GA. If there are ties and one of the candidate edges is in T ,
then this edge is added.

A large value for the parameter t results in a small condition number, and hence
convergence in a small number of iterations, at the expense of significant fill in the
factors of M . (In particular, t = n, where n is the dimension of A, leads to M = A.)
Fill in the factors slows down the factorization of M and slows down each iteration.
A small t on the other hand, yields a higher condition number but sparser factors.

Vaidya stated (without a proof; for a proof, see [6]) that for any n-by-n SPDDD
matrix with m nonzeros, t = 1 yields a condition number κ = O(mn). The construc-
tion of such a preconditioner costs only O(m+n log n) work and its factorization costs
only O(m) work. For general sparse SPDDD matrices with a constant bound on the
number of nonzeros per row, the theoretically optimal value of t is around n1/4, which

VAIDYA’S PRECONDITIONERS: IMPLEMENTATION AND EXPERIMENTAL STUDY 3

yields a total solution time (construction, factorization, and iterations) of O(n1.75).
For SPDDD matrices whose graphs are planar, the total solution time is only O(n1.2)
when t is chosen appropriately.

This paper consists of two main parts. The first part, presented in Section 2, de-
scribes Vaidya’s preconditioners in more detail and presents an algorithm for splitting
the maximum spanning tree, a detail which was missing from Vaidya’s unpublished
manuscript.

The second part of the paper, presented in Section 3, presents the results of an
experimental study of Vaidya’s preconditioners. Since this is the first such study, our
goal in designing the experiments was to answer two questions:

• What are the particular strengths and weaknesses of these preconditioners?
• Are Vaidya’s preconditioners worthy of further study and investigation?

These questions are important for several reasons. The first question is important
since the answer can direct users of Vaidya’s preconditioners to problems where it
performs well and since the answer can direct researchers to the weaknesses of the
method, which perhaps can be addressed using enhancements and modifications. We
show below, as an example, how a simple observation about a weakness of Vaidya’s
preconditioners allows us to improve their performance and use them more appro-
priately. The second question is important because if these preconditioners do have
useful strengths, then it is likely that additional research would be necessary to char-
acterize their behavior more precisely, and that additional research could lead to
further enhancements. Our understanding of other families of preconditioners, such
as incomplete Cholesky or sparse approximate inverses, is typically the result of tens
or hundreds of research papers, not one or two. The second question is also impor-
tant due to the novelty of Vaidya’s preconditioners (they are not simply variants of
previously-proposed preconditioners) and from the remarkable theoretical results that
Vaidya has been able to prove, such as the O(n1.2) total work bound for 2-dimensional
SPDDD problems, no matter how large κ(A). Not every novel idea that is theoreti-
cally appealing translates into a practical numerical method, but such ideas do deserve
to be tested in practice, which is what we do in this paper.

Our study attempts to answer these questions by experimentally comparing the
performance of Vaidya’s preconditioners to that of drop-tolerance incomplete-Cholesky
preconditioners (IC), in the context of a conjugate gradients iterative solver. (More
specifically, we compare Vaidya to drop-tolerance IC without modification, with mod-
ification, and with relaxed modification.) The comparisons to IC preconditioners are
used only to provide a familiar qualitative and quantitative context to the performance
metrics of Vaidya’s preconditioners and to highlight their strengths and weaknesses.
Our experiments are not meant to reveal any particular strength or weak-
ness in IC preconditioners, and the results should not be understood in
that way. Furthermore, although our experiments may appear to reveal weaknesses
in IC preconditioners, some of these weaknesses can be addressed by other variants of
incomplete factorizations, such as incomplete factorizations by level of fill (ILU(k); as
opposed to drop tolerance), robust incomplete factorizations [1], dynamic incomplete
factorizations [21], and so on.

Our interpretation of the experimental results, which are presented in Section 3,
are as follows. Vaidya’s preconditioners are insensitive to the numerics of the prob-
lem. Their performance does not vary much when we change the boundary conditions
of the underlying PDEs, when we change the direction of anisotropy in anisotropic
problems, or when we introduce large discontinuities in the coefficients of the un-

4 CHEN AND TOLEDO

derlying PDEs. Vaidya’s preconditioners are sensitive to the nonzero structure of
the coefficient matrices, and in particular, they perform better on large 2D problems
than on large 3D problems. Both of these observations are predicted by the theoret-
ical analysis of the preconditioners, which seems to hold in practice in spite of the
finite-precision arithmetic. In contrast, IC preconditioners are highly sensitive to the
numerics of the problem. In particular, on very difficult problems IC stagnates for
hundreds or thousands of iterations before converging, even when large amounts of fill
are allowed. We have not observed a similar stagnation phenomenon with Vaidya’s
preconditioners. A numerical computation of the spectra of some Vaidya- and IC-
preconditioned operators helps explain these phenomena. Our conclusions from the
experiments are summarized in more detail in the concluding section of the paper,
Section 4.

2. Vaidya’s Preconditioners.

2.1. Theory and Construction. In this section we describe the precondition-
ers that Vaidya proposed and the algorithms that we used to construct them. Vaidya’s
method constructs a preconditioner M whose underlying graph GM is a subgraph of
GA. The graph GM of the preconditioner has the same set of vertices as GA and a
subset of the edges of GA.

The input to the algorithm is an n-by-n SPDDD matrix A, with 2m off-diagonal
nonzeros and a parameter t. We begin by finding a rooted maximum-weight spanning
tree T in GA. We decompose T into a set of k connected subgraphs V1, V2, . . . Vk such
that each Vi has between n/t and (dn/t)+1 vertices, where d is the maximal number
of children that vertices in T have. We form GM by adding to T the heaviest edge
between Vi and Vj for all i and j. We add nothing if there are no edges between Vi

and Vj or if the heaviest edge is already in T . The weight of an edge (i, j) in GM

is the weight of the same edge (i, j) in GA. We assign weight to a self loop (i, i),
which corresponds to a diagonal element Mi,i, so that the row sums in M and in A
are identical. The preconditioner M is the matrix whose underlying graph is GM .

We denote by Mt the Vaidya preconditioner constructed with the parameter t. We
have Mn = A. The preconditioner M1 consists solely of a maximum-weight spanning
tree with no added edges. Bern et al. [6] show that the condition number of this M1

is O(mn).
In general, Bern et al. show that the condition number of Vaidya’s preconditioner

is O(n2/k2), where k is the number of subgraphs that T is actually split into. They
also analyze the cost of factoring M when GA is a bounded-degree graph or a planar
graph. The results of these analyses are summarized in the Introduction; we omit
further details.

2.2. Implementation Details. There are two implementation issues that must
be addressed in the construction of Vaidya’s preconditioners. One is the choice of the
maximum-spanning-tree algorithm and the second is the splitting of the tree into
subtrees.

