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Abstract 

Clustering is the process of grouping together similar entities. This can be applied to documents, and has 

applications in information retrieval, where similar documents are clustered and retrieved together.  In 

this project I explore spectral clustering and its variants Normalized cut, as well as non-negative matrix 

factorization(NMF) and its relevance in clustering biomedical documents. In spectral clustering we try to 

transform the given data in such a manner that conventional algorithms like kmeans can easily detect 

the correct patterns. Though spectral and NMF clustering are known to give good performances on 

newsgroup dataset, their performance on biomedical text which involves alphanumeric, abbreviations 

and ambiguous words have not been properly explored. This project compares the performance of 

spectral clustering, NMF clustering and kmeans clustering on pubmed abstracts. 

Introduction to clustering methods 

Generally clustering methods can be classified as agglomerative and partitional.  Agglomerative 

clustering groups the documents into hierarchical trees or dendograms by merging similar clusters to 

form parent cluster. But these have complexity of the order O(n^2 log n). Because of this quadratic 

order of complexity, bottom up clustering could become expensive for large datasets. On the other hand 

partition based clustering composes a corpus into a set of disjoint clusters. Typically this includes 

Kmeans, naïve bayes and Gaussian mixture models. Kmeans produces a cluster set that minimizes the 

mean squared error while naïve bayes and Gaussian models assign documents to clusters that provide 

maximum likelihood probability. Kmeans assumes each cluster has a compact shape, naïve bayes 

assumes all the dimensions are independent of each other, and Gaussian mixture model assumes that 

each cluster can be approximated by a Gaussian distribution. Obviously these assumptions are often not 

true and document clustering results go terribly wrong with broken assumptions.  

There has been numerous studies that perform document clustering using latent semantic indexing. This 

method basically projects each document into the singular vector space using SVD and conducts 

document clustering using traditional data clustering algorithms like Kmeans in the transformed space. 

Although it was claimed that each dimension of the singular vector space captures a base latent 

semantic of the document corpus, and that each document is indexed by the base latent semantics in 

this space, negative values in some of the dimensions generated by the SVD make the above 

explanations less meaningful. 



In recent years spectral clustering based on graph partitioning theories has emerged as one of the most 

prominent document clustering methods. These methods model each document using an undirected 

graph in which each node represents a document and each edge (i , j) is assigned a weight to represent 

the similarity between documents i and j. The graph clustering is performed by finding the best cuts of 

the graph that optimize predefined criterion function. The optimization of the criterion function usually 

leads to the computation of singular vectors or eigen vectors of graph affinity matrices and the 

clustering results can be derived from the eigenvector space. Many criterion functions such as 

normalized cut, average cut, average association, min-max cut have been proposed along with efficient 

algorithms for optimizing their solutions.       

Document term matrix and Similarity matrix 

A document-term matrix or term-document matrix is a mathematical matrix that describes the 

frequency of terms that occur in a collection of documents. In a document-term matrix, rows 

correspond to documents in the collection and columns correspond to terms. There are various schemes 

for determining the value that each entry in the matrix should take. One such scheme is tf-idf. In this 

project the document term matrix with tf-idf is used.  

The similarity matrix can be constructed from term-document matrix using Euclidean distance or jaccard 

similarity or cosine similarity between the document vectors. For out experiment cosine similarity is 

used. 

Spectral clustering and normalized cuts 

The method is based on cutting the graph of object’s similarities using methods of spectral graph theory. 

In recent years this theory has been strongly developed, especially in direction of graph clustering 

algorithms where the most well-known are: Shi–Malik (2000),Kannan–Vempala–Vetta (2000), Jordan–

Ng–Weiss (2002) and Meila–Shi (2000). 

Representing the objects that are to be clustered with graph nodes and the w weights of the graph 

edges with objects similarities, the partitioning problem is reduced to finding optimal cutset. Sometimes 

cutset gives the results that are different than intuitive nodes partition, so other measures are 

introduced – example - Normalized cut which increases its value for clusters that have nodes with small 

sum of edge weights. 

1. Preprocessing and data normalization 

At this stage the data are preprocessed into their computational representation. If we are clustering the 

text documents typically Vector Space Model (VSM) is used. In this representation weighting with Term 

Frequency and Inverse Document Frequency (TFIDF) allows to calculate similarities between documents. 

In our experiments we use cosine distance which is known to be the suitable similarity measure for 

sparse vectors. 

2. Spectral mapping 



This stage distinguished spectral approach. Using the data from step 1 the typically Laplacian matrix is 

built and then appropriate number of its eigenvectors is calculated. 

