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Introduction 

Graph Properties and Motivation 

Many research problems in graph theory study the abstract properties of graphs that 

originate from real-world structures and intuitive motivations.  Formalizing the connection 

between these properties and their meaning in real-world applications is often just as 

involved as defining and computing the property itself, since researchers often have to 

choose between several competing or ambiguous definitions that each have their own 

advantages.  Furthermore, some graph properties that arise naturally from real-world data 

prove to be intractably difficult to compute or even approximate, resulting in a 

mathematical model that is of little use.  One important, widely applicable graph property 

used in network theory is the idea of expansion, which is closely related to the concept of 

graph connectivity.  Although expansion can be defined naturally and seems to describe a 

wide variety of network phenomena, computing the expansion for a graph or even 

describing good expanders proved to be difficult for many years.  Fortunately, research 

results linking expander graphs to spectral theory have yielded useful tools for discussing 

the expansion of a graph. 

Expansion as an Intuitive Graph Property 

Similar to centrality, the expansion factor of a node in a graph measures how well 

connected the node is to every other node by looking for bottlenecks in the graph; 

intuitively, a node with high expansion should have little or no bottlenecks to every other 

node.  In real world applications, this can be interpreted roughly as the rate of information 

spread from a node, since nodes with high expansion should be able to propagate 

information quickly to the rest of the graph.  In general, however, this definition is used to 

describe the entire graph; a graph has high expansion if there are no bottlenecks anywhere 

in the graph.  Aside from being a mathematical graph property, the notion of graph 

expansion has wide applications in other fields of computing, including areas like error-

correcting codes, embeddings, and random walks. [9] 

Formal Definitions of Expansion 

One reason expansion is so widely applicable is because it is an intuitive property of large 

networks that can still be described well in formal mathematical terms.  For any set of 

nodes S in a graph G, define its boundary d(S) as the set of vertices that neighbors S in G.  In 

other words: 

                           

where S’ is the complement of S in G, and E is the set of edges in G.  In other words, the 

boundary of S is the set of nodes that can be reached from S in one “hop”.  Clearly, the 

boundary can also be defined as the set of edges neighboring S rather than the vertices [9]; 



each definition has its own advantages and properties.  We can now define the vertex 

expansion factor h(G) for the graph G to be: 
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The corresponding alternative formulation for the edge expansion factor uses the edge 

boundary rather than the vertex boundary.  With the expansion factor formally defined, 

there are three overarching ways to interpret this measure in terms of real-world data.  

Combinatorially speaking, the expansion factor is small if the graph has a small min-cut, 

since each side of the cut has a large size and very small boundary (corresponding to the 

cut size).  Conversely, a well-connected graph with no small cuts should have a large 

expansion.  Geometrically, a graph with large expansion factor should yield, for every node, 

a large neighborhood (in terms of number of nodes) at all scales.  Finally, a major result in 

spectral graph theory reveals that large expansion is equivalent to having a large spectral 

gap in the corresponding adjacency matrix; a similar result exists for the Laplacian matrix 

as well. [2] The first two interpretations of expansion follow simply from the definition; the 

algebraic correlation, however, provides a nontrivial link between graph theory and the 

powerful tools of linear algebra and scientific computing. 

Properties of Expander Graphs 

Matrix View of Graphs 

Alone, the definition of expansion provides a well-defined measure on all graphs, but the 

notion of an expander graph is still unclear, since clearly all connected graphs have positive 

expansion, and the complete graph should have maximal expansion for its size.  A useful 

constraint, therefore, is to require a constant vertex degree in the graph as the size of the 

graph scales.  In other words, we define a graph G to be d-regular if all its nodes have 

degree d, and focus on the relationship between d and h(G) as the size of G grows. [9] 

Although the definition of expansion is mathematically simple and intuitive, computation 

and detection of bounded-degree expander graphs remains a difficult open problem.  