We use Prim’s algorithm to find the maximum-weight spanning tree T [24] because
it is fast and because it returns a rooted tree. The root r, which we choose randomly,
is an input to Prim’s algorithm. (Most textbooks on algorithms describe Prim’s
algorithm, as well as other maximum spanning tree algorithms; see, for example, [9,
Chapter 24].) Prim’s algorithm returns a rooted tree represented by an array π. The
integer π[i] represents the parent of the vertex i. We use π to create two length-n
integer arrays that allows us to quickly enumerate the children of a vertex. Figure 2.1

VAIDYA’S PRECONDITIONERS: IMPLEMENTATION AND EXPERIMENTAL STUDY 5

A =

12 −2 −5 −4
−2 7 −5 −6
−5 −5 17 −6 −1

−6 8 −2
−4 −1 12 −3 −4

−6 −2 −3 16 −5
−4 −5 15 −6

−6 6

5

4 6

5

2

3

3

4 5

6

1 2

5

4 6

5

4

root

5

6

6

Fig. 2.1. An SPDDD matrix A (top), the graph GA of A (bottom left), and its rooted maximum
spanning tree T (bottom right). The vertices are ordered top to bottom, left to right. The choice of
a root for T is arbitrary. Self loops, which correspond to diagonal matrix elements, are not shown.

TreePartition(vertex i)
comment: si = number of vertices in the subtree rooted at i
si ← 1
for each child j of i

if (sj > n/t + 1)
TreePartition(j)

if (sj ≥ n/t)
form a new subtree rooted at j
disconnect j from i

else
si ← si + sj

Fig. 2.2. The algorithm that we use to decompose the maximum spanning tree. The code splits
the tree T , which is stored in a global data structure. The code uses a global integer array s.

shows a matrix, its graph and the maximum spanning tree.
We now present a recursive procedure called TreePartition, which is specified

in Figure 2.2, that decomposes T into a set of connected subtrees. The number of
vertices in each subtree is between n/t and (dn/t)+1, except for the subtree containing
the root, which might be smaller. Ideally, we would have liked to split T into exactly
t connected subtrees of nearly equal size, but we are not aware of an algorithm that
does so. TreePartition uses a global array s of n integers, where s i is initialized
before the first call to TreePartition to be the number of vertices in the subtree
rooted at i. The initial call to TreePartition passes the root of T as an argument.

6 CHEN AND TOLEDO

Theorem 2.1. TreePartition(i) splits the subtree rooted at i into connected
subtrees whose size is between n/t and (dn/t) + 1, except perhaps for the subtree that
contains i, which may be smaller (but not larger).

Proof. We prove by induction on the height of the tree a slightly stronger state-
ment. Namely, that when TreePartition returns, the tree is split appropriately and
that the number of vertices in the subtree rooted at i is si. The claim is obviously
true for leaves since si is set to 1. Suppose that the height of the tree rooted at i is
h and that the claim is true for h′ < h. Clearly, the height of the trees rooted at a
child j of i is smaller than h. For each child j, if we call TreePartition(j), then by
induction all the subtrees that are formed inside the recursive call have the right sizes
and sj is set to the size of the subtree that remains rooted at j. Therefore, when we
test whether sj is greater or equal to n/t, sj is correct and is at most (dn/t) + 1. If
sj ≥ n/t, then the subtree rooted at j has a valid size so we can form a new subtree.
Otherwise, it is too small and we leave it connected to i and add its size to si. When
TreePartition(i) terminates, si is therefore correct and at most (dn/t) + 1. The
connectedness of the subtrees follows from a similar inductive claim. Making the
recursive calls only when sj > (dn/t) + 1 is correct, but our experiments indicate
that this modification degrades the preconditioner. It appears that if we make the
recursive call only when sj > (dn/t) + 1, the subtrees tend to significantly differ in
size. If we make the recursive call only when sj > n/t+1, then the algorithm tends to
generate subtrees whose size is close to the lower bound n/t, so they are more uniform
in size. We have no theoretical analysis of this phenomenon.

In addition, making a recursive call whenever the subtree is large enough allows
the algorithm to partition the graph into as many as n subgraphs. On the other hand,
making the recursive calls only when sj > (dn/t) + 1 typically limits the number of
subgraphs that the graph can be partitioned into, which in turn limits the condition
number that we can reach. Hence, making a recursive call whenever possible gives us
more control over fill and condition number than making the recursive call only when
necessary.

Adding the heaviest edge in GA between every pair of subtrees is trivial; we omit
the details.

3. Experimental Results.

3.1. Methodology. Both Vaidya’s preconditioners and drop-tolerance incomplete-
Cholesky preconditioners accept a parameter that indirectly affects the sparsity of the
preconditioner. In Vaidya’s preconditioner the parameter t affects the number of sub-
graphs that the tree is split into, whereas in the incomplete-Cholesky preconditioner
the drop-tolerance parameter determines which fill elements are dropped from the
factors.

We normally compare preconditioners with similar amounts of fill in the factor
L of the preconditioner. The amount of memory required to represent a factor is
proportional to the number of nonzeros in the factor. In addition, the number of
floating-point operations required to apply a preconditioner is about twice the number
ηL of nonzeros in the factor L of the preconditioner. Hence, the number of nonzeros
is a strong determinant of the running time of each iteration in an iterative solver
(parallelism and cache effects also influence the running time but we ignore them in
this paper). Finally, computing the factors usually takes more time when they are
denser, although the dependence is somewhat complex. The number of operations in
a complete symmetric factorization is proportional to the sum of squares of nonzero
counts for each column.

VAIDYA’S PRECONDITIONERS: IMPLEMENTATION AND EXPERIMENTAL STUDY 7

root root

added edge

M =

10 −5 −4
11 −5 −6

−5 −5 16 −6
−6 6

−4 8 −4
−6 11 −5

−4 −5 15 −6
−6 6

Fig. 2.3. The tree from Figure 2.1 partitioned (top left), and the graph GM of the Vaidya

preconditioner (top right). The tree was partitioned using TreePartition with t = 4. Two edges
that connect the 3 subtrees are already in the tree; to complete the preconditioner we added one more
edge, the heaviest between the subtrees that are not connected by a tree edge. The matrix on the
bottom is the preconditioner M itself.

It may occur that the optimal amount of fill for Vaidya is different from the
optimal amount of fill for IC or MIC. To address this issue, we provide in most cases
sufficient data to allow the reader to determine how different amounts of fill affect
each preconditioner, usually in the form of graphs that plot total solution time as a
function of fill.

3.2. Experimental Setup. The experiments were conducted on a dual-processor
600 MHz Pentium III computer with 2 GBytes of main memory. We only use one
processor. The computer runs the Linux operating system, which on this machine
can actually allocate about 1900 MBytes to a process in a single malloc. The code
is written in C and was compiled using gcc version 2.95.2 with the options -O3.