3. Clustering 

The objects represented with spectral mapping are divided into two or more sets. Sometimes it is 

enough to find appropriate cut of the n-element, sorted collection which divide this collection into two 

clusters. In other methods this step is more complicated and performs partitioning in new 

representation space (provided by spectral mapping) using standard clustering algorithm e.g. k-Means 

Shi–Malik is realized in following steps: 

(a) Calculate eigenvectors of similarity Laplacian graph. 

(b) Sort elements of the dataset according to second smallest eigenvector value, which is denoted as 

x1,x2, ...,xn. 

(c) Calculate the partition{{x1, x2..., xi},{xi+1, xi+2, ..., xn}}(1≤i≤n1) having the smallest NCut. 

(d) If given partition has NCut value smaller than given a priori value (that means it is better) then this 

method in each of the divided sets is run again, otherwise the algorithm stops 

Non-negative Matrix Factorization 

Document clustering by LSI and spectral clustering strive to find semantic structure of the corpus by 

computing eigen vectors of certain matrices. The derived latent semantic space is orthogonal and each 

document can take negative values in some directions. In contrast non-negative matrix factorization 

doesnot have the orthogonal requirement and it guarantees that documents take only non negative 

values. Thus NMF is superior due to the following reasons 

1. First, when overlap exists among clusters, NMF can still find a latent semantic direction for each 

cluster, while the orthogonal requirement by the SVD or the eigenvector computation makes 

the derived latent semantic directions less likely to correspond to each of the clusters. 

2.  Second, with NMF, a document is an additive combination of the base latent semantics, which 

makes more sense in the text domain.  

3. Third, as the direct benefit of the above two NMF characteristics, the cluster membership of 

each document can be easily identified from NMF, while the latent semantic space derived by 

the LSI or the spectral clustering does not provide a direct indication of the data partitions, and 

consequently, traditional data clustering methods such as K-means have to be applied in this 

eigenvector space to find the final set of document clusters. 



 

Dataset 

For the dataset I have used a collection of 216 abstracts belonging to 6 journals on Pubmed. These 

documents are available for download from pubmed in xml and are converted to text files using the 

DTD’s from pubmed and a parser written in java. 

Experimental Result 

Due to the large size of the term document matrices, clustering was performed on a small set of the 

documents (6 journals, implying 6 clusters). A total of 216 abstracts belonging to the 6 journals were 

converted to term document matrices and similarity matrices using Term to Matrix Generator tool for 

matlab. Performance of k-means, non-negative matrix factorization and N-cut spectral clustering are 

compared.  

Algorithm No of 
documents(clusters) 

Rand Index Accuracy 

Kmeans 216(6) 81.8182 58.3333 

NMF 216(6) 95.4545 91.6667 

Ncut-Spectral 216(6) 72.7273 41.6667 

 

Observations and Future work 

It can be seen that non-negative matrix factorization gives much better results compared to traditional 

kmeans and n-cut based methods. This shows that NMF can make a huge difference in biomedical 

information retrieval. Due to the orthogonal vector requirement in NCut, the results are not as good as 

Kmeans or NMF. Expanding this analyses to a larger number of clusters using a cloud computing cluster 

and exploring related algorithms in the kmeans, spectral and NMF family of clustering algorithms remain 

future work. 
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Appendix  

Java parser for xml to text conversion 

import java.nio.charset.Charset; 

import java.nio.file.Files; 

import java.nio.file.Path; 

import java.nio.file.Paths; 

import java.io.*; 

import java.nio.file.DirectoryStream.Filter; 

import java.util.*; 

import java.io.FileWriter; 

import javax.xml.parsers.DocumentBuilder; 

import javax.xml.parsers.DocumentBuilderFactory; 

import com.google.common.io.*; 

import org.apache.commons.io.FileUtils; 

import org.w3c.dom.Document; 

public class FileWalk { 

    File startDir; 

    Filter filter; 

    public FileWalk( File sDir ){ 

            this(sDir, null); 

    } 

    

    public FileWalk(File sDir, Filter fil){ 

            startDir = sDir; 

            filter = fil; 

    } 



    

    public void FSWalk () throws FileNotFoundException { 

            validateDirectory(startDir); 

            recurse(startDir); 

    } 

    public void recurse (File startDir) { 

            File[] contents = startDir.listFiles(); 

             

            for (int i = 0; i < contents.length; i++){ 

                    //add item to tree. 

