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1 Kelner et al.’s Randomized Kaczmarz Solver

Solving linear systems on the graph Laplacian of large unstructured networks
has emerged as an important computational task in network analysis [5]. Most
work on these solvers has been on preconditioned conjugate gradient (PCG)
solvers or specialized multigrid methods [4]. Spielman and Teng, showed how to
solve these problems in nearly-linear time [6] but the algorithm does not have
a practical application implementation. A promising new approach for solving
these systems proposed by Kelner et al. [2] involves solving a problem that is
dual to the original system.

The inspiration for the algorithm is to treat graphs as electrical networks
with resistors on the edges. The graph Laplacian is defined as L = D − A
where D is the diagonal matrix containing the sum of incedent edge weights
and A is the adjacency matrix. For each edge, the weight is the inverse of the
resistance. We can think of vertices as having an electrical potential and net
current at every vertex, and define vectors of these potentials and currents as
~v and ~χ respectively. These vectors are related by the linear system L~v = ~χ.
Solving this system is equivalent to finding the set of voltages that satisfies the
currents. Kelner et al.’s SimpleSolver algorithm solves this problem with an
optimization algorithm in the dual space which finds the optimal currents on
all of the edges subject to the constraint of zero net voltage around all cycles.
They use Kaczmarz projections [1] to adjust currents on one cycle at a time,
iterating until convergence. They prove that randomly selecting fundamental
cycles from a particular type of spanning tree called a “low-stretch” tree yields
convergence with nearly-linear total work.

2 Choosing the Cycle Basis

We examine different ways to choose the set of cycles and their sequence of
updates with the goal of providing more flexibility and potential parallelism.
Our ideas include the following.

1



• Provide parallelism by projecting against multiple edge-disjoint cycles con-
currently.

• Provide flexibility by using a non-fundamental cycle basis.

• Provide flexibility by using more (perhaps many more) cycles than just a
basis.

• Accelerate convergence by varying the mixture of short and long cycles in
the updating schedule.

Sampling fundamental cycles from a tree will require updating several poten-
tially long cycles which will not be edge-disjoint. It would be preferable to
update edge-disjoint cycles as these updates could be done in parallel. Instead
of selecting a cycle basis from a spanning tree, we will use several small, edge-
disjoint cycles. We expect updating long cycles will be needed for convergence,
but we consider mixing in the update of several short cycles as they are cheap to
update and have more exploitable parallelism. These cycles can then be added
together to form larger cycles to project against in a multigird like approach.

As of this report we have looked at ideas 1, 2, and 4 above and haven’t had
time to consider many cycles beyond a basis. Much time on this project was
spent trying to grow small sets of cycles around nodes and edges but these ideas
didn’t pan out because we still need a set of cycles that is guaranteed to span
the entire cycle space. The technique that worked instead is to start with the
fundamental cycle basis and modify it while preserving the rank of the cycle
space. We call this algorithm the tree-shortcut algorithm.

function Tree-Shortcut
for ei,j ∈ E \ T do

maxdepth = min(depth(i), depth(j))
pathi,j = Filtered Dijkstra(E \ (ei,j), i, j,maxdepth)
Replace fundcycle(ei,j) with pathi,j + ei,j

end for
end function

The algorithm selects an off-tree edge and tries to find a shortest path from
the endpoints of the edge on a restricted portion of the graph. The restriction
is that it only searches nodes that are closer to the root of the tree than the
edge in question. If a cycle is found shorter than the original tree cycle, it must
contain at least one non-tree edge which is closer to the root of the tree than
the non-tree edge in question. The shortcut cycle replaces the original cycle in
the cycle basis. The rest of the original cycle is still represented however as the
off-tree edge found in the shortcut path is also represented in the cycle basis.
Thus the original cycle is a sum of this internal cycle and the new cycle. A
spanning tree is shown in Figure 1(a). When off tree edge e2,3 is sampled from
the tree a fundamental cycle of length 7 is selected, shown in Figure 1(b). The
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(c) Shortcut Cycle

Figure 1: Tree Shortcut

tree-shortcut algorithm finds the cycle of length 5 going through edge e4,7 and
replaces the original length 7 cycle with the new cycle shown in Figure 1(c).
However the length 4 fundamental cycle of edge e4,7 remains and the original
cycle is still contained in the new cycle basis by summing these two cycles.

3 Cycle Sampling

In the original Kelner algorithm, cycles are chosen one at a time with probability
proportional to tree stretch. One of the purposes of using a different cycle basis
is to update multiple, edge-disjoint cycles in parallel. Thus we need a way to
select groups of cycles to be updated concurrently. The current approach we are
using is to create groups of edge-disjoint cycles and loop through these groups
updating every cycle in them, simulating the parallel update of all cycles in
them. We use a greedy cycle coloring algorithm to put the new cycles in edge-
disjoint groups by coloring cycles the same color if they are edge-disjoint. The
only way we currently account for the original sampling probability is that
the greedy cycle coloring looks at uncolored cycles in order of decreasing cycle
resistance. So the first cycle color should contain more important cycles. We
also apply this parallelization to the origonal set of fundamental cycles.

4 Experimental and Results

We performed experiments on a variety of graphs shown in Figure 2. We imple-
mented the tree-shortcut and simple solver algorithms in Matlab, except that
we used a random spanning tree for sampling instead of a low-stretch tree. On
the small graphs used here theoretically any random spanning tree gives low-
stretch. We also haven’t implemented a clever data structure Kelner et al. use
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Graph Nodes Edgesx2
USpowerGrid 4,941 13,188
60 by 60 mesh 3,600 14,160

bcspwr06 1,454 5,300
email 1,133 10,902
data 2,851 30,186

Figure 2: Graphs Used

Graph Tree Parallel Tree Parallel Tree-Shortcut
USpowerGrid 5M 38M 20M
60 by 60 mesh 226M 302M 225M

bcspwr06 1.1M 1.6M 1.4M
email 2.4M 1.8B 171M
data 75M N/A 1.1B

Figure 3: Total Edges Updated

to quickly update edges. As such the metric we are most interested in is total
edges updated, not solve time, shown in Figure 3. In addition we estimate par-
allelism by looking at the span, or critical path length, the maximum number
of edges that would have to be updated by a single processor, which is shown
in Figure 4.

5 Discussion and Conclusion

So far we haven’t achieved a reduction in total edges by using a different set of
cycles (except slightly on the grid). However, we have created a means to update
cycles in parallel, improving the span of computation for the tree-shortcut cycles.
Applying the greedy cycle coloring to the original set of fundamental cycles
makes the span much worse in some cases, and stagnated on the data graph. It
seems that the tree-shortcut cycles can be useful as an alternate set of cycles,
but more work needs to be done on how to update them correctly. The next
thing to try is to not update every cycle in an edge-disjoint group at once, but

Graph Parallel Tree Parallel Tree-Shortcut
USpowerGrid 9.3M 2.8M
60 by 60 mesh 10M 34M

bcspwr06 2867k 230k
email 686M 25M
data N/A 180M

Figure 4: Span of Edges Updated
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rather roll the dice for each one of them. We suspect that too much work is
being undone by updating less important cycles too frequently. Another thing
to consider is adding edges together in a multigrid fashion by adding a cycle to
the cycle it split off from during the tree shortcut. By adding enough of these we
would get our fundamental basis back and we could go back and forth between
these extremes.
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