We use METIS version 4.0 [16, 17] or Joseph Liu’s GENMMD code to find fill-
reducing orderings. With METIS, we use the procedure METIS NodeND with default
options to find the ordering. GENMMD has a single user-specified parameter, delta,
which we set to 1. In Vaidya’s preconditioners, the main difference between METIS
and GENMMD is that METIS is more expensive but produces less fill on large prob-
lems; the convergence behavior is independent of the ordering. Since our experiments
use matrices whose graphs are regular meshes in 2 and 3 dimensions, we also run IC
and MIC with the natural ordering of the mesh. Unrelaxed MIC breaks down with
METIS and GENMMD orderings. We expect that for unstructured meshes, envelope
minimizing orderings such as Cuthill-McKee [10] or Sloan [18] would produce results
similar to natural orderings of regular meshes [12].

The experiments use two sparse Cholesky factorization algorithms that we have
implemented. One code is a supernodal multifrontal sparse Cholesky code [11, 19].

8 CHEN AND TOLEDO

This code can only perform complete factorizations, so we use it only to factor Vaidya’s
preconditioners. The other code is a column-oriented left-looking sparse Cholesky
code. The code is efficient in the sense that its running time is proportional to
the number of floating-point operations that it performs. It can perform complete,
no-fill incomplete (sometimes known as IC(0) or ICCG(0) [20]), and drop-tolerance
incomplete factorization. When performing incomplete factorizations, the code can
modify the diagonal to ensure that the row sums of LLT are equal to those of A [14] or
it can use a relaxed modification, which is more robust [2, 4, 5, 27]. The performance
of this code is similar to the performance of other drop-tolerance incomplete-Cholesky
codes, but it is slower than the multifrontal code unless L remains very sparse.

The iterative solver that we use is preconditioned conjugate gradients (see, for
example, [3, 13]).

3.3. Test Problems. The matrices that we use for our experimental analysis
are discretizations of elliptic PDEs on regular 2- and 3-dimensional meshes. Most of
the matrices arise from finite-differences discretizations of the equation

cx
∂2u

∂x2
+ cy

∂2u

∂y2
= f in Ω =]0, 1[×]0, 1[

with either Dirichlet or Neumann boundary conditions. We solve isotropic problems
(cx = cy = 1) and anisotropic problems in which either cx = 100 and cy = 1 or vice
versa. We also solve similar problems in 3D.

The remaining matrices arise from problems with discontinuous coefficients in 3D.
These problems have the form

c
∂2u

∂x2
+ c

∂2u

∂y2
+

∂2u

∂z2
= f in Ω =]0, 1[×]0, 1[×]0, `[

with Neumann boundary conditions and with ` ≥ 1. We set

c(x, y, z) =
{

α x ≤ 1
8

or y ≤ 1
8

1 otherwise,

where α, the jump in the coefficients, is a parameter. We generate the grids so that
grid lines coincide with the discontinuity and so that the distance between grid lines
is the same in all three directions (that is, a 32-by-32-by-200 grid corresponds to
` = 6.25).

Our aim in choosing these problems is mainly to highlight different aspects of
the behavior of Vaidya’s preconditioners. In particular, these problems are not neces-
sarily common in applications. All of the resulting matrices are diagonally-dominant
Steiltjes matrices.

We use a five-point discretization in 2D and a seven-point discretization in 3D,
which lead to a pentadiagonal matrix when a 2D mesh is ordered row-by row (the
so-called natural order) or to a septadiagonal matrix in 3D.

We have been unable to find large unstructured SPDDD matrices (over a mil-
lion unknowns, say) in matrix collections, such as MatrixMarket and Tim Davis’s
collection.

The exact solution u in the experiments reported below is a random vector whose
elements are uniformly and independently distributed in [0, 1]. We also performed
experiments on the 3D problems with smooth solutions of the form

u(x, y, z) = (xyz(1− x)(1− y)(`− z))2 ex2yz .

VAIDYA’S PRECONDITIONERS: IMPLEMENTATION AND EXPERIMENTAL STUDY 9

0 2000 4000 6000 8000
10

−20

10
−15

10
−10

10
−5

10
0

Discontinuous 32−by−32−by−200 Problem, Jump=1e8

Iteration

R
el

at
iv

e
R

es
id

ua
l N

or
m

Vaidya (327s , 7.7e5 nonzeros in L
IC (4044s , 8.3e5 nonzeros in L
MIC (2582s, 8.6e5 nonzeros in L

0 1000 2000 3000 4000
10

−20

10
−15

10
−10

10
−5

10
0

Discontinuous 32−by−32−by−200 Problem, Jump=1e8

Iteration

R
el

at
iv

e
R

es
id

ua
l N

or
m

Vaidya (343s , 4.6e6 nonzeros in L
IC (2304s , 5.0e6 nonzeros in L
MIC (2479s, 6.4e6 nonzeros in L

Fig. 3.1. The convergence of preconditioned CG on the discontinuous problem on a 32-by-32-
by-200 grid. The graphs also show the total solution times (in the legends). The magnitude of the
jump in the coefficients is 108. Each graph shows three preconditioners, Vaidya, IC, and relaxed
MIC with approximately the same number of nonzeros in L: between 7.7× 105 and 8.6× 105 on the
left, and between 4.6× 106 and 6.4× 106 on the right. We used the natural ordering of the grid for
IC and MIC; using GENMMD for MIC on this problem leads to qualitatively similar results with
similar numbers of iterations and similar solution times; in particular, using GENMMD does not
fix the stagnation at all. We used GENMMD for Vaidya.

We have obtained similar results to the ones reported here, so we omit these from the
paper.

We usually solve these systems quite accurately, reducing the 2-norm of the resid-
ual by 1015. Although this level of accuracy is often unusual for iterative solvers,
it makes sense in this paper. First, some of the problems that we solve are ill con-
ditioned, so dropping the residual by only 108, say, may produce a solution with
essentially no correct bits. Second, stopping the iterations only when the residual is
very small allows us to observe various phenomena, especially in IC and MIC, that do
not occur when the residual is relatively large. Third, the experiments clearly show
that this level of accuracy is attainable. Fourth, we plot the drop in the residual for
many of the experiments, so the reader can judge for herself/himself how different
accuracy requirements affect the performance of the solvers. In some experiments on
relatively well-conditioned matrices we reduce the residual only by a factor of 108;
this is indicated clearly in the text and the figure captions.

We deal with singular systems (Neumann boundary conditions) by adding the
equation u1 = 0 to the first equation. This diagonal perturbation ensures that the
coefficient matrix is SPDDD, and in particular nonsingular. This method of removing
the singularity does not seem to cause any problem to Vaidya’s preconditioners. We
have also performed IC and MIC experiments in which we dealt with the singularity by
orthogonalizing the right-hand-side against the constant vector and by orthogonalizing
the residuals in every iteration against the constant vector. We have not detected any
significant differences between these results an the results of the diagonal perturbation
method, so these results are not reported here.

