
Chapter 2

Linear Equations

2.1 Solving Linear Systems
One of the most frequent problems encountered in scientific computation is the so-
lution of a system of simultaneous linear equations, usually with as many equations
as unknowns. Such a system can be written in the form

Ax = b

where A is a given square matrix of order n, b is a given column vector of n com-
ponents, and x is an unknown column vector of n components.

Students of linear algebra learn that the solution to Ax = b can be written
x = A−1b where A−1 is the inverse of A. However, in the vast majority of practical
computational problems, it is unnecessary and inadvisable to actually compute
A−1. As an extreme but illustrative example, consider a system consisting of just
one equation, such as

7x = 21

The best way to solve such a system is by division,

x =
21
7

= 3

Use of the matrix inverse would lead to

x = 7−1 × 21 = .142857× 21 = 2.99997

The inverse requires more arithmetic — a division and a multiplication instead of
just a division — and produces a less accurate answer. Similar considerations apply
to systems of more than one equation. This is even true in the common situation
where there are several systems of equations with the same matrix A but different
right hand sides b. Consequently, we shall concentrate on the direct solution of
systems of equations rather than the computation of the inverse.

1

2 Chapter 2. Linear Equations

2.2 The MATLAB Backslash Operator
To emphasize the distinction between solving linear equations and computing in-
verses, Matlab has introduced nonstandard notation using backward slash and
forward slash operators, “\” and “/”.

If A is a matrix of any size and shape and B is a matrix with as many rows
as A, then the solution to the system of simultaneous equations

AX = B

is denoted by

X = A\B
Think of this as dividing both sides of the equation by the coefficient matrix A.
Because matrix multiplication is not commutative and A occurs on the left in the
original equation, this is left division.

Similarly, the solution to a system with A on the right and B with as many
columns as A,

XA = B

is obtained by right division,

X = B/A

This notation applies even when A is not square, so that the number of equa-
tions is not the same as the number of unknowns. However, in this chapter, we
limit ourselves to systems with square coefficient matrices.

2.3 A 3-by-3 Example
To illustrate the general linear equation solution algorithm, consider an example of
order three:

10 −7 0
−3 2 6
5 −1 5

x1

x2

x3

 =

7
4
6

This of course, represents the three simultaneous equations

10x1 − 7x2 = 7
−3x1 + 2x2 + 6x3 = 4

5x1 − x2 + 5x3 = 6

The first step uses the first equation to eliminate x1 from the other equations. This
is accomplished by adding 0.3 times the first equation to the second equation and
subtracting 0.5 times the first equation from the third equation. The coefficient 10
of x1 in the first equation is called the first pivot and the quantities -0.3 and 0.5,

2.3. A 3-by-3 Example 3

obtained by dividing the coefficients of x1 in the other equations by the pivot, are
called the multipliers. The first step changes the equations to

10 −7 0
0 −0.1 6
0 2.5 5

x1

x2

x3

 =

7
6.1
2.5

The second step might use the second equation to eliminate x2 from the third
equation. However, the second pivot, which is the coefficient of x2 in the second
equation, would be -0.1, which is smaller than the other coefficients. Consequently,
the last two equations are interchanged. This is called pivoting. It is not actually
necessary in this example because there are no roundoff errors, but it is crucial in
general.

10 −7 0
0 2.5 5
0 −0.1 6

x1

x2

x3

 =

7
2.5
6.1

Now, the second pivot is 2.5 and the second equation can be used to eliminate x2

from the third equation. This is accomplished by adding 0.04 times the second equa-
tion to the third equation. (What would the multiplier have been if the equations
had not been interchanged?)

10 −7 0
0 2.5 5
0 0 6.2

x1

x2

x3

 =

7
2.5
6.2

The last equation is now

6.2x3 = 6.2

This can be solved to give x3 = 1. This value is substituted into the second equation:

2.5x2 + (5)(1) = 2.5.

Hence x2 = −1. Finally the values of x2 and x3 are substituted into the first
equation:

10x1 + (−7)(−1) = 7

Hence x1 = 0. The solution is

x =

0
−1
1

This solution can be easily checked using the original equations:

10 −7 0
−3 2 6
5 −1 5

0
−1
1

 =

7
4
6

4 Chapter 2. Linear Equations

The entire algorithm can be compactly expressed in matrix notation. For this
example, let

L =

1 0 0
0.5 1 0
−0.3 −0.04 1

 , U =

10 −7 0
0 2.5 5
0 0 6.2

 , P =

1 0 0
0 0 1
0 1 0

 ,

The matrix L contains the multipliers used during the elimination, the matrix U is
the final coefficient matrix, and the matrix P describes the pivoting. In the next
section, we will see that L and U are triangular matrices and that P is a permutation
matrix. With these three matrices, we have

LU = PA

In other words, the original coefficient matrix can be expressed in terms of products
involving matrices with simpler structure.

2.4 Permutation and Triangular Matrices
A permutation matrix is an identity matrix with the rows and columns interchanged.
It has exactly one 1 in each row and column; all the other elements are 0. For
example:

P =

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

Multiplying a matrix A on the left by a permutation matrix, to give PA, permutes
the rows of A. Multiplying on the right, AP , permutes the columns of A.

Matlab can also use a permutation vector as a row or column index to rear-
range the rows or columns of a matrix. Continuing with the P above, let p be the
vector

p = [4 1 3 2]

Then P*A and A(p,:) are equal. The resulting matrix has the fourth row of A as
its first row, the first row of A as its second row, and so on. Similarly, A*P and
A(:,p) both produce the same permutation of the columns of A. The P*A notation
is closer to traditional mathematics, PA, while the A(p,:) notation is faster and
uses less memory.