             //fun(contents[i].getAbsolutePath()); 

    if (contents[i].isFile()) 

    {  

     String ext = 
com.google.common.io.Files.getFileExtension(contents[i].getAbsolutePath()); 

     //System.out.print(ext); 

                    if(ext.equals("nxml")) 

     func(contents[i].getAbsolutePath()); 

    } 

             else if (! contents[i].isFile()){ 

                            recurse(contents[i]); 

                    }       

            }        

    } 

    public static void func(String absolutePath) { 

  // TODO Auto-generated method stub 

  try {  

   File fXmlFile = new File(absolutePath); 



   File parent= fXmlFile.getParentFile(); 

   File source = new File("C:/Users/Arvind/Desktop/mod"); 

   FileUtils.copyDirectory(source, parent); 

   DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance(); 

   DocumentBuilder dBuilder = dbFactory.newDocumentBuilder(); 

   Document doc = dBuilder.parse(fXmlFile); 

   String newPath=absolutePath.replace("medline", "med"); 

    Path newFile = Paths.get(newPath); 

    Files.createDirectories(newFile.getParent()); 

    if(!newFile.toFile().exists()) 

    Files.createFile(newFile); 

    PrintWriter out = new PrintWriter(newFile.toString()); 

   //optional, but recommended 

   //read this - http://stackoverflow.com/questions/13786607/normalization-in-
dom-parsing-with-java-how-does-it-work 

   doc.getDocumentElement().normalize(); 

   if(!(doc.getElementsByTagName("journal-title").getLength()==0)) 

    out.println(doc.getElementsByTagName("journal-
title").item(0).getTextContent()); 

   if(!(doc.getElementsByTagName("article-title").getLength()==0)) 

    out.println(doc.getElementsByTagName("article-
title").item(0).getTextContent()); 

   if(!(doc.getElementsByTagName("abstract").getLength()==0)) 

  out.println(doc.getElementsByTagName("abstract").item(0).getTextContent());  

   if(!(doc.getElementsByTagName("body").getLength()==0)) 

   out.println(doc.getElementsByTagName("body").item(0).getTextContent()); 

   out.close(); 

      } catch (Exception e) { 

   e.printStackTrace(); 



      }  

 } 

/** 

* Directory is valid if it exists, does not represent a file, and can be read. 

*/ 

public void validateDirectory (File aDirectory) throws FileNotFoundException { 

if (aDirectory == null) { 

 throw new IllegalArgumentException("Directory should not be null."); 

} 

if (!aDirectory.exists()) { 

 throw new FileNotFoundException("Directory does not exist: " + aDirectory); 

} 

if (!aDirectory.isDirectory()) { 

 throw new IllegalArgumentException("Is not a directory: " + aDirectory); 

} 

if (!aDirectory.canRead()) { 

 throw new IllegalArgumentException("Directory cannot be read: " + aDirectory); 

} 

} 

} 

Spectral clustering using N-Cut code 

function [V1,D1]=ncut(W); 
% [V1,D1]=ncut(W,nv); 
% 
% solve generalized eigenproblem Wy={\mu}My 
% 
% optional third argument specifies minimum allowed weight (e.g. 0.01) 

  

  
m=sum(W,1); 
N=length(m); 
M=sparse(1:N,1:N,m); 
B=inv(sqrt(M)); 



  
% solve generalized eigensystem 
OPTIONS.tol=1e-4; 
OPTIONS.maxit=20; 
%OPTIONS.disp=0; 
C=B*W*B; 
format long 
[V1,D1]=eig(C); 

  
D1=1-D1; 
V1=B*V1; 

  
% sort the eigenvalues 
[dvalues,dindex]=sort(diag(D1)); 

 
V1=V1(:,dindex); 
D1=diag(dvalues); 
format 

 

Rand index and accuracy calculation code: 

function [Acc,rand_index,match]=AccMeasure(T,idx) 
%Measure percentage of Accuracy and the Rand index of clustering results 
% The number of class must equal to the number cluster  

  
%Output 
% Acc = Accuracy of clustering results 
% rand_index = Rand's Index,  measure an agreement of the clustering results 
% match = 2xk mxtrix which are the best match of the Target and clustering 

results 

  
%Input 
% T = 1xn target index 
% idx =1xn matrix of the clustering results 

  
% EX: 
% X=[randn(200,2);randn(200,2)+6,;[randn(200,1)+12,randn(200,1)]]; 

T=[ones(200,1);ones(200,1).*2;ones(200,1).*3]; 
% idx=kmeans(X,3,'emptyaction','singleton','Replicates',5); 
%  [Acc,rand_index,match]=Acc_measure(T,idx) 

  
k=max(T); 
n=length(T); 
for i=1:k 
    temp=find(T==i); 
    a{i}=temp; %#ok<AGROW> 
end 

  
b1=[]; 
t1=zeros(1,k); 
for i=1:k 
    tt1=find(idx==i); 
    for j=1:k 
       t1(j)=sum(ismember(tt1,a{j})); 



    end 
    b1=[b1;t1]; %#ok<AGROW> 
end 
    Members=zeros(1,k);  