3.4. Experimental Results: 3D Problems with Discontinuous Coeffi-
cients. Figures 3.1 and 3.2 show that Vaidya’s preconditioners work well on ill-
conditioned problems that causes difficulties to IC and MIC. In these runs, we re-
duced the residual by a factor of 1015. Since A is ill-conditioned, a small residual is
required in order to achieve a reasonably small forward error. The figures clearly show

10 CHEN AND TOLEDO

0 100 200 300 400 500
10

−20

10
−15

10
−10

10
−5

10
0

Discontinuous 32−by−32−by−200 Problem, Various Jumps

Iteration

R
el

at
iv

e
R

es
id

ua
l N

or
m

Vaidya (368s, No Jump)
Vaidya (342s, Jump=1e4)
Vaidya (243s, Jump=1e8)

0 1000 2000 3000 4000
10

−20

10
−15

10
−10

10
−5

10
0

Discontinuous 32−by−32−by−200 Problem, Various Jumps

Iteration

R
el

at
iv

e
R

es
id

ua
l N

or
m

MIC (76s, No Jump)
MIC (322s, Jump=1e4)
MIC (2478s, Jump=1e8)

Fig. 3.2. The convergence of preconditioned CG on the discontinuous problem on a 32-by-32-
by-200 grid as a function of the jump in the coefficients. The graphs also show the total solution
times (in the legends). The graph of the left shows the convergence of Vaidya with no jump, a jump
of 104, and a jump of 108; these three preconditioners all have 4.6× 106 nonzeros in L. The graph
on the right shows the convergence of relaxed MIC with the same three jumps; these preconditioners
have between 6.4 × 106 and 8.8 × 106 nonzeros in L. The behavior of IC, which is not shown, is
qualitatively similar to that of relaxed MIC, although convergence is slower. We again used the
natural ordering for MIC and GENMMD for Vaidya (using GENMMD for MIC does not change
its performance significantly).

that it is possible to solve these systems to this level of accuracy. Figure 3.1 shows
that Vaidya converges monotonically and at a nearly constant rate on a discretization
of a PDE with discontinuous coefficients, whereas IC and relaxed MIC essentially
stagnate for thousands of iterations. A comparison of the graph on the left with the
graph on the right shows that allowing the preconditioners to fill more improves the
convergence of both families of preconditioners, but does not change their behavior
in a fundamental way. Figure 3.2 shows that the stagnation of relaxed MIC is caused
by the large jump in the coefficients. When there is no jump (constant continuous
coefficients), relaxed MIC converges quickly without any stagnation. When the jump
is 104, relaxed MIC stagnates; when the jump is 108 it stagnates for a much longer.
Vaidya’s preconditioners are almost insensitive to the size of the jump. In fact, when
the jump is large, they converge slightly faster than when there is no or almost no
jump.

Figure 3.2 also shows that on relatively well-conditioned problems (no jump),
relaxed MIC outperforms Vaidya. With a medium size jump (104), the performance
of relaxed MIC and of Vaidya are roughly comparable, but with a large jump, Vaidya
leads to much faster solution times.

These results do not imply that IC and MIC stagnate on matrices arising from
problems with discontinuous in general, only that they stagnate on this particular
problem. In fact, we experimented with various discontinuous problems, and on many
of them IC and MIC do not stagnate. The behavior of Vaidya is independent of the
details of the discontinuity. Hence, we cannot conclude from this experiment that IC
and MIC perform poorly on discontinuous problems, but we can conclude that on
some problems that cause IC and MIC difficulties, Vaidya works well.

3.5. Experimental Results: Eigenvalue Distributions. The nearly con-
stant convergence rate of Vaidya’s preconditioners, evident in both Figure 3.1 and
Figure 3.2, suggests that the eigenvalues of the preconditioned system are proba-
bly distributed evenly throughout the spectrum. In general, this is not a desirable

VAIDYA’S PRECONDITIONERS: IMPLEMENTATION AND EXPERIMENTAL STUDY 11

0 100 200 300 400 500
10

20

10
� 15

10
� 10

10
� 5

10
0

Discontinuous 16� by� 16� by� 16 Problem, Jump=1e8
R

el
at

iv
e

R
es

id
ua

l N
or

m

Iterations

Vaidya, 1.7e4 nonzeros in L
MIC, 1.7e4 nonzeros in L

Vaidya MIC

0 20 40 60 80 100 120
10

20

10
� 15

10
� 10

10
� 5

10
0

Constant Coefficients 50--�by--�50, Dirichlet BC

Relative Residual Norm

Ite
ra

tio
ns

Vaidya, 9.2e3 nonzeros in L
MIC, 9.7e3 nonzeros in L

Vaidya

MIC

0 1000 2000 3000 4000 5000
10

−10

10
−5

10
0

10
5

Discontinuous 16−by−16−by−16 Problem, Jump=1e8

Generalized Eigenvalues

Vaidya, 1.7e4 nonzeros in L
MIC, 1.7e4 nonzeros in L

0 500 1000 1500 2000 2500
10

−1

10
0

10
1

10
2

Constant Coefficients 50−by−50, Dirichlet BC

Generalized Eigenvalues

Vaidya, 9.2e3 nonzeros in L
MIC, 9.7e3 nonzeros in L

10
0

10
1

10
2

10
3

10
410

−10

10
−5

10
0

10
5

Discontinuous 16−by−16−by−16 Problem, Jump=1e8

Generalized Eigenvalues

Vaidya, 1.7e4 nonzeros in L
MIC, 1.7e4 nonzeros in L

10
0

10
1

10
2

10
3

10
410

−1

10
0

10
1

10
2

Constant Coefficients 50−by−50, Dirichlet BC

Generalized Eigenvalues

Vaidya, 9.2e3 nonzeros in L
MIC, 9.7e3 nonzeros in L

Fig. 3.3. The convergence and generalized eigenvalues of Vaidya and relaxed-MIC precondition-
ers. The three graphs on the left show the behavior on a 16-by-16-by-16 problem with discontinuous
coefficients and Neumann boundary conditions, and the three graphs on the right show the behavior
on a 50-by-50 2D isotropic problems with Dirichlet boundary conditions. In both cases, the Vaidya
and relaxed-MIC preconditioners have roughly the same number of nonzeros in L (indicated in the
legend). In the 3D problem, Vaidya was ordered using GENMMD and MIC using the natural or-
dering, in the 2D problem, both were ordered using GENMMD. For each problem, the top graph
plots the convergence (2-norm of the residual), the middle graph plots the eigenvalues on a linear-
log scale, and the bottom graph plots the eigenvalues on a log-log scale, which allows the reader to
observe the small eigenvalues. The generalized eigenvalues λ of Ax = λMx in were computed by
Matlab 6 using eig(A,M,’chol’).