Linear equations involving permutation matrices are trivial to solve. The
solution to

Px = b

is simply a rearrangement of the components of b,

x = PT b

2.5. LU Factorization 5

An upper triangular matrix has all its nonzero elements above or on the main
diagonal. A unit lower triangular matrix has ones on the main diagonal and all the
rest of its nonzero elements below the main diagonal. For example:

U =

1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

is upper triangular, and

L =

1 0 0 0
2 1 0 0
3 5 1 0
4 6 7 1

is unit lower triangular.
Linear equations involving triangular matrices are also easily solved. There

are two variants of the algorithm for solving an n-by-n upper triangular system,
Ux = b. Both begin by solving the last equation for the last variable, then the next
to last equation for the next to last variable, and so on. One subtracts multiples of
the columns of U from b:

x = zeros(n,1);
for k = n:-1:1

x(k) = b(k)/U(k,k);
i = (1:k-1)’;
b(i) = b(i) - x(k)*U(i,k);

end

The other uses inner products between the rows of U and portions of the
emerging solution x:

x = zeros(n,1);
for k = n:-1:1

j = k+1:n;
x(k) = (b(k) - U(k,j)*x(j))/U(k,k);

end

2.5 LU Factorization
The algorithm that is almost universally used to solve square systems of simul-
taneous linear equations is one of the oldest numerical methods, the systematic
elimination method, generally named after C. F. Gauss. Research in the period
1955 to 1965 revealed the importance of two aspects of Gaussian elimination that
were not emphasized in earlier work: the search for pivots and the proper inter-
pretation of the effect of rounding errors. Gaussian elimination and other aspects
of matrix computation are studied in detail in the books by Forsythe and Moler

6 Chapter 2. Linear Equations

(1967), Stewart (1973), and Golub and VanLoan (1996). The reader who desires
more information than we have in this chapter should consult these references.

In general, Gaussian elimination has two stages, the forward elimination and
the back substitution. The forward elimination consists of n − 1 steps. At the kth
step, multiples of the kth equation are subtracted from the remaining equations
to eliminate the kth variable. If the coefficient of xk is “small,” it is advisable to
interchange equations before this is done. The elimination steps can be simultane-
ously applied to the right hand side, or the interchanges and multipliers saved and
applied to the right hand side later. The back substitution consists of solving the
last equation for xn, then the next-to-last equation for xn−1, and so on, until x1 is
computed from the first equation.

Let Pk, k = 1, · · · , n − 1, denote the permutation matrix obtained by in-
terchanging the rows of the identity matrix in the same way the rows of A are
interchanged at the kth step of the elimination. Let Mk denote the unit lower tri-
angular matrix obtained by inserting the negatives of the multipliers used at the
kth step below the diagonal in the kth column of the identity matrix. Let U be the
final upper triangular matrix obtained after the n− 1 steps. The entire process can
be described by one matrix equation,

U = Mn−1Pn−1 · · ·M2P2M1P1A

It turns out that this equation can be rewritten

L1L2 · · ·Ln−1U = Pn−1 · · ·P2P1A

where Lk is obtained from Mk by permuting and changing the signs of the multi-
pliers below the diagonal. So, if we let

L = L1L2 · · ·Ln−1

P = Pn−1 · · ·P2P1

then we have

LU = PA

The unit lower triangular matrix L contains all the multipliers used during the
elimination and the permutation matrix P accounts for all the interchanges.

For our example

A =

10 −7 0
−3 2 6
5 −1 5

the matrices defined during the elimination are

P1 =

1 0 0
0 1 0
0 0 1

 , M1 =

1 0 0
0.3 1 0
−0.5 0 1

 ,

P2 =

1 0 0
0 0 1
0 1 0

 , M2 =

1 0 0
0 1 0
0 0.04 1

 ,

2.6. Why Is Pivoting Necessary? 7

The corresponding L’s are

L1 =

1 0 0
0.5 1 0
−0.3 0 1

 , L2 =

1 0 0
0 1 0
0 −0.04 1

 ,

The relation LU = PA is called the LU factorization or the triangular de-
composition of A. It should be emphasized that nothing new has been introduced.
Computationally, elimination is done by row operations on the coefficient matrix,
not by actual matrix multiplication. LU factorization is simply Gaussian elimina-
tion expressed in matrix notation. The triangular factors can also be computed by
other algorithms; see Forsythe and Moler (1967).

With this factorization, a general system of equations

Ax = b

becomes a pair of triangular systems

Ly = Pb
Ux = y

2.6 Why Is Pivoting Necessary?
The diagonal elements of U are called pivots. The kth pivot is the coefficient of the
kth variable in the kth equation at the kth step of the elimination. In our 3-by-3
example, the pivots are 10, 2.5, and 6.2. Both the computation of the multipliers and
the back substitution require divisions by the pivots. Consequently, the algorithm
cannot be carried out if any of the pivots are zero. Intuition should tell us that it
is a bad idea to complete the computation if any of the pivots are nearly zero. To
see this, let us change our example slightly to

10 −7 0
−3 2.099 6
5 −1 5

x1

x2

x3

 =

7
3.901

6

The (2,2) element of the matrix has been changed from 2.000 to 2.099, and the right
hand side has also been changed so that the exact answer is still (0,−1, 1)T . Let
us assume that the solution is to be computed on a hypothetical machine that does
decimal floating-point arithmetic with five significant digits.

