UCSB

Parallel Combinatorial BLAS and Applications in Graph Computations

Aydın Buluç
John R. Gilbert
University of California, Santa Barbara
Adapted from talks at SIAM conferences

Primitives for Graph Computations

- By analogy to numerical linear algebra,
- What would the combinatorial BLAS look like?

Real-World Graphs

Properties:

- Huge (billions of vertices/edges)
- Very sparse (typically $m=O(n)$)
- Scale-free [maybe]
- Community structure [maybe]

Examples:

- World-wide web
- Science citation graphs
- Online social networks

What Kinds of Computations?

- Some are inherently latency-bound.
\rightarrow S-T connectivity
- Many graph mining algorithms are computationally intensive.
\rightarrow Graph clustering
\rightarrow Centrality computations

The Case for Sparse Matrices

- Many irregular applications contain sufficient coarsegrained parallelism that can ONLY be exploited using abstractions at proper level.

Traditional graph computations	Graphs in the language of linear algebra		
Data driven. Unpredictable communication patterns	Fixed communication patterns. Overlapping opportunities		
lregular and unstructured. Poor	Operations on matrix blocks. Exploits memory hierarchy		
locality of reference			Fine grained data accesses.
:---			
Dominated by latency	\quad	Bandwidthained parallelism.	
:---			

The Case for Primitives

It takes a "certain" level of expertise to get any kind of performance in this jungle of parallel computing

- I think you'll agree with me by the end of the talk :)

Identification of Primitives

- Sparse matrix-matrix multiplication (SpGEMM)

Most general and challenging parallel primitive.

- Sparse matrix-vector multiplication (SpMV)
- Sparse matrix-transpose-vector multiplication (SpMVT)

Equivalently, multiplication from the left

- Addition and other point-wise operations (SpAdd)

Included in SpGEMM, "proudly" parallel

- Indexing and assignment (SpRef, SpAsgn)
$\mathrm{A}(\mathrm{I}, \mathrm{J})$ where I and J are arrays of indices
Reduces to SpGEMM
Matrices on semirings, e.g. (•, +), (and, or), (+, min)

Why focus on SpGEMM?

- Graph clustering (Markov, peer pressure)

- Shortest path calculations
- Betweenness centrality
- Subgraph / submatrix indexing
- Graph contraction
- Cycle detection
- Multigrid interpolation \& restriction
- Colored intersection searching
- Applying constraints in finite element computations
- Context-free parsing ...

Comparative Speedup of Sparse 1D \& 2D

In practice, 2D algorithms have the potential to scale, if implemented correctly. Overlapping communication, and maintaining load balance are crucial.

2-D example: Sparse SUMMA

- $\mathrm{C}_{\mathrm{ij}}+=\mathrm{A}_{\mathrm{ik}}{ }^{*} \mathrm{~B}_{\mathrm{kj}}$
- Based on dense SUMMA
- Generalizes to nonsquare matrices, etc.

Sequential Kernel

Standard algorithm is $\mathrm{O}(\mathrm{nnz}+\mathrm{flops}+\mathrm{n})$

$$
\begin{aligned}
& n^{\prime}(\text { dimension }) \approx \frac{n}{\sqrt{p}} \\
& n n z^{\prime}(\text { data size }) \approx \frac{n n z}{p}
\end{aligned} \quad \text { flops }(\text { work }) \approx \frac{\text { flops }}{p \sqrt{p}}
$$

- Strictly O(nnz) data structure
- Outer-product formulation
- Work-efficient

Node Level Considerations

Submatrices are hypersparse (i.e. $n n z \ll n$)

- A data structure or algorithm that depends on the matrix dimension n (e.g. CSR or CSC) is asymptotically too wasteful for submatrices

Addressing the Load Balance

RMat: Model for graphs with high variance on degrees

- Random permutations are useful. But...
- Bulk synchronous algorithms may still suffer:

- Asynchronous algorithms have no notion of stages.
- Overall, no significant imbalance.

Asynchronous Implementation

- Two-dimensional block layout
- (Passive target) remote-memory access
- Avoids hot spots
- With very high probability, a block is accessed at most by a single remote get operation at any given time

Scaling Results for SpGEMM

Parallel PSpGEMM Scalability, Rmat-Scale20

PSpGEMM Scalability with Increasing Problem Size 64 Processors

- Asynchronous implementation One-sided MPI-2
- Runs on TACC's Lonestar cluster
- Dual-core dual-socket

Intel Xeon 2.66 Ghz

- RMat X RMat product

Average degree (nnz/n) ≈ 8

U C S B

Applications and Algorithms

Community Detection
Network Vulnerability Analysis

Combinatorial Algorithms	
Betweenness Centrality	Graph Clustering

Parallel Combinatorial BLAS			
SpGEMM	SpRef/SpAsgn	SpMV	SpAdd

A typical software stack for an application enabled with the Combinatorial BLAS

Betweenness Centrality

$\mathrm{C}_{\mathrm{B}}(\mathrm{v})$: Among all the shortest paths, what fraction of them pass through the node of interest?

$$
C_{B}(v)=\sum_{\substack{s \neq v \neq t \in V \\ s \neq t}} \frac{\sigma_{s t}(v)}{\sigma_{s t}}
$$

Brandes' algorithm

Betweenness Centrality using Sparse

 Matrices [Robinson, Kepner]

- Adjacency matrix: sparse array w/ nonzeros for graph edges
- Storage-efficient implementation from sparse data structures
- Betweenness Centrality Algorithm:
1.Pick a starting vertex, v
2.Compute shortest paths from v to all other nodes
3.Starting with most distant nodes, roll back and tally paths

Betweenness Centrality using BFS

- Every iteration, another level of the BFS is discovered.
- Sparsity is preserved, but sparse matrix times sparse vector has very little potential parallelism (has o(nnz) work)

Parallelism: Multiple-source BFS

- Batch processing of multiple source vertices
- Sparse matrix-matrix multiplication => work efficient
- Potential parallelism is much higher
- Same applies to the tallying phase

Betweenness Centrality on Combinatorial BLAS

Batch processing greatly helps for large p

RMAT scale N has 2^{N} vertices and $8^{*} 2^{N}$ edges - Likely to perform better on large inputs

- Code only a few lines longer than Matlab version

Betweenness Centrality on Combinatorial BLAS

Fundamental trade-off:
 Parallelism vs memory usage

Thank You!

Questions?

UC S B