12 CHEN AND TOLEDO

0 1000 2000 3000 4000 5000
10

−5

10
0

10
5

10
10

Discontinuous 16−by−16−by−16 Problem, Jump=1e8

Eigenvalues of the Unpreconditioned Operator
10

0
10

1
10

2
10

3
10

410
−5

10
0

10
5

10
10

Discontinuous 16−by−16−by−16 Problem, Jump=1e8

Eigenvalues of the Unpreconditioned Operator

Fig. 3.4. The eigenvalues of the 16-by-16-by-16 problem with discontinuous coefficients and
Neumann boundary conditions, without preconditioning. The condition number is approximately
3 × 1012. The graphs display the eigenvalues, sorted from smallest to largest, as computed by by
Matlab 6 using eig(A), on both a linear-log and a log-log scale.

property: clustered eigenvalues would lead to faster convergence, at least on well-
conditioned problems. We have observed the same behavior in all of our experiments.
Figure 3.3 explores this issue further by presenting the convergence and eigenval-
ues of both Vaidya and relaxed-MIC preconditioners on two problems that are small
enough that we can compute the eigenvalues numerically. One problem is a difficult
3D problem with discontinuous coefficient that clearly displays the same qualitative
convergence behavior that we have seen in Figures 3.1 and 3.2. Figure 3.4 plots the
eigenvalues of the unpreconditioned coefficient matrix of this ill-conditioned problem.
The other is a 2D problem with constant coefficients on which Vaidya and relaxed
MIC perform similarly, as shown both here and below in Section 3.7.

On both problems, the eigenvalues of the Vaidya-preconditioned operator range
from 1 to the condition number of the preconditioned system, which are approximately
288 (3D problem) and 83 (2D problem). The theory of Vaidya’s preconditioners
predicts that the eigenvalues are bounded from below by 1. There is a fairly large
cluster of eigenvalues near 1 (478 eigenvalues in the 2D problem) and the rest are
larger. The eigenvalues are not distributed uniformly but they have no significant
clusters either.

The Relaxed-MIC-preconditioned operators have a qualitatively different eigen-
value distribution. The spectrum contains a few eigenvalues below 1 (29 in the 2D
problem, about 316 in the 3D problem). It has a larger cluster at 1 than the Vaidya
preconditioner (1201 eigenvalues in the 2D problem). Above 1, the spectrum is much
more clustered than Vaidya’s, especially in the 3D problem, and the large eigenvalue is
smaller than Vaidya’s. The main difference between the difficult 3D problem, on which
MIC clearly stagnates, and the easy 2D problem on which it converges monotonically,
is the behavior of the small eigenvalues. In the easy 2D problem, the smallest is 0.19,
not particularly small; on the difficult 3D problem, some are tiny, the smallest being
8.3× 10−10. On the 3D problem the MIC-preconditioned oparator has a large condi-
tion number, around 1.6× 1010, versus only 288 for Vaidya. It seems likely, however,
that it is not the large condition number of MIC that is causing the stagnation, but
numerical issues. Although the MIC-preconditioned operator has a large condition
number, its eigenvalues are well clustered. It appears that what is causing the problem

VAIDYA’S PRECONDITIONERS: IMPLEMENTATION AND EXPERIMENTAL STUDY 13

0 1 2 3 4
x 1 0

7

0

500

1000

1500

2000

2500

3000

3500
Constant Coefficients 100-by-100-by-100, Neumann BC

Fill in L

T
ot

al
 T

im
e

in
 S

ec
on

ds

Vaidya, METIS Ordering
MIC, GENMMD Ordering

Vaidya

MIC

Fig. 3.5. Total solution times as a function of the amount of fill for Vaidya and relaxed MIC on
a 3D 100-by-100-by-100 isotropic problem with Neumann boundary conditions. In this experiment
we reduced the norm of the residual by 1015. We have obtained similar results in an experiment in
which we reduced the residual by only 108. The same experiment is also described in Table 3.1.

Table 3.1
The performance of Vaidya and MIC preconditioners on a 3D 100-by-100-by-100 isotropic prob-

lem with Neumann boundary conditions. The table shows the parameter (drop tolerance or the
number t of subgraphs) used to construct each preconditioners, the number of nonzeros in L, the
preconditioner-creation time Tc, the ordering time To, the factorization time Tf , the iterations time
Ts, the total solution time Tt, and the number of iterations to reduce the norm of the residual by
1015. In this experiment GENMMD leads to even worse results for Vaidya.

Precond Param Ordering nnz(L) Tc To Tf Ts Tt # its
MIC 0.1 GENMMD 4.0e6 — 58.7 7.4 1121.9 1187.0 669
MIC 0.01 GENMMD 1.1e7 — 58.7 24.2 349.7 431.6 135
MIC 0.003 GENMMD 2.0e7 — 58.7 55.1 305.0 418.2 88
MIC 0.001 GENMMD 3.2e7 — 58.7 138.5 293.9 490.2 63
Vaidya 1000 METIS 3.3e6 8.8 51.2 26.4 3274.4 3360.8 2460
Vaidya 3000 METIS 5.2e6 8.9 53.7 97.2 2092.7 2252.5 1381
Vaidya 10000 METIS 1.0e7 9.2 55.9 360.9 1833.0 2258.1 900
Vaidya 30000 METIS 2.2e7 9.6 58.6 825.3 2083.5 2976.5 674

is the magnitude of the small eigenvalues. These small eigenvalues may cause loss of
conjugacy between the direction vectors, or they may cause an error in the direction
of the corresponding eigenvectors to reappear in the approximate solution after they
have been filtered out.

Clearly, the distribution of the eigenvalues in Vaidya-preconditioned operators
does not appear to contain extremely small or large eigenvalues, which helps explain
its robustness. On the other hand, the distribution also does not appear to contain
significant clusters besides the one at 1, which helps explain why its basic convergence
rate is not particularly fast: the worst-case Chebychev polynomial approximation
bound, which depends only on the extreme eigenvalues, is probably fairly tight. The
eigenvalue distribution of MIC (and probably IC) tends to be more clustered, which
helps explain its effectiveness on many problems, but it may have a few tiny outliers
that cause difficulties.