The first step of the elimination produces

10 −7 0
0 −0.001 6
0 2.5 5

x1

x2

x3

 =

7
6.001
2.5

The (2,2) element is now quite small compared with the other elements in the ma-
trix. Nevertheless, let us complete the elimination without using any interchanges.
The next step requires adding 2.5 · 103 times the second equation to the third.

(5 + (2.5 · 103)(6))x3 = (2.5 + (2.5 · 103)(6.001))

8 Chapter 2. Linear Equations

On the right hand side, this involves multiplying 6.001 by 2.5 · 103. The result is
1.50025 ·104, which cannot be exactly represented in our hypothetical floating-point
number system. It must be rounded to 1.5002 · 104. The result is then added to 2.5
and rounded again. In other words, both of the 5’s shown in italics in

(5 + 1.5000 · 104)x3 = (2.5 + 1.50025 · 104)

are lost in roundoff errors. On this hypothetical machine the last equation becomes

1.5005 · 104x3 = 1.5004 · 104

The back substitution begins with

x3 =
1.5004 · 104

1.5005 · 104
= 0.99993

Because the exact answer is x3 = 1, it does not appear that the error is too serious.
Unfortunately, x2 must be determined from the equation

−0.001x2 + (6)(0.99993) = 6.001

which gives

x2 =
1.5 · 10−3

−1.0 · 10−3
= −1.5

Finally x1 is determined from the first equation,

10x1 + (−7)(−1.5) = 7

which gives

x1 = −0.35

Instead of (0,−1, 1)T , we have obtained (−0.35,−1.5, 0.99993)T .
Where did things go wrong? There was no “accumulation of rounding error”

caused by doing thousands of arithmetic operations. The matrix is not close to
singular. The difficulty comes from choosing a small pivot at the second step of the
elimination. As a result, the multiplier is 2.5 · 103, and the final equation involves
coefficients that are 103 times as large as those in the original problem. Roundoff
errors that are small when compared to these large coefficients are unacceptable in
terms of the original matrix and the actual solution.

We leave it to the reader to verify that if the second and third equations
are interchanged, then no large multipliers are necessary and the final result is
satisfactory. This turns out to be true in general: If the multipliers are all less
than or equal to one in magnitude, then the computed solution can be proved to
be accurate. Keeping the multipliers less than one in absolute value can be ensured
by a process known as partial pivoting: At the kth step of the forward elimination,
the pivot is taken to be the largest (in absolute value) element in the unreduced
part of the kth column. The row containing this pivot is interchanged with the kth
row to bring the pivot element into the (k, k) position. The same interchanges must
be done with the elements of the right hand side, b. The unknowns in x are not
reordered because the columns of A are not interchanged.

2.7. lutx, bslashtx, lugui 9

2.7 lutx, bslashtx, lugui

We have three functions implementing the algorithms discussed in this chapter.
The first function, lutx, is a readable version of the built-in Matlab function lu.
There is one outer for loop on k that counts the elimination steps. The inner loops
on i and j are implemented with vector and matrix operations, so that the overall
function is reasonably efficient.

function [L,U,p] = lutx(A)
%LU Triangular factorization
% [L,U,p] = lutx(A) produces a unit lower triangular
% matrix L, an upper triangular matrix U and a
% permutation vector p, so that L*U = A(p,:).

[n,n] = size(A);
p = (1:n)’

for k = 1:n-1

% Find largest element below diagonal in k-th column
[r,m] = max(abs(A(k:n,k)));
m = m+k-1;

% Skip elimination if column is zero
if (A(m,k) ~= 0)

% Swap pivot row
if (m ~= k)

A([k m],:) = A([m k],:);
p([k m]) = p([m k]);

end

% Compute multipliers
i = k+1:n;
A(i,k) = A(i,k)/A(k,k);

% Update the remainder of the matrix
j = k+1:n;
A(i,j) = A(i,j) - A(i,k)*A(k,j);

end
end

% Separate result
L = tril(A,-1) + eye(n,n);
U = triu(A);

10 Chapter 2. Linear Equations

Study this function carefully. Almost all the execution time is spent in the
statement

A(i,j) = A(i,j) - A(i,k)*A(k,j);

At the kth step of the elimination, i and j are index vectors of length n-k. The
operation A(i,k)*A(k,j) multiplies a column vector by a row vector to produce
a square, rank one matrix of order n-k. This matrix is then subtracted from the
submatrix of the same size in the bottom right corner of A. In a programming
language without vector and matrix operations, this update of a portion of A would
be done with doubly nested loops on i and j.

The second function, bslashtx, is a simplified version of the built-in Matlab
backslash operator. It calls lutx to permute and factor the coefficient matrix, then
uses the permutation and factors to complete the solution of a linear system.

function x = bslashtx(A,b)
%BSLASHTX Solve linear system (backslash)
% x = bslashtx(A,b) solves A*x = b

[n,n] = size(A);

% Triangular factorization
[L,U,p] = lutx(A);

% Permutation and forward elimination
y = zeros(n,1);
for k = 1:n

j = 1:k-1;
y(k) = b(p(k)) - L(k,j)*y(j);

end

% Back substitution
x = zeros(n,1);
for k = n:-1:1

j = k+1:n;
x(k) = (y(k) - U(k,j)*x(j))/U(k,k);

end

A third function, lugui, shows the steps in LU decomposition by Gaussian
elimination. It is a version of lutx that allows you to experiment with various pivot
selection strategies. At the kth step of the elimination, the largest element in the
unreduced portion of the kth column is shown in magenta. This is the element that
partial pivoting would ordinarily select as the pivot. You can then choose among
four different pivoting strategies:

• Pick a pivot. Use the mouse to pick the magenta element, or any other
element, as pivot.

