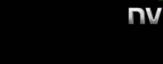


GPU Computing: The Democratization of Parallel Computing

David Luebke NVIDIA Research

Tutorial Speakers

NVIDIA Research David Luebke


Kevin Skadron

Michael Garland NVIDIA Research

John Owens

University of California Davis

University of Virginia

Tutorial Schedule

1:30 – 1:55	Introduction & Motivation	Luebke
1:55 – 2:15	Manycore architectural trends	Skadron
2:15 – 3:15	CUDA model & programming	Garland
3:15 – 3:30	Break	
3:30 - 4:00	GPU architecture & implications	Luebke
4:00 - 5:00	Advanced data-parallel programming	Owens
5:00 - 5:30	Architectural lessons & research opportunities	Skadron

Parallel Computing's Golden Age

1980s, early `90s: a golden age for parallel computing
Particularly data-parallel computing

Architectures

- **Connection Machine, MasPar, Cray**
- True supercomputers: incredibly exotic, powerful, expensive

Algorithms, languages, & programming models

- Solved a wide variety of problems
- Various parallel algorithmic models developed
- P-RAM, V-RAM, circuit, hypercube, etc.

Parallel Computing's Dark Age

But...impact of data-parallel computing limited

- Thinking Machines sold 7 CM-1s (100s of systems total)
- MasPar sold ~200 systems

Commercial and research activity subsided
Massively-parallel machines replaced by clusters

- Massively-parallel machines replaced by clusters of ever-more powerful commodity microprocessors
- Beowulf, Legion, grid computing, ...

Massively parallel computing lost momentum to the inexorable advance of commodity technology

Enter the GPU

GPU = Graphics Processing Unit

- Chip in computer video cards, PlayStation 3, Xbox, etc.
- Two major vendors: NVIDIA and ATI (now AMD)

Enter the GPU

GPUs are massively multithreaded manycore chips

- NVIDIA Tesla products have up to 128 scalar processors
- Over 12,000 concurrent threads in flight
- Over 470 GFLOPS sustained performance

Users across science & engineering disciplines are achieving 100x or better speedups on GPUs

CS researchers can use GPUs as a research platform for manycore computing: arch, PL, numeric, ...

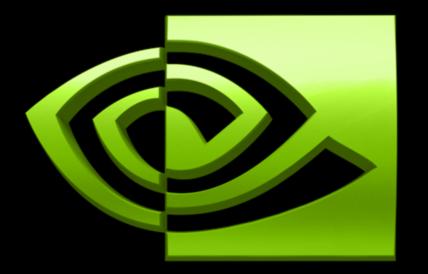
Enter CUDA

CUDA is a scalable parallel programming model and a software environment for parallel computing
 Minimal extensions to familiar C/C++ environment
 Heterogeneous serial-parallel programming model

NVIDIA's TESLA GPU architecture accelerates CUDA
 Expose the computational horsepower of NVIDIA GPUs
 Enable general-purpose GPU computing

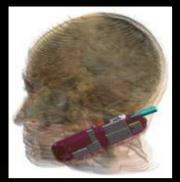
CUDA also maps well to multicore CPUs!

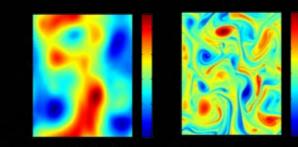
The Democratization of Parallel Computing

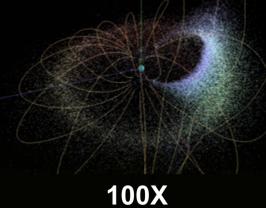

GPU Computing with CUDA brings data-parallel computing to the masses

- Over 46,000,000 CUDA-capable GPUs sold
- A "developer kit" costs ~\$200 (for 500 GFLOPS)

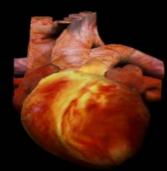
Data-parallel supercomputers are everywhere!

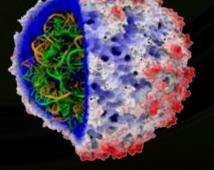

- CUDA makes this power accessible
- We're already seeing innovations in data-parallel computing

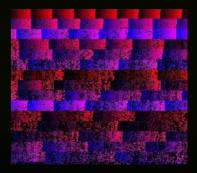

Massively parallel computing has become a commodity technology!