     
P = perms((1:k)); 
    Acc1=0; 
for pi=1:size(P,1) 
    for ki=1:k 
        Members(ki)=b1(P(pi,ki),ki); 
    end 
    if sum(Members)>Acc1 
        match=P(pi,:); 
        Acc1=sum(Members); 
    end 
end 

  
rand_ss1=0; 
rand_dd1=0; 
for xi=1:n-1 
    for xj=xi+1:n 
        rand_ss1=rand_ss1+((idx(xi)==idx(xj))&&(T(xi)==T(xj))); 
        rand_dd1=rand_dd1+((idx(xi)~=idx(xj))&&(T(xi)~=T(xj))); 
    end 
end 
rand_index=200*(rand_ss1+rand_dd1)/(n*(n-1)); 
Acc=Acc1/n*100;  
match=[1:k;match]; 

 

Matlab Diary – Non Negative Matrix Factorization and Kmeans example for 6 documents 

>> tmg_gui 

Creating directory for any text results. 

[TEXT_RESULTS] directory has not been used. Directory is going to be deleted 

================================================================================= 

Applying TMG for file/directory C:\Users\Arvind\Desktop\New folder... 

================================================================================= 

Using delimiter: emptyline 

Line Delimiter: Yes 

No stoplist used... 

No stemming is used... 

Update step: 10000 



Minimum term length: 3 

Maximum term length: 30 

Minimum local frequency: 1 

Maximum local frequency: Inf 

Minimum global frequency: 1 

Maximum global frequency: Inf 

Using (tfx) term-weighting scheme 

================================================================================= 

Parsing documents... 

================================================================================= 

Parsing file C:/Users\Arvind\Desktop\New 

folder\Cal_J_Emerg_Med\Cal_J_Emerg_Med_2007_Feb_8(1)_15-21.txt... 

================================================================================= 

Parsing document 1... 

 Number of terms: 3908... 

================================================================================= 

Parsing file C:/Users\Arvind\Desktop\New 

folder\Cancer_Chemother_Pharmacol\Cancer_Chemother_Pharmacol_2008_Jul_6_62(2)_321-

329.txt... 

================================================================================= 

Parsing document 2... 

 Number of terms: 4748... 

================================================================================= 

Parsing file C:/Users\Arvind\Desktop\New folder\Cancer_Med\Cancer_Med_2012_Aug_7_1(1)_47-

58.txt... 

================================================================================= 

Parsing document 3... 



 Number of terms: 6492... 

================================================================================= 

Parsing file C:/Users\Arvind\Desktop\New 

folder\Case_Rep_Gastroenterol\Case_Rep_Gastroenterol_2007_Aug_7_1(1)_38-47.txt... 

================================================================================= 

Parsing document 4... 

 Number of terms: 2509... 

================================================================================= 

Parsing file C:/Users\Arvind\Desktop\New folder\Chest\Chest_2013_Jul_25_144(1)_284-305.txt... 

================================================================================= 

Parsing document 5... 

 Number of terms: 12777... 

================================================================================= 

Parsing file C:/Users\Arvind\Desktop\New 

folder\Childs_Nerv_Syst\Childs_Nerv_Syst_2010_Aug_16_26(8)_1009-1019.txt... 

================================================================================= 

Parsing document 6... 

 Number of terms: 4931... 

 

Using (tfx) term-weighting scheme 

 

 

================================================================================= 

Results: 

================================================================================= 

Number of documents = 6 



Number of terms = 7084 

Average number of terms per document (before the normalization) = 5894.17 

Average number of indexing terms per document = 4682.33 

Sparsity = 20.9721% 

 

Estimated time for parsing and converting the files: 0.049965 seconds 

Estimated time for constructing tdm and the other workspace parts: 0.412901 seconds  

 

Removed 281 terms using the term-length thresholds... 

Removed 0 terms using the global thresholds... 

Removed 0 elements using the local thresholds... 

Removed 0 empty terms... 

Removed 0 empty documents... 

================================================================================= 

 

================================================================================= 

      WARNING! 

      -------- 

Save the update_struct output argument in order to update your  

collection... 

================================================================================= 

>> [I,H]=nnmf(A,6); 

>> full(H) 

 

ans = 



 

         0         0    0.0000         0    1.0000    0.0000 

         0         0    1.0000    0.0000         0    0.0000 

         0         0    0.0000         0    0.0000    1.0000 

    1.0000         0    0.0000    0.0000         0    0.0000 

    0.0000    1.0000    0.0000    0.0000         0    0.0000 

    0.0000         0    0.0000    1.0000         0    0.0000 

Matlab Diary – Kmeans 

kmeans(A',6) 

 

ans = 

 

     5 

     3 

     6 

     2 

     4 

     1 

 