2.8. Effect of Roundoff Errors 11

• Diagonal pivoting. Use the diagonal element as the pivot.

• Partial pivoting. Same strategy as lu and lutx.

• Complete pivoting. Use the largest element in the unfactored submatrix as
the pivot.

The chosen pivot is shown in red and the resulting elimination step is taken. As the
process proceeds, the emerging columns of L are shown in green, and the emerging
rows of U in blue.

2.8 Effect of Roundoff Errors
The rounding errors introduced during the solution of a linear system of equations
almost always cause the computed solution — which we now denote by x∗ — to
differ somewhat from the theoretical solution, x = A−1b. In fact, it must differ
because the elements of x are usually not floating-point numbers. There are two
common measures of the discrepancy in x∗: the error

e = x− x∗

and the residual

r = b−Ax∗

Matrix theory tells us that, because A is nonsingular, if one of these is zero, the
other must also be zero. But they are not necessarily both ‘small” at the same time.
Consider the following example:

(
0.780 0.563
0.913 0.659

)(
x1

x2

)
=

(
0.217
0.254

)

What happens if we carry out Gaussian elimination with partial pivoting on a
hypothetical three-digit decimal computer? First, the two rows (equations) are
interchanged so that 0.913 becomes the pivot. Then the multiplier

0.780
0.913

= 0.854 (to three places)

is computed. Next, 0.854 times the new first row is subtracted from the new second
row to produce the system

(
0.913 0.659

0 0.001

)(
x1

x2

)
=

(
0.254
0.001

)

Finally, the back substitution is carried out:

x2 =
0.001
0.001

= 1.00 (exactly),

x1 =
0.254− 0.659x2

0.913
= −0.443 (to three places).

12 Chapter 2. Linear Equations

Thus the computed solution is

x∗ =
(−0.443

1.000

)

To assess the accuracy without knowing the exact answer, we compute the residuals
(exactly):

r = b−Ax∗ =
(

0.217− ((0.780)(−0.443) + (0.563)(1.00))
0.254− ((0.913)(−0.443) + (0.659)(1.00))

)

=
(−0.000460
−0.000541

)

The residuals are less than 10−3. We could hardly expect better on a three-digit
machine. However, it is easy to see that the exact solution to this system is

x =
(

1.000
−1.000

)

So the components of our computed solution actually have the wrong signs; the
error is larger than the solution itself.

Were the small residuals just a lucky fluke? You should realize that this
example is highly contrived. The matrix is incredibly close to being singular and
is not typical of most problems encountered in practice. Nevertheless, let us track
down the reason for the small residuals.

If Gaussian elimination with partial pivoting is carried out for this example on
a computer with six or more digits, the forward elimination will produce a system
something like

(
0.913000 0.659000

0 0.000001

)(
x1

x2

)
=

(
0.254000
−0.000001

)

Notice that the sign of b2 differs from that obtained with three-digit computation.
Now the back substitution produces

x2 =
−0.000001
0.000001

= −1.00000,

x1 =
0.254− 0.659x2

0.913
= 1.00000,

the exact answer. On our three-digit machine, x2 was computed by dividing two
quantities, both of which were on the order of rounding errors and one of which
did not even have the correct sign. Hence x2 can turn out to be almost anything.
(In fact, if we used a machine with nine binary bits, we would obtain a completely
different value.) Then this completely arbitrary value of x2 was substituted into the
first equation to obtain x1. We can reasonably expect the residual from the first
equation to be small — x1 was computed in such a way as to make this certain. Now
comes a subtle but crucial point. We can also expect the residual from the second
equation to be small, precisely because the matrix is so close to being singular. The

2.9. Norms and Condition Numbers 13

two equations are very nearly multiples of one another, so any pair (x1, x2) that
nearly satisfies the first equation will also nearly satisfy the second. If the matrix
were known to be exactly singular, we would not need the second equation at all
— any solution of the first would automatically satisfy the second.

Although this example is contrived and atypical, the conclusion we reached
is not. It is probably the single most important fact that we have learned about
matrix computation since the invention of the digital computer:

Gaussian elimination with partial pivoting is guaranteed to produce small
residuals.

Now that we have stated it so strongly, we must make a couple of qualifying
remarks. By “guaranteed” we mean it is possible to prove a precise theorem that
assumes certain technical details about how the floating-point arithmetic system
works and that establishes certain inequalities that the components of the residual
must satisfy. If the arithmetic units work some other way or if there is a bug in
the particular program, then the “guarantee” is void. Furthermore, by “small” we
mean on the order of roundoff error relative to three quantities: the size of the
elements of the original coefficient matrix, the size of the elements of the coefficient
matrix at intermediate steps of the elimination process, and the size of the elements
of the computed solution. If any of these are “large,” then the residual will not
necessarily be small in an absolute sense. Finally, even if the residual is small, we
have made no claims that the error will be small. The relationship between the size
of the residual and the size of the error is determined in part by a quantity known
as the condition number of the matrix, which is the subject of the next section.