GPU Computing: Motivation




17X


45X

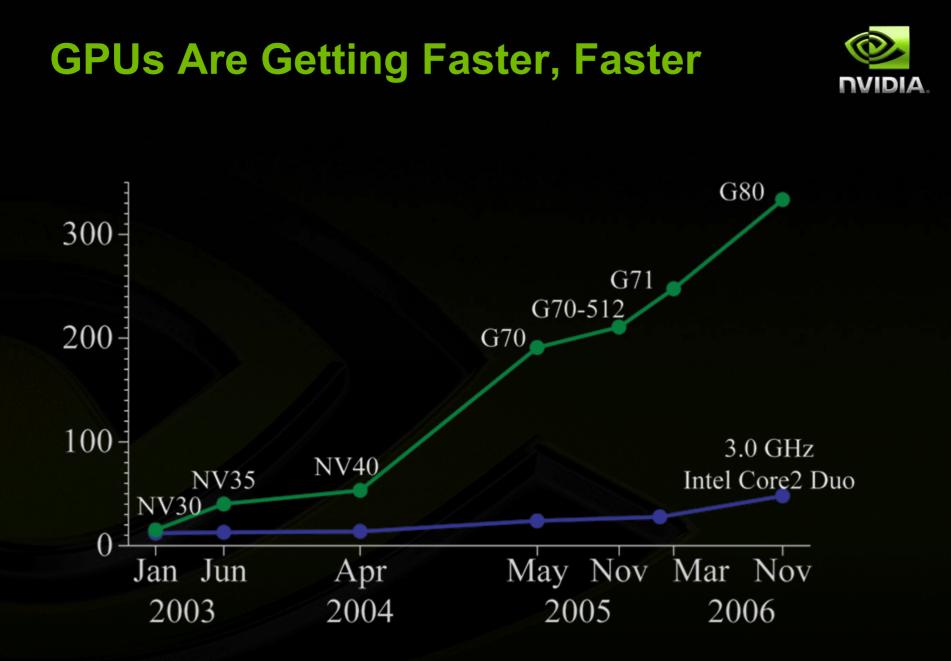
13–457x

GPU Computing: Motivation

35X

110-240X

GPUs Are Fast

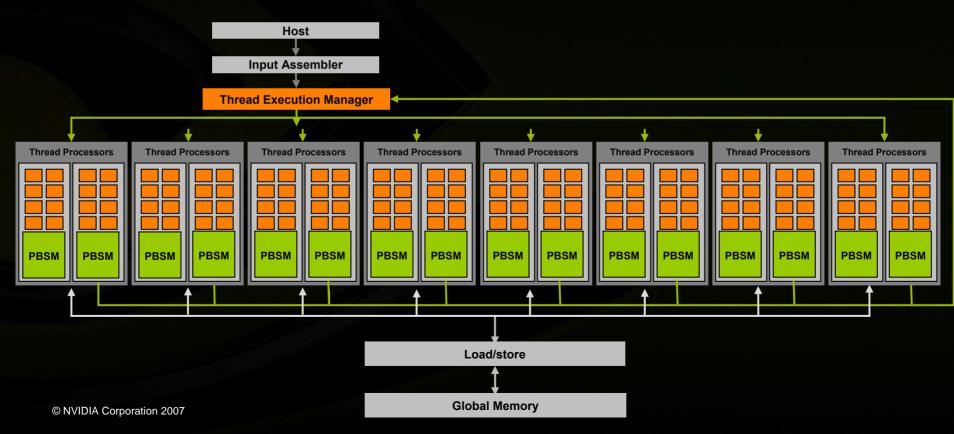

Theoretical peak performance: 518 GFLOPS

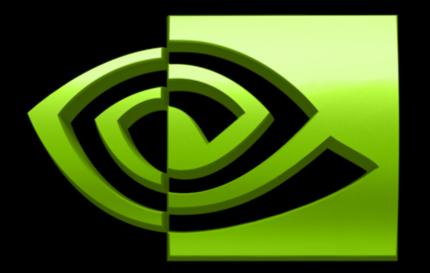
Sustained µbenchmark performance:

- Raw math: 472 GFLOPS (8800 Ultra)
- Raw bandwidth: 80 GB per second (Tesla C870)

Actual application performance:

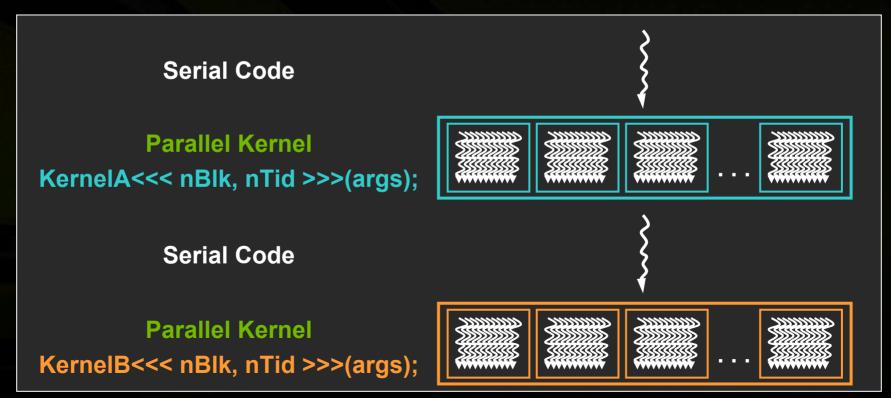
Molecular dynamics: 290 GFLOPS (VMD ion placement)




© NVIDIA Corporation 2007

Manycore GPU – Block Diagram

- G80 (launched Nov 2006 GeForce 8800 GTX)
- 128 Thread Processors execute kernel threads
- Up to 12,288 parallel threads active
- Per-block shared memory (PBSM) accelerates processing


CUDA Programming Model

Heterogeneous Programming

CUDA = serial program with parallel kernels, all in C

- Serial C code executes in a CPU thread
- Parallel kernel C code executes in thread blocks across multiple processing elements

GPU Computing with CUDA: A Highly Multithreaded Coprocessor

The GPU is a highly parallel compute device

- serves as a coprocessor for the host CPU
- has its own device memory on the card
- executes many threads in parallel

Parallel kernels run a single program in many threads

GPU threads are extremely lightweight
 Thread creation and context switching are essentially free

GPU expects 1000's of threads for full utilization

CUDA: Programming GPU in C

Philosophy: provide minimal set of extensions necessary to expose power

Declaration specifiers to indicate where things live ___global___ void KernelFunc(...); // kernel function, runs on device ___device___ int GlobalVar; // variable in device memory shared int SharedVar;

// variable in per-block shared memory

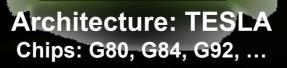
Extend function invocation syntax for parallel kernel launch **KernelFunc**<<<**500**, **128**>>>(...); // launch 500 blocks w/ 128 threads each

Special variables for thread identification in kernels dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

Intrinsics that expose specific operations in kernel code // barrier synchronization within kernel syncthreads();

Decoder Ring

GeForce[®] Entertainment


Quadro[®] Design & Creation

Tesla™ High Performance Computing

GPU

A New Platform: Tesla

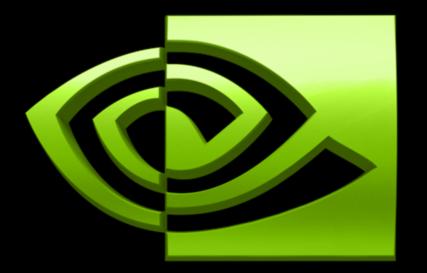
.....

HPC-oriented product line

- C870: board (1 GPU)
- D870: deskside unit (2 GPUs)
- S870: 1u server unit (4 GPUs)

Conclusion

GPUs are massively parallel manycore computers


Ubiquitous - most successful parallel processor in history

Useful - users achieve huge speedups on real problems

CUDA is a powerful parallel programming model

- Heterogeneous mixed serial-parallel programming
- Scalable hierarchical thread execution model
- Accessible minimal but expressive changes to C

They provide tremendous scope for innovative, impactful research

Questions?

David Luebke dluebke@nvidia.com