Detecting whether an arbitrary graph is an ε-expander (that is, has an expansion factor at 

least ε) is co-NP-hard.  Equivalently, computing the expansion factor for a graph is co-NP-

hard even if the problem is restricted to subsets of constant size k, and combinatorial 

approximation algorithms for expansion are lacking. [9] So far, the most prevalent research 

results in the field have come in the form of linear algebra, as the expansion factor of a 

graph can be tightly linked to the eigenvalues of its associated matrices—the adjacency 

matrix A, which contains ones at adjacent node indices, and the Laplacian matrix L, which 

contains vertex degrees on the diagonal and negative ones at adjacent node indices.  These 

eigenvalues, which can be computed/approximated much more efficiently using known 



linear algebra methods, provide much of the theoretical foundation behind expander 

graphs and their applications. 

Spectral Gap as an Estimator of Expansion 

The basic objects of study in spectral graph theory are the adjacency matrix A and the 

Laplacian matrix L of a graph G.  Since both A and L are real symmetric n-by-n matrices 

(where n is the number of vertices in G), they each have a complete set of n real eigenvalues 

and eigenvectors, including multiplicity.  The spectrum of G is obtained by ordering the 

eigenvalues            of A in decreasing order.  Conveniently, in a d-regular graph, the 

value of   is exactly d.  Furthermore, using the spectrum of G, the expansion factor of a 

graph is bounded by the following theorem [9]: 

     

 
                  

The key quantity here,      , is equivalent to      for d-regular graphs, and is called the 

spectral gap as it quantifies the “gap” between the largest and second-largest eigenvalues of 

the adjacency matrix.  Therefore, writing the spectral gap as ∆, the above theorem can be 

thought of in simpler terms: 

 

 
           

Clearly, the expansion factor is directly related to the spectral gap of the graph.  More 

importantly, the inequality gives some sense of how much the expansion can vary with the 

vertex degree—for all graphs of bounded vertex degree d, the expansion is roughly 

characterized by the second-largest eigenvalue of the graph’s adjacency matrix. [2] This 

inequality is a discrete extension of the theorem known as Cheeger’s inequality from 

analysis—the main difference is that the form originally proved by Cheeger involves 

continuous manifolds rather than discrete graphs. 

Correlation with the Laplacian Matrix Spectrum 

Along with the expansion bounds given by the spectral gap of the adjacency matrix is an 

alternative formulation that uses the closely related Laplacian matrix.  The Laplacian 

matrix contains some useful properties not immediately visible in the adjacency matrix; for 

example, the eigenvalues of the Laplacian matrix are all nonnegative, and the multiplicity of 

the zero-eigenvalue is precisely the number of connected components in the graph.  If λ is 

the smallest non-zero eigenvalue of the Laplacian matrix, then it is the case that λ = ∆, which 

allows the Cheeger inequality to be written in terms of the Laplacian eigenvalues instead.  

Furthermore, since the minimum eigenvalue of a matrix can be expressed using Rayleigh 

quotients [13], this quantity can also be written as: 



        
   

    

   
 

where 1 is the unit vector of all ones, and L is the Laplacian matrix. 

Examples of Expander Graphs 

Simple Extremal Cases 

Although the notion of graph expansion is simple to define, and the spectral gap allows an 

easy estimation of the magnitude of the expansion factor, the existence and construction of 

large, sparse graphs with good expansion remained a difficult problem years after the 

notion was defined.  Clearly the complete graph has optimal expansion factor, since every 

subset of nodes has the whole set as its boundary, but the vertex degree of the complete 

graph grows linearly in the size of the graph; an ideal expander graph combines large 

expansion factor with a constant vertex degree.  A few other simple examples demonstrate 

that the bounds given by the Cheeger inequality are, in fact, tight.  In the case of the lower 

bound, the d-dimensional hypercube graph on 2d nodes yields an expansion factor of 1 and 

a spectral gap of 2, while in the case of the upper bound, the n-cycle graph yields an 

expansion factor of  
 

 
 with a spectral gap of  

 