2.9 Norms and Condition Numbers
The coefficients in the matrix and right hand side of a system of simultaneous linear
equations are rarely known exactly. Some systems arise from experiments, and so
the coefficients are subject to observational errors. Other systems have coefficients
given by formulas that involve roundoff error in their evaluation. Even if the system
can be stored exactly in the computer, it is almost inevitable that roundoff errors
will be introduced during its solution. It can be shown that roundoff errors in
Gaussian elimination have the same effect on the answer as errors in the original
coefficients.

Consequently, we are led to a fundamental question. If perturbations are made
in the coefficients of a system of linear equations, how much is the solution altered?
In other words, if Ax = b, how can we measure the sensitivity of x to changes in A
and b?

The answer to this question lies in making the idea of nearly singular precise.
If A is a singular matrix, then for some b’s a solution x will not exist, while for
others it will not be unique. So if A is nearly singular, we can expect small changes
in A and b to cause very large changes in x. On the other hand, if A is the identity
matrix, then b and x are the same vector. So if A is nearly the identity, small
changes in A and b should result in correspondingly small changes in x.

14 Chapter 2. Linear Equations

At first glance, it might appear that there is some connection between the size
of the pivots encountered in Gaussian elimination with partial pivoting and nearness
to singularity, because if the arithmetic could be done exactly, all the pivots would
be nonzero if and only if the matrix is nonsingular. To some extent, it is also true
that if the pivots are small, then the matrix is close to singular. However, when
roundoff errors are encountered, the converse is no longer true — a matrix might
be close to singular even though none of the pivots are small.

To get a more precise, and reliable, measure of nearness to singularity than
the size of the pivots, we need to introduce the concept of a norm of a vector. This
is a single number that measures the general size of the elements of the vector.
The family of vector norms known as lp depends on a parameter p, in the range
1 ≤ p ≤ ∞.

‖x‖p = (
n∑

i=1

|xi|p)1/p

We almost always use p = 1, p = 2 or lim p →∞

‖x‖1 =
n∑

i=1

|xi|

‖x‖2 = (
n∑

i=1

|xi|2)1/2

‖x‖∞ = max
i
|xi|

The l1 norm is also known as the Manhattan norm because it corresponds to the
distance traveled on a grid of city streets. The l2 norm is the familiar Euclidean
distance. The l∞ norm is also known as the Chebyshev norm.

The particular value of p is often unimportant and we simply use ‖x‖. All
vector norms have the following basic properties associated with the notion of dis-
tance.

‖x‖ > 0 if x 6= 0
‖0‖ = 0
‖cx‖ = |c|‖x‖ for all scalars c

‖x + y‖ ≤ ‖x‖+ ‖y‖, (the triangle inequality)

In Matlab, ‖x‖p is computed by norm(x,p) and norm(x) is the same as
norm(x,2). For example:

x = (1:4)/5
n1 = norm(x,1)
n2 = norm(x)
ninf = norm(x,inf)

produces

2.9. Norms and Condition Numbers 15

x =
0.2000 0.4000 0.6000 0.8000

n1 =
2.0000

n2 =
1.0954

ninf =
0.8000

Multiplication of a vector x by a matrix A results in a new vector Ax that can
have a very different norm from x. This change in norm is directly related to the
sensitivity we want to measure. The range of the possible change can be expressed
by two numbers,

M = max
‖Ax‖
‖x‖

m = min
‖Ax‖
‖x‖

The max and min are taken over all nonzero vectors, x. Note that if A is singular,
then m = 0. The ratio M/m is called the condition number of A,

κ(A) =
max ‖Ax‖

‖x‖
min ‖Ax‖

‖x‖

It is not hard to see that ‖A−1‖ = 1/m, so an equivalent definition of the condition
number is

κ(A) = ‖A‖‖A−1‖
The actual numerical value of κ(A) depends on the vector norm being used,

but we are usually only interested in order of magnitude estimates of the condition
number, so the particular norm is usually not very important.

Consider a system of equations

Ax = b

and a second system obtained by altering the right hand side:

A(x + δx) = b + δb

We think of δb as being the error in b and δx as being the resulting error in x,
although we need not make any assumptions that the errors are small. Because
A(δx) = δb, the definitions of M and m immediately lead to

‖b‖ ≤ M‖x‖

16 Chapter 2. Linear Equations

and

‖δb‖ ≥ m‖δx‖
Consequently, if m 6= 0,

‖δx‖
‖x‖ ≤ κ(A)

‖δb‖
‖b‖

The quantity ‖δb‖/‖b‖ is the relative change in the right hand side, and the quantity
‖δx‖/‖x‖ is the relative error caused by this change. The advantage of using relative
changes is that they are dimensionless, that is, they are not affected by overall scale
factors.

This shows that the condition number is a relative error magnification factor.
Changes in the right hand side can cause changes κ(A) times as large in the solution.
It turns out that the same is true of changes in the coefficient matrix itself.

The condition number is also a measure of nearness to singularity. Although
we have not yet developed the mathematical tools necessary to make the idea pre-
cise, the condition number can be thought of as the reciprocal of the relative distance
from the matrix to the set of singular matrices. So, if κ(A) is large, A is close to
singular.

Some of the basic properties of the condition number are easily derived.
Clearly, M ≥ m, and so

κ(A) ≥ 1

If P is a permutation matrix, then the components of Px are simply a rearrangement
of the components of x. It follows that ‖Px‖ = ‖x‖ for all x, and so

κ(P) = 1

In particular, κ(I) = 1. If A is multiplied by a scalar c, then M and m are both
multiplied by the same scalar, and so

κ(cA) = κ(A)

If D is a diagonal matrix, then

κ(D) =
max |dii|
min |dii|

The last two properties are two of the reasons that κ(A) is a better measure of
nearness to singularity than the determinant of A. As an extreme example, consider
a 100-by-100 diagonal matrix with 0.1 on the diagonal. Then det(A) = 10−100,
which is usually regarded as a small number. But κ(A) = 1, and the components of
Ax are simply 0.1 times the corresponding components of x. For linear systems of
equations, such a matrix behaves more like the identity than like a singular matrix.