3.6. Experimental Results: 3D problems with Constant Coefficients.
Figure 3.5 shows that on a well-conditioned 3D problem (Neumann boundary condi-

14 CHEN AND TOLEDO

0 2 4 6 8 10
x 1 0

7

0

1000

2000

3000

4000

5000

6000
Constant coefficients, 1500-by-1500, Dirichlet BC

Fill in L

T
ot

al
 T

im
e

in
 S

ec
on

ds

Vaidya, GENMMD Ordering
MIC, GENMMD Ordering
MIC, Natural Ordering
IC, GENMMD Ordering
IC, Natural Ordering

IC

Vaidya
MIC

0 200 400 600 800
10

20

10
�15

10
�10

10
�5

10
0
Constant coefficients, 1500--�by--�1500, Dirichlet BC

R
el

at
iv

e
R

es
id

ua
l N

or
m

Iterations

Vaidya, GENMMD Ordering
MIC, Natural Ordering
IC, Natural Ordering

IC
MIC

Vaidya

Fig. 3.6. The performance of Vaidya, IC, and relaxed-MIC preconditioners on 1500-by-1500
2D isotropic problems with Dirichlet boundary conditions. The graph on the left shows the total
solution time as a function of fill in the preconditioner. The rightmost data point on this graph
represents a direct solver. The graph on the right shows the reduction in the norm of the residual
as a function of the number of iterations, where both preconditioners have approximately 1.6 × 107

nonzeros.

tions and constant coefficients), MIC beats Vaidya no matter how much fill we allow.
Figure 3.2 reports similar performance on a differently-shaped region when there is
no jump. Table 3.1, which reports additional data on the same experiment, helps to
explain this phenomenon. The data in the table shows that Vaidya performs poorly
due to two main reasons:

1. It converges much slower than MIC given similar amounts of fill. For example,
MIC with 2.0×107 nonzeros in L converges in 88 iterations, but Vaidya with
more fill converges in 674 iterations.

2. It takes longer to factor than MIC given similar amounts of fill. This is
not due to some inefficiency in the factorization code, but due to a poorer
distribution of nonzeros in the columns of L, which requires more floating-
point operations to factor. (The number of flops to factor a sparse matrix is
proportional to the sum of the squares of the nonzeros in each column of L,
and in Vaidya’s preconditioners on 3D problems the sum of squares is much
larger than the sum of squares in IC and MIC preconditioners, even when the
sums themselves are similar.)

Due to these two reasons, a relatively sparse Vaidya preconditioner takes too long to
converge, and a relatively dense one takes too long to factor without reducing the
number of iterations sufficiently to render it efficient.

3.7. Experimental Results: 2D Problems with Constant Coefficients.
The situation is quite different for two dimensional problems. Figure 3.6 shows that
the performance of Vaidya’s preconditioners is comparable to relaxed-MIC precon-
ditioners with similar amounts of fill. There are small differences in performance,
but they are not very significant. Without diagonal modification, IC performs more
poorly than both relaxed-MIC and Vaidya. The figure shows that in spite of theoret-
ical results that suggest that both MIC and Vaidya should outperform direct solvers
asymptotically, direct solvers are very effective on 2D problems. Although the asymp-
totic arithmetic complexity of a direct solver on an n-node 2D grid is Θ(n1.5), it beats
in practice the asymptotically more efficient Vaidya and MIC solvers. The reason

VAIDYA’S PRECONDITIONERS: IMPLEMENTATION AND EXPERIMENTAL STUDY 15

0 500 1000 1500
0

100

200

300

400

500

600
2D Constant Coefficients, Neumann BC

Mesh Size

N
um

be
r

of
 It

er
at

io
ns

IC, Natural Ordering
IC, METIS Ordering
MIC, Natrual
Vaidya, METIS

0 500 1000 1500
0

100

200

300

400

500

600
2D Constant Coefficients, Dirichlet BC

Mesh Size

N
um

be
r

of
 It

er
at

io
ns

IC, Natural Ordering
IC, METIS Ordering
MIC, Natrual
Vaidya, METIS

Fig. 3.7. Convergence of Vaidya, IC, and (unrelaxed) MIC preconditioners on 2D isotropic
problems with Neumann (left) and Dirichlet (right) boundary conditions. All the preconditioners
have approximately 10n nonzeros in L. The graphs show the number of iterations it took to reduce
the 2-norm of the residual by a factor of 108 as a function of the mesh size

√
n (i.e., the matrices

are n-by-n).

Table 3.2
The number of iterations for Vaidya’s preconditioners with 10n nonzeros in L on isotropic

2D problems with Neumann boundary conditions. The reduction in the residual is by a factor of
108. The data shows that Vaidya’s preconditioners scale well with problem size. The numbers of
iterations with Dirichlet boundary conditions are the same, except that 51 rather than 56 iterations
were required on grid size 700.

Grid Size 300 500 700 900 1100 1300 1500
Iterations 41 44 56 53 63 63 64

for this behavior is most likely the good cache behavior and the low overhead of the
multifrontal factorization code that we are using. In 3D the situation is completely
different since direct solvers incur a huge amount of fill. (The situation is also different
in 2D when the required reduction in the norm of the residual is not large; in this
case, iterative solvers run faster whereas direct solvers cannot exploit the lax accuracy
requirement.) The graph also shows the difference between the convergence behavior
of Vaidya and that of IC and relaxed-MIC on this problem, when the factors of all
three preconditioners have approximately 1.6 × 107 nonzeros. Vaidya exhibits the
same nearly-constant convergence rate that we have also seen in Figures 3.1 and 3.2.
IC and relaxed MIC converge essentially monotonically, which was not the case in
Figures 3.1 and 3.2, but their convergence is more erratic that that of Vaidya: the
first few iterations are very effective, they then stagnate for a while, and then converge
at an approximately constant rate, but slower than Vaidya’s (and slower for IC than
for relaxed MIC).

Figure 3.7 and Table 3.2 demonstrate that Vaidya’s preconditioners scale well
on 2D problems as a function of the mesh size. The data shows that Vaidya scales
well with the mesh size. The number of iterations grows as the mesh grows, but
only slowly. Note that the experiment uses preconditioners with approximately 10n
nonzeros in L, so constructing them and applying them is roughly linear in the size of
the mesh. In other words, these Vaidya preconditioners combine linear scaling of the
work per iteration with a slow growth in the number of iterations, a highly desirable
behavior. The data also shows that Vaidya’s preconditioners are insensitive to the

16 CHEN AND TOLEDO

2 4 6 8 10 12
x 10

6

0

100

200

300

400

500
Anisotropic 1000−by−1000, Neumann

Fill in L

T
ot

al
 T

im
e

in
 S

ec
on

ds

0 1 2 3 4 5 6
x 1 0

7

0

200

400

600

800

1000

1200
Anisotropic 1000by1000, Neumann

Fill in L

T
ot

al
 T

im
e

in
 S

ec
on

ds

Vaidya, X direction, GENMMD
Vaidya, Y direction, GENMMD
MIC, X direction, GENMMD
MIC, Y direction, GENMMD
MIC, X direction, Natural
MIC, Y direction, Natural

Vaidya MIC (GENMMD)

MIC (Natural)

Fig. 3.8. The performance of Vaidya and relaxed MIC on an anisotropic problem. The graph
shows the total solution times for Vaidya with GENMMD ordering and for MIC with both GENMMD
ordering and the natural ordering of the grid. The two graphs show the same data, except that the
graph on the left omits the naturally-ordered MIC with anisotropy in the x direction, in order to
focus on the other cases.

difference between Neumann and Dirichlet boundary conditions.
Figure 3.7 also shows that IC and MIC preconditioners are sensitive to the bound-

ary conditions. The experiments show that at this level of fill in the preconditioners,
the number of iterations that Vaidya performs scales similarly to MIC’s scaling on
Dirichlet boundary conditions.