  .  For bounded-degree graphs, if infinite 

graphs are considered, the infinite d-tree has the optimal expansion factor, but graphs of 

infinite size are usually impractical to consider in real-world applications. [9] 

Margulis Construction and Generalizations 

The first explicit example of an infinite family of finite constant-degree expanders was due 

to Margulis, who gave a non-constructive existence proof, and Gabber and Galil, who gave 

an explicit, elementary construction. [1] While the proofs of expansion themselves are 

much more complex, the construction itself uses only the elements of       as nodes and 

adds edges by transforming each element into its 8 neighbors, resulting in a bipartite 8-

regular graph.  A few years later, this result was generalized in the form of Ramanujan 

graphs, which are d-regular graphs for which        , where λ is the second largest 

eigenvalue of the adjacency matrix. [3] The discovery that Ramanujan graphs for arbitrarily 

large values of d exist and could be constructed was another major step in describing 

explicit expanders.  Furthermore, Friedman showed using the probabilistic method that: 

               as     for all    . 

In other words, a randomly generated d-regular graph of size n will be Ramanujan with 

nonzero probability as n approaches infinity, so Ramanujan graphs are actually quite 

“common” in this sense [5]. 



Zigzag Products of Graphs 

Although the first explicit constructions of expander graphs took years to discover and 

required deep proofs, since then, many new techniques have appeared that use various 

techniques to generate expander graphs of different types.  One important example is the 

zig-zag product, which allows expander graphs to be “multiplied” together to form new, 

distinct expanders.  First described by Reingold, Vadhan, and Wigderson [6], the zig-zag 

product takes a d-regular graph G1 on n vertices, combines it with a c-regular graph G2 on d 

vertices, and outputs a c2-regular graph with c × n vertices.  From the definition, it is clear 

that G2 is expected to be much smaller than G1, and c to be much smaller than d.  Yet the 

product graph is similar in size to G1, has the desired properties of bounded degree, and is 

proven to have an expansion factor that is similar to the original graphs.  In other words, 

the output of a zig-zag product on two expander graphs is yet another expander.  Aside 

from being used to generate arbitrary families of expander graphs, the zig-zag product has 

further theoretical applications in the study of graph operations. 

Applications of Expander Graphs 

Expander Graphs for Error-Correcting Codes 

Although much of the developed theory on expander graphs involves graph theory and 

linear algebra, the original motivations for constructing expanders came out of 

communication theory, in the form of error-correcting codes.  In a communication setting 

with signal noise, a sender and receiver cannot guarantee the fidelity of sent messages—

they can only ensure that a proportion of the data bits sent are accurate.  However, using 

error correcting codes, the sender can still deliver the correct message to the receiver by 

sending extra, redundant bits with the original message.  Generally speaking, in a error 

correcting model these bits essentially “vote” for the correct message content, allowing the 

receiver to deduce the original message even if some of the bits were corrupted in transit.  

In formal terms, an error correcting code C is a set of n-bit binary strings (though more 

complex languages can be used) that, ideally, maximizes two parameters: 

                      and        
      

 
 

where d(x, y) is the Hamming distance (number of bits different) between two words.  The 

first parameter, called the distance of C, is a measure of the breadth of messages and errors 

that C can account for, while the second parameter, called the rate, inversely measures the 

data overhead required per message sent.  Error correcting codes and algorithms form 

their own deep topic of study, but Pinsker and Bassalygo realized that high quality codes 

for large messages could be formed using sparse bipartite graphs—one particular form of 

expanders. [9] Furthermore, later results proved that the codes formed from such graphs 



would allow for efficient encoding and decoding of messages, including linear-time 

algorithms from Sipser and Spielman. [4] These results were much of the motivation for 

finding explicit constructions of expander graph families, as opposed to merely proving 

their existence. 