The following example uses the l1 norm.

A =
(

4.1 2.8
9.7 6.6

)

2.9. Norms and Condition Numbers 17

b =
(

4.1
9.7

)

x =
(

1
0

)

Clearly, Ax = b, and

‖b‖ = 13.8, ‖x‖ = 1

If the right hand side is changed to

b̃ =
(

4.11
9.70

)

the solution becomes

x̃ =
(

0.34
0.97

)

Let δb = b− b̃ and δx = x− x̃. Then

‖δb‖ = 0.01
‖δx‖ = 1.63

We have made a fairly small perturbation in b that completely changes x. In fact,
the relative changes are

‖δb‖
‖b‖ = 0.0007246

‖δx‖
‖x‖ = 1.63

Because κ(A) is the maximum magnification factor,

κ(A) ≥ 1.63
0.0007246

= 2249.4

We have actually chosen the b and δb that give the maximum, and so for this
example with the l1 norm

κ(A) = 2249.4

It is important to realize that this example is concerned with the exact so-
lutions to two slightly different systems of equations and that the method used to
obtain the solutions is irrelevant. The example is constructed to have a fairly large
condition number so that the effect of changes in b is quite pronounced, but similar
behavior can be expected in any problem with a large condition number.

Suppose we want to solve a problem in which a11 = 0.1, all the other elements
of A and b are integers, and κ(A) = 1012. Suppose further that we use IEEE double-
precision floating-point arithmetic with 53 bits in the fraction and that we can

18 Chapter 2. Linear Equations

somehow compute the exact solution to the system actually stored in the computer.
Then the only error is caused by representing 0.1 in binary, but we can expect

‖δx‖
‖x‖ ≈ 1012 × 2−53 ≈ 2 · 10−4

In other words, the simple act of storing the coefficient matrix in the machine might
cause changes in the fourth significant figures of the true solution.

The condition number also plays a fundamental role in the analysis of the
roundoff errors introduced during the solution by Gaussian elimination. Let us
assume that A and b have elements that are exact floating-point numbers, and let
x∗ be the vector of floating-point numbers obtained from a linear equation solver
such as the function we shall present in the next section. We also assume that exact
singularity is not detected and that there are no underflows or overflows. Then it
is possible to establish the following inequalities:

‖b−Ax∗‖
‖A‖‖x∗‖ ≤ ρε,

‖x− x∗‖
‖x∗‖ ≤ ρκ(A)ε

Here ε is the relative machine precision eps and ρ is defined more carefully later,
but it usually has a value no larger than about 10.

The first inequality says that the relative residual can usually be expected to
be about the size of roundoff error, no matter how badly conditioned the matrix is.
This was illustrated by the example in the previous section. The second inequality
requires that A be nonsingular and involves the exact solution x. It follows directly
from the first inequality and the definition of κ(A) and says that the relative error
will also be small if κ(A) is small but might be quite large if the matrix is nearly
singular. In the extreme case where A is singular, but the singularity is not detected,
the first inequality still holds, but the second has no meaning.

To be more precise about the quantity ρ, it is necessary to introduce the idea
of a matrix norm and establish some further inequalities. Readers who are not
interested in such details can skip the remainder of this section. The quantity M
defined earlier is known as the norm of the matrix. The notation for the matrix
norm is the same as for the vector norm,

‖A‖ = max
‖Ax‖
‖x‖

Again, the actual numerical value of the matrix norm depends on the under-
lying vector norm. It is easy to compute the matrix norms corresponding to the l1
and l∞ vector norms. In fact, it is not hard to show that

‖A‖1 = max
j

∑

i

|ai,j |

‖A‖∞ = max
i

∑

j

|ai,j |

2.9. Norms and Condition Numbers 19

Computing the matrix norm corresponding to the l2 vector norm involves the sin-
gular value decomposition, which is discussed in a later chapter. Matlab computes
matrix norms with norm(A,p) for p = 1, 2, or inf.

The basic result in the study of roundoff error in Gaussian elimination is due
to J. H. Wilkinson. He proved that the computed solution x∗ exactly satisfies

(A + E)x∗ = b

where E is a matrix whose elements are about the size of roundoff errors in the
elements of A. There are some rare situations where the intermediate matrices
obtained during Gaussian elimination have elements that are larger than those of
A, and there is some effect from accumulation of rounding errors in large matrices,
but it can be expected that if ρ is defined by

‖E‖
‖A‖ = ρε

then ρ will rarely be bigger than about 10.
From this basic result, we can immediately derive inequalities involving the

residual and the error in the computed solution. The residual is given by

b−Ax∗ = Ex∗

and hence

‖b−Ax∗‖ = ‖Ex∗‖ ≤ ‖E‖‖x∗‖
The residual involves the product Ax∗ so it is appropriate to consider the relative
residual, which compares the norm of b− Ax to the norms of A and x∗. It follows
directly from the above inequalities that

‖b−Ax∗‖
‖A‖‖x∗‖ ≤ ρε

When A is nonsingular, the error can be expressed using the inverse of A by

x− x∗ = A−1(b−Ax∗)

and so

‖x− x∗‖ ≤ ‖A−1‖‖E‖‖x∗‖
It is simplest to compare the norm of the error with the norm of the computed
solution. Thus the relative error satisfies

‖x− x∗‖
‖x∗‖ ≤ ρ‖A‖‖A−1‖ε

Hence

‖x− x∗‖
‖x∗‖ ≤ ρκ(A)ε

20 Chapter 2. Linear Equations

The actual computation of κ(A) requires knowing ‖A−1‖. But computing
A−1 requires roughly three times as much work as solving a single linear system.
Computing the l2 condition number requires the singular value decomposition and
even more work. Fortunately, the exact value of κ(A) is rarely required. Any
reasonably good estimate of it is satisfactory.