3.8. Experimental Results: Anisotropic 2D Problems. Vaidya’s precon-
ditioners are unaffected by the original ordering of the matrix and are capable of
automatically exploiting numerical features. On anisotropic problems, Vaidya’s pre-
conditioners are almost completely unaffected by whether the direction of strong influ-
ence is the x or the y direction, as shown in Figure 3.8. The construction of Vaidya’s
preconditioners starts with a maximum spanning tree, which always include all the
edges (nonzeros) along the direction of strong influence. They are, therefore, capable
of exploiting the fact that there is a direction of strong influence and they lead to
faster convergence than on an isotropic problem. IC preconditioners, on the other
hand, are sensitive to the interaction between the elimination ordering and the di-
rection of strong influences. Figure 3.8 shows that naturally-ordered relaxed MIC is
much more effective for one direction of strong influence than for the other when the
matrix ordering is fixed. When we use a minimum-degree ordering for relaxed MIC,
its performance becomes independent of the direction of strong influence.

Figure 3.8 also shows that the performance of Vaidya’s preconditioners on this
problem is better or similar to the performance of relaxed MIC, especially when the
preconditioners are sparse.

Similar experiments with unmodified IC showed that its performance is worse
than that of relaxed MIC, so it is not shown in these graphs.

4. Conclusions . Our main findings from this experimental study are as follows.
• Vaidya’s preconditioners converge at an almost constant rate on a variety of

problems. This behavior is very different from that of incomplete Cholesky
preconditioners, which have periods of rapid convergence, periods of stagna-
tion, and periods of roughly constant-rate convergence.

VAIDYA’S PRECONDITIONERS: IMPLEMENTATION AND EXPERIMENTAL STUDY 17

• As predicted by the theoretical analysis of Vaidya’s preconditioners, they are
sensitive only to the nonzero structure of the coefficient matrix and not to
the values of its entries, as long as the matrices remain SPDDD matrices.
Again, the behavior is different from that of incomplete Cholesky precondi-
tioners, which are sensitive to the boundary condition, to anisotropy, and to
discontinuities.

• Vaidya’s preconditioners deliver comparable performance to that of incom-
plete Cholesky on a wide variety of two-dimensional problems. Although we
have not tested them against state-of-the-art IC preconditioners or against
many variants, we have tested them against relaxed drop-tolerance MIC pre-
conditioners, which are widely used in practice, and we have found them to
be competitive.
• Vaidya’s preconditioners deliver poorer performance than IC with similar

amounts of fill on some 3D problems, but dramatically better performance
on other 3D problems. As a rule of thumb, if IC performs poorly due to long
stagnation, then Vaidya may perform better because it is unlikely to stagnate.

The nearly constant convergence rate of Vaidya’s preconditioners have several impli-
cations. In general, this behavior is not desirable, since it suggests that the eigenvalues
of the preconditioned system are evenly distributed throughout its spectrum. This
implies that the worst-case Chebychev polynomial approximation bound, which de-
pends only on the extreme eigenvalues, is probably tight. An eigenvalue distribution
with clusters is more desirable, but Vaidya’s preconditioners do not seem to produce
clustered eigenvalues. On the other hand, the eigenvalue distribution of Vaidya’s
preconditioners seems to avoid stagnation. Therefore, Vaidya’s preconditioners seem
more appropriate for “difficult problems” on which other preconditioners lead to non-
convergence or to long stagnation. Vaidya’s preconditioners are less appropriate for
situations in which low accuracy is acceptable, since other preconditioners, such as IC,
may attain the required accuracy before they stagnate at a higher initial convergence
rate than Vaidya’s.

Figure 4.1 shows one way in which the insight concerning the different convergence
behavior of Vaidya and IC can be used. The figure shows that on a problem on which
IC stagnates, we can exploit the rapid initial convergence rate of IC by starting
the iterations with a cheap IC(0) preconditioner and then switching to Vaidya. In
principle, the loss of information incurred by restarting conjugate gradient may cause
the solver to stagnate, but we see that in this case we do obtain a significant savings
in running time over plain Vaidya (and over IC preconditioners, which stagnate on
this problem).

Another way to exploit the nearly constant convergence rate is in time-to-completion
predictions. Although progress bars, like the ones that browsers display to indicate
the status of a file download, are not commonly used in numerical software, they could
be quite useful to users. A user often has no idea whether an action that he or she
initiated (in Matlab, say) is going to run for an hour or two minutes. A progress
bar can help the user determine whether they wish to wait or to abort a long-running
computation. In many iterative solvers predicting the solution time is quite diffi-
cult because of the variable convergence rate. But with Vaidya’s preconditioners the
completion time can probably be estimated quite accurately after a few iterations.
The time to complete the factorization phase can also be estimated quite accurately
once the elimination tree and the nonzero counts for the columns (which indicate flop
counts) have been computed. The ordering time is more difficult to estimate but is

18 CHEN AND TOLEDO

0 100 200 300 400 500
10

20

10
�15

10
�10

10
�5

10
0

Discontinuous 32-�by-�32-�by-�200 Problem, Jump=1e8

Iteration

R
el

at
iv

e
R

es
id

ua
l N

or
m

Vaidya (343s)
IC�Vaidya hybrid (290s)

Vaidya

Hybrid

Fig. 4.1. The convergence and total solution times of Vaidya’s preconditioner with 4.6 × 106

nonzeros on a discontinuous 3D problem. The graph shows the convergence rate of Vaidya-
preconditioned conjugate gradient and of a hybrid solver. The hybrid starts with 25 iterations of
IC(0)-preconditioned conjugate gradient, and then uses the approximate solution as an initial guess
in a Vaidya-preconditioned conjugate gradient. The graph plots the residual norm during both phases
of this hybrid. The IC-Vaidya hybrid saves time in this case (from 343 seconds to 290), since the
overall number of iterations is reduced, and since the costs of constructing and applying the IC(0)
preconditioner are small.

often insignificant.
Our codes are publicly available in a package called Taucs.2 The package includes

iterative solvers, codes that construct Vaidya’s preconditioners (both for SPDDD ma-
trices and for more general SDD matrices), an incomplete Cholesky factorization
code, a multifrontal Cholesky factorization code, interfaces to METIS and other ma-
trix ordering codes, matrix generation and I/O routines. The code that constructs
Vaidya’s preconditioners can be used, of course, with other iterative solver codes and
other ordering and factorization codes. Our aim in supplying these codes is both to
allow Vaidya’s preconditioners to be integrated into linear solver libraries and into
applications, and to facilitate further research on this class of preconditioners.