Expansion Properties of Social Network Graphs 

A second, more recent application of expander graphs involves the study of large social 

networks that have been made available by the growth of the internet and the interest in 

analyzing social data.  Social network graphs are unique in that they combine bounded 

vertex degree with large size, yet tend to have very small diameters (an observation 

colloquially called the “small world” phenomenon).  Aside from the basic graph properties, 

however, one important concept of study on social network graphs is that of community 

structure, which intuitively refers to the identification of highly-connected subsets of the 

social network. [7] For a social network graph where nodes are individual people, a 

community is generally interpreted as either a group of tightly knit individuals (like a circle 

of friends) or a set of highly similar people (by shared interests, etc.).  In either case, social 

network analysis seeks to detect and identify such groups using properties of the 

underlying graph.  However, due to the complexities of quantifying social interactions and 

data, no universal definition of a community exists, at least in the mathematical sense.  The 

most commonly used measure is called modularity and is computed as follows [11]: 

         
 

 

   

 

Given a graph G, and a set of communities c1, c2…ck that partition G (in other words, no node 

belongs to two communities, and the union of all communities is G), the quantity ei is the 

proportion of edges of G with both ends in ci, while the quantity ai is the proportion of 

edges with at least one end in ci.  Intuitively speaking, a community partition for G exhibits 

high modularity if many edges lie in the communities (so each community is highly 

connected) and few edges lie across communities (so each community is tightly bounded).  

Several community detection algorithms proceed by finding a community partition with 

high modularity (optimal modularity maximization is NP-hard).  While the modularity 

measure has some shortcomings of its own, it does have an important correlation to 

expansion factor.  Since graphs with high expansion have, for all vertex subsets, a large 

boundary, any community partition of such a graph should have low modularity due to the 

large number of inter-community edges.  Conversely, if a graph does have a partition with 

high modularity, then there exist subsets of the graph that do not expand well—precisely 

the communities.  If social network graphs exhibit strong community structure, then their 

expansion factors should be correspondingly small.  In reality, however, the results are 

mixed.  Estrada experimentally verified a small expansion factor for several small real-



world data sets [10], but Malliaros and Megalooikonomou later demonstrated that many 

large-scale social graphs actually exhibit surprisingly good expansion behavior [12].  

Studying the expansion properties of social network graphs becomes increasingly difficult 

with scale, as even computing eigenvalues on graphs the size of the internet becomes 

infeasible.   Therefore, whether large social graphs are in general expanders still remains 

an open question. 

Open Questions on Expander Graphs 
Because both the expansion factor and expander graphs have historically been difficult to 

compute in general, many open questions still exist regarding their nature.  Since 

computing the expansion factor exactly is known to be in co-NP-hard, the major theoretical 

question remains whether it is possible to efficiently approximate the expansion up to a 

constant factor.  Without knowledge of the spectral gap, recent results have only yielded 

      approximations on the expansion factor. [8] Various other problems of a similar 

nature remain unsolved, most involving optimizing the vertex/edge-boundaries of graph 

subsets.  On the application side, many algorithms, including error-correcting codes, make 

use of explicitly constructed infinite families of expander graphs, and finding simpler, faster 

constructions is always an open research field.  Finally, as the graphs of very large scale 

become increasingly common in graph research (most notably coming from the internet 

and social networks), an important problem is to study their expansion properties 

efficiently.  Furthermore, while some probabilistic results for expansion are known for 

random graphs in general, many open questions exist regarding the expansion factor for 

large social random graph models. 

Conclusion 
The study of expander graphs arose in a convoluted manner, since continuous results (on 

manifolds and Laplace operators) have existed for decades before graph theory was a 

common research topic.  The invention of error-correcting codes and their subsequent link 

to expander graphs pushed forward a large research effort to verify whether bounded-

degree expanders exist, and, if so, how to construct them for arbitrary size and degree.  

Formalizing the concept of expansion to general graphs and correlating the expansion 

factor to the spectral gap was the major result that now underpins much of the theory on 

expander graphs.  Finally, as researchers begin to apply spectral graph theory to a wide 

range of applications, in social networks as mentioned, but also fields like biology, number 

theory, and physics, studying the expansion factor becomes an important part of analyzing 

a graph’s properties. 
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