Matlab has several functions for computing or estimating condition numbers.

• cond(A) or cond(A,2) computes κ2(A). Uses svd(A). Suitable for smaller
matrices where the geometric properties of the l2 norm are important.

• cond(A,1) computes κ1(A). Uses inv(A). Less work than cond(A,2).

• cond(A,inf) computes κ∞(A). Uses inv(A). Same as cond(A’,1).

• condest(A) estimates κ1(A). Uses lu(A) and a recent algorithm of Higham
and Tisseur. Especially suitable for large, sparse matrices.

• rcond(A) estimates 1/κ1(A). Uses lu(A) and an older algorithm developed
by the LINPACK and LAPACK projects. Primarily of historical interest.

2.10 Sparse Matrices and Band Matrices
Sparse matrices and band matrices occur frequently in technical computing. The
sparsity of a matrix is the fraction of its elements that are zero. The Matlab
function nnz counts the number of nonzeros in a matrix, so the sparsity of A is
given by

density = nnz(A)/prod(size(A))
sparsity = 1 - density

A sparse matrix is a matrix whose sparsity is nearly equal to 1. The band width of
a matrix is the maximum distance of the nonzero elements from the main diagonal.

[i,j] = find(A)
bandwidth = max(abs(i-j))

A band matrix is a matrix whose band width is small.
As you can see, both properties are matters of degree. An n-by-n diagonal

matrix with no zeros on the diagonal has sparsity 1− 1/n and bandwidth 0, so it is
an extreme example of both a sparse matrix and a band matrix. On the other hand,
an n-by-n matrix with no zero elements, such as the one created by rand(n,n), has
sparsity equal to zero, band width equal to n− 1, and so is far from qualifying for
either category.

The Matlab sparse data structure stores the nonzero elements together with
information about their indices. The sparse data structure also provides efficient
handling of band matrices, so Matlab does not have a separate band matrix storage
class. The statement

S = sparse(A)

2.10. Sparse Matrices and Band Matrices 21

converts a matrix to its sparse representation. The statement

A = full(S)

reverses the process. However, most sparse matrices have orders so large that it is
impractical to store the full representation. More frequently, sparse matrices are
created by

S = sparse(i,j,x,m,n)

This produces a matrix S with

[i,j,x] = find(S)
[m,n] = size(S)

Most Matlab matrix operations and functions can be applied to both full and
sparse matrices. The dominant factor in determining the execution time and mem-
ory requirements for sparse matrix operations is the number of nonzeros, nnz(S),
in the various matrices involved.

A matrix with band width equal to 1 is known as a tridiagonal matrix. It is
worthwhile to have a specialized function for one particular band matrix operation,
the solution of a tridiagonal system of simultaneous linear equations.

b1 c1

a1 b2 c2

a2 b3 c3

.
an−2 bn−1 cn−1

an−1 bn

x1

x2

x3
...

xn−1

xn

=

d1

d2

d3
...

dn−1

dn

The function tridisolve is included in the NCM directory. The statement

x = tridisolve(a,b,c,d)

solves the tridiagonal system with subdiagonal a, diagonal b, superdiagonal c, and
right hand side d. We have already seen the algorithm that tridisolve uses, it is
Gaussian elimination. In this context, Gaussian elimination is also known as the
Thomas algorithm. In many situations involving tridiagonal matrices, the diagonal
elements dominate the offdiagonal elements, so pivoting is unnecessary. The right
hand side is processed at the same time as the matrix itself. The body of tridisolve
begins by copying the right hand side to a vector that will become the solution.

x = d;
n = length(x);

The forward elimination step is a simple for loop.

for j = 1:n-1
mu = a(j)/b(j);
b(j+1) = b(j+1) - mu*c(j);
x(j+1) = x(j+1) - mu*x(j);

end

22 Chapter 2. Linear Equations

The mu’s would be the multipliers on the subdiagonal of L if we were saving the LU
factorization. Instead, the right hand side is processed in the same loop. The back
substitution step is another simple loop.

x(n) = x(n)/b(n);
for j = n-1:-1:1

x(j) = (x(j)-c(j)*x(j+1))/b(j);
end

Because tridisolve does not use pivoting, the results might be inaccurate if abs(b)
is much smaller than abs(a)+abs(c). More robust, but slower, alternatives that
do use pivoting include generating a full matrix with diag

T = diag(a,-1) + diag(b,0) + diag(c,1);
x = T\d

or generating a sparse matrix with spdiags

S = spdiags([a b c],[-1 0 1],n,n);
x = S\d

2.11 PageRank and Markov Chains
One of the reasons why GoogleTM is such an effective search engine is the PageRankTM

algorithm developed by Google’s founders, Larry Page and Sergey Brin, when they
were graduate students at Stanford University. PageRank is determined entirely by
the link structure of the World Wide Web. It is recomputed about once a month
and does not involve the actual content of any web pages or individual queries.
Then, for any particular query, Google finds the pages on the Web that match that
query and lists those pages in the order of their PageRank.