We believe that Vaidya’s preconditioners are worthy of further investigation. Are
there effective Vaidya-like preconditioners for 3D problems? Are there specific maxi-
mum spanning trees for problems with constant coefficients that lead to faster conver-
gence? Can we benefit from starting from near-maximal spanning trees with better
combinatorial structure? How can we extend Vaidya’s preconditioners to more general
classes of matrices?

Two ideas that have appeared in the literature suggest how Vaidya’s precondi-
tioners can be improved, especially on 3D problems where our study indicates that
they are often slow. In his PhD thesis, Joshi suggests a different edge-dropping al-
gorithm for matrices arising from regular finite-differences discretization of Poisson
problems with constant coefficients [15]. Although preconditioners limited to reg-
ular problems with constant coefficients are not particularly useful given the state
of the art in multigrid and domain decomposition, edge-dropping methods inspired
by Joshi’s ideas may prove useful for more challenging problems. Another idea con-
cerns recursion. This idea was mentioned by Vaidya [26] and further explored by
Joshi [15], Reif [25], and Boman [7]. The main idea is to form a Vaidya precondi-
tioner M but to avoid factoring it completely. Instead, we eliminate some of the rows

2http://www.tau.ac.il/~stoledo/taucs.

VAIDYA’S PRECONDITIONERS: IMPLEMENTATION AND EXPERIMENTAL STUDY 19

and columns in M and form the Schur complement (the reduced trailing submatrix).
Instead of factoring the Schur complement, we form a Vaidya preconditioner for the
Schur complement. Each preconditioning operation in the outer iterative linear solver
now requires solving a Schur-complement problem iteratively. Our code can construct
and use such preconditioners, but additional research is required to determine how
effective they are. (We performed limited experiments with recursive Vaidya precon-
ditioners and have not found problems on which they were more effective than plain
Vaidya preconditioners.)

Acknowledgements.. Thanks to Bruce Hendrickson and to Erik Boman for nu-
merous discussions and suggestions. Thanks to Rich Lehoucq for helpful comments
and for pointing us to [23]. Thanks to Henk van der Vorst and to Eldad Haber for
helpful comments. Thanks to Cleve Ashcraft for helping us resolve problems with
SPOOLES, which we used in early experiments not reported here.

REFERENCES

[1] M. A. Ajiz and A. Jennings, A robust incomplete Choleski-conjugate gradient algorithm,
International Journal for Numerical Methods in Engineering, 20 (1984), pp. 949–966.

[2] C. Ashcraft and R. Grimes, On vectorizing incomplete factorizations and SSOR precondi-
tioners, SIAM Journal on Scientific and Statistical Computation, 9 (1988), pp. 122–151.

[3] O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1994.
[4] O. Axelsson and G. Lindskog, On the eigenvalue distribution of a class of preconditioning

matrices, Numerische Mathematik, 48 (1986), pp. 479–498.
[5] , On the rate of convergence of the preconditioned conjugate gradient method, Numerische

Mathematik, 48 (1986), pp. 499–523.
[6] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo, Support-graph

preconditioners, tech. report, School of Computer Science, Tel-Aviv University, 2001.
[7] E. G. Boman, A note on recursive Vaidya preconditioners. Unpublished manuscript, Feb.

2001.
[8] E. G. Boman, D. Chen, B. Hendrickson, and S. Toledo, Maximum-weight-basis precondi-

tioners. Submitted to the Journal on Numerical Linear Algebra, 29 pages, June 2001.
[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press

and McGraw-Hill, 1990.
[10] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proceed-

ings of the 24th National Conference of the Association for Computing Machinery, 1969,
pp. 157–172.

[11] I. Duff and J. Reid, The multifrontal solution of indefinite sparse symmetric linear equations,
ACM Transactions on Mathematical Software, 9 (1983), pp. 302–325.

[12] I. S. Duff and G. Meurant, The effect of ordering on preconditioned conjugate gradient,
BIT, 29 (1989), pp. 635–657.

[13] G. H. Golub and C. F. V. Loan, Matrix Computations, Johns Hopkins University Press,
3rd ed., 1996.

[14] I. Gustafsson, A class of first-order factorization methods, BIT, 18 (1978), pp. 142–156.
[15] A. Joshi, Topics in Optimization and Sparse Linear Systems, PhD thesis, Department of

Computer Science, University of Illinois at Urbana-Champaign, 1997.
[16] G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, Journal

of Parallel and Distributed Computing, 48 (1998), pp. 96–129.
[17] , A parallel algorithm for multilevel graph partitioning and sparse matrix ordering, Jour-

nal of Parallel and Distributed Computing, 48 (1998), pp. 71–85.
[18] G. Kumfert and A. Pothen, Two improved algorithms for reducing the envelope size and

wavefront of sparse matrices, BIT, 18 (1997), pp. 559–590.
[19] J. W. H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM

Review, 34 (1992), pp. 82–109.
[20] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems

of which the coefficient matrix is a symmetric M-matrix, Mathemathics of Computation,
31 (1977), pp. 148–162.

[21] Y. Notay, DRIC: A dynamic version of the RIC method, Numerical Linear Algebra with
Applications, 1 (1994), pp. 511–532.

20 CHEN AND TOLEDO

[22] E. L. Poole, M. Heroux, P. Vaidya, and A. Joshi, Performance of iterative methods in AN-
SYS on Cray parallel/vector supercomputers, Computer Systems in Engineering, 3 (1995),
pp. 251–259.

[23] G. Poole, Y.-C. Liu, and J. Mandel, Advancing analysis capabilities in ANSYS through
solver technology, in Proceedings of the 10th Copper Mountain Conference on Multigrid
Methods, Copper Mountain, Colorado, Apr. 2001.

[24] R. C. Prim, Shortest connection networks and some generalizations, Bell System Technical
Journal, 36 (1957), pp. 1389–1401.

[25] J. H. Reif, Efficient approximate solution of sparse linear systems, Computers and Mathe-
matics with Applications, 36 (1998), pp. 37–58.

[26] P. M. Vaidya, Solving linear equations with symmetric diagonally dominant matrices by con-
structing good preconditioners. Unpublished manuscript. A talk based on the manuscript
was presented at the IMA Workshop on Graph Theory and Sparse Matrix Computation,
October 1991, Minneapolis.

[27] H. van der Vorst, High-performance preconditioning, SIAM Journal on Scientific and Statis-
tical Computation, 10 (1989), pp. 1174–1185.

