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• By analogy to 
numerical 
linear algebra,

• What would the 
combinatorial 
BLAS look like?

Primitives for Graph Computations

BLAS 3

BLAS 2

BLAS 1

BLAS 3 (n-by-n matrix-matrix multiply) 

BLAS 2 (n-by-n matrix-vector multiply) 

BLAS 1 (sum of scaled n-vectors)

Peak
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Real-World Graphs

Properties:

• Huge (billions of vertices/edges)

• Very sparse (typically m = O(n))

• Scale-free [maybe]

• Community structure [maybe]

Examples:

• World-wide web

• Science citation graphs

• Online social networks
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What Kinds of Computations?

• Some are inherently latency-bound.

→ S-T connectivity

• Many graph mining algorithms are computationally intensive.

→ Graph clustering

→ Centrality computations

Huge Graphs Expensive Kernels+  Massive Parallelism

Very Sparse Graphs
Sparse Data 

Structures (Matrices)
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The Case for Sparse Matrices

• Many irregular applications contain sufficient coarse-
grained parallelism that can ONLY be exploited using 
abstractions at proper level.

Traditional graph 
computations

Graphs in the language of 
linear algebra

Data driven. Unpredictable 
communication patterns

Fixed communication patterns. 
Overlapping opportunities

Irregular and unstructured. Poor 
locality of reference

Operations on matrix blocks. 
Exploits memory hierarchy

Fine grained data accesses. 
Dominated by latency

Coarse grained parallelism. 
Bandwidth limited
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The Case for Primitives

It takes a “certain” level of expertise to get any kind of 
performance in this jungle of parallel computing  

• I think you’ll agree with me by the end of the talk :)

480x

All pairs shortest 

paths on the GPU

What’s bandwidth 

anyway?

I can just implement it 

(w/ enough coffee)

The right primitive !
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Identification of Primitives

‣Sparse matrix-matrix multiplication (SpGEMM) 

Most general and challenging parallel primitive.

‣Sparse matrix-vector multiplication (SpMV) 

‣Sparse matrix-transpose-vector multiplication (SpMVT)

Equivalently, multiplication from the left 

‣Addition and other point-wise operations (SpAdd)

Included in SpGEMM, “proudly” parallel

‣Indexing and assignment (SpRef, SpAsgn)

A(I,J)  where I and J are arrays of indices

Reduces to SpGEMM

Matrices on semirings, e.g. ( , +), (and, or), (+, min)
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• Graph clustering (Markov, peer pressure)

• Shortest path calculations 

• Betweenness centrality

• Subgraph / submatrix indexing

• Graph contraction

• Cycle detection

• Multigrid interpolation & restriction

• Colored intersection searching

• Applying constraints in finite element computations

• Context-free parsing ...

Why focus on SpGEMM?
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Comparative Speedup of 

Sparse 1D & 2D

In practice, 2D algorithms have the potential to scale, if  implemented 

correctly.  Overlapping communication, and maintaining load balance are 

crucial. 
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Bkj
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2-D example: Sparse SUMMA

 Cij += Aik * Bkj  Based on dense SUMMA 

 Generalizes to nonsquare matrices, etc.
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Sequential Kernel 

• Strictly O(nnz) data structure 

• Outer-product formulation 

• Work-efficient

X

flops

nnz

n

Standard algorithm is O(nnz+ flops+n)
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Submatrices are hypersparse (i.e. nnz << n)

blocks

blocks

Total Storage: 

Average of c nonzeros per column

• A data structure or algorithm that depends on 
the matrix dimension n (e.g. CSR or CSC) 
is asymptotically too wasteful for submatrices

Node Level Considerations
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Addressing the Load Balance

• Random permutations are 
useful. But...

• Bulk synchronous algorithms 
may still suffer:

• Asynchronous algorithms 
have no notion of stages.

• Overall, no significant 
imbalance.

RMat: Model for graphs with high variance on degrees
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Asynchronous Implementation

DCSC<I,N>

Remote get 
using MPI-2 

Sparse2D<I,N> O(nnz)

 Two-dimensional block layout

 (Passive target) remote-memory access

 Avoids hot spots 

 With very high probability, a block is accessed at most by a 

single remote get operation at any given time
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Scaling Results for SpGEMM

 Asynchronous implementation 

One-sided MPI-2

 Runs on TACC’s Lonestar cluster 

 Dual-core dual-socket 

Intel Xeon 2.66 Ghz

 RMat X RMat product

Average degree (nnz/n) ≈ 8
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Applications and Algorithms

Betweenness Centrality

CB(v): Among all the shortest paths, 

what fraction of them pass through 

the node of interest?

Brandes’ algorithm

A typical software stack for an application 

enabled with the Combinatorial BLAS
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Betweenness Centrality using Sparse 

Matrices [Robinson, Kepner]

• Adjacency matrix:  sparse array w/ nonzeros for graph edges

• Storage-efficient implementation from sparse data structures

• Betweenness Centrality Algorithm:

1.Pick a starting vertex, v  

2.Compute shortest paths from v to all other nodes

3.Starting with most distant nodes, roll back and tally paths

x

1 2

3

4 7

6

5

AT
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Betweenness Centrality using BFS

x

(ATx).*¬x
1 2

3

4 7

6

5

AT



x

T

t1 t2 t3 t4 x += x~

• Every iteration, another level of the BFS is 

discovered. 

• Sparsity is preserved, but sparse matrix 

times sparse vector has very little potential 

parallelism (has o(nnz) work)
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6

XAT (ATX).*¬X



1 2

3

4 7 5

Parallelism: Multiple-source BFS

• Batch processing of multiple source vertices 

• Sparse matrix-matrix multiplication => work efficient

• Potential parallelism is much higher

• Same applies to the tallying phase
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Betweenness Centrality on 

Combinatorial BLAS

Batch processing greatly 

helps for large p

RMAT scale N has 2N

vertices and 8*2N edges

• Likely to perform better on 

large inputs

• Code only a few lines 

longer than Matlab version
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Betweenness Centrality on 

Combinatorial BLAS
Fundamental trade-off:

Parallelism vs memory usage
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Thank You !

Questions?