Imagine surfing the Web, going from page to page by randomly choosing an
outgoing link from one page to get to the next. This can lead to dead ends at
pages with no outgoing links, or cycles around cliques of interconnected pages.
So, a certain fraction of the time, simply choose a random page from the Web.
This theoretical random walk is known as a Markov chain or Markov process. The
limiting probability that an infinitely dedicated random surfer visits any particular
page is its PageRank. A page has high rank if other pages with high rank link to
it.

Let W be the set of web pages that can reached by following a chain of
hyperlinks starting at some root page and let n be the number of pages in W . For
Google, the set W actually varies with time, but by the end of 2002, n was over 3
billion. Let G be the n-by-n connectivity matrix of the Web, that is gij = 1 if there
is a hyperlink from page j to page i and zero otherwise. The matrix G can be huge,
but it is very sparse. Its jth column shows the links on the jth page. The number
of nonzeros in G is the total number of hyperlinks in W .

Let ri and cj be the row and column sums of G.

ri =
∑

j

gij , cj =
∑

i

gij ,

2.11. PageRank and Markov Chains 23

The quantities rj and cj are the in-degree and out-degree of the jth page. Let p be
the probability that the random walk follows a link. Google usually takes p = 0.85.
Then 1− p is the probability that an arbitrary page is chosen. Let A be the n-by-n
matrix whose elements are

aij = pgij/cj + δ, where δ = (1− p)/n.

Notice that A comes from scaling the connectivity matrix by its column sums. The
jth column is the probability of jumping from the jth page to the other pages on
the Web. Most of the elements of A are equal to δ, the probability of jumping from
one page to another without following a link. When n = 3 · 109, then δ = 5 · 10−11.

The matrix A is the transition probability matrix of the Markov chain. Its
elements are all strictly between zero and one and its column sums are all equal to
one. An important result in matrix theory known as the Perron-Frobenius Theorem
applies to such matrices. It concludes that a nonzero solution of the equation

x = Ax

exists and is unique to within a scaling factor. When this scaling factor is chosen
so that

∑

i

xi = 1

then x is the state vector of the Markov chain and is Google’s PageRank. The
elements of x are all positive and less than one.

The vector x is the solution to the singular, homogenous linear system

(I −A)x = 0

For modest n, an easy way to compute x in Matlab is to start with some approx-
imate solution, such as the PageRanks from the previous month, or

x = ones(n,1)/n

Then simply repeat the assignment statement

x = A*x

until successive vectors agree to within a specified tolerance. This is known as
the power method and is about the only possible approach for very large n. In
practice, the matrices G and A are never actually formed. One step of the power
method would be done by one pass over a database of Web pages, updating weighted
reference counts generated by the hyperlinks between pages.

The best way to compute PageRank in Matlab is to take advantage of the
particular structure of the Markov matrix. The equation

x = Ax

can be written

x =
(
pGD + δeeT

)
x

24 Chapter 2. Linear Equations

where e is the n-vector of all ones and D is the diagonal matrix formed from the
reciprocals of the outdegrees.

djj =
1
cj

We want to have

eT x = 1

so the equation becomes

(I − pGD)x = δe

As long as p is strictly less than one, the coefficient matrix I − pGD is nonsingular
and these equations can be solved for x. This approach preserves the sparsity of G,
but it breaks down as p → 1 and δ → 0.

It is also possible to use a single step of an algorithm known as inverse itera-
tion.

e = ones(n,1)
I = eye(n,n)
x = (I - A)\e
x = x/sum(x)

At first glance, this appears to be a very dangerous idea. Because I − A is the-
oretically singular, with exact computation some diagonal element of the upper
triangular factor of I − A should to be zero and this computation should fail. But
with roundoff error, the computed I - A is probably not exactly singular. Even if it
is singular, roundoff during Gaussian elimination will most likely prevent any exact
zero diagonal elements. We know that Gaussian elimination with partial pivoting
always produces a solution with a small residual, relative to the computed solution,
even if the matrix is badly conditioned. The vector obtained with the backslash
operation, (I - A)\e, will usually have very large components. When it is rescaled
by its sum, the residual will be scaled by the same factor and become very small.
Consequently, the two vectors x and A*x will almost always be equal to each other
to within roundoff error. In this setting, solving the singular system with Gaussian
elimination blows up, but it blows up in exactly the right direction.

Here is the graph for a very small example, with n = 6 instead of n = 3 billion.

2.11. PageRank and Markov Chains 25

alpha

beta

gamma

delta

sigma rho

Pages on the Web are identified by strings known as Universal Record Locators,
or URLs. Most URLs begin with http because they use the Hypertext Transfer
Protocol. In Matlab we can store the URLs as an array of strings in a cell array.
This example involves a 6-by-1 cell array.

U = {’http://www.alpha.com’
’http://www.beta.com’
’http://www.gamma.com’
’http://www.delta.com’
’http://www.rho.com’
’http://www.sigma.com’}

Two different kinds of indexing into cell arrays are possible. Parentheses denote
subarrays, including individual cells, and curly braces denote the contents of the
cells. If k is a scalar, then U(k) is a 1-by-1 cell array consisting of the kth cell in U,
while U{k} is the string in that cell. Thus U(1) is a single cell and U{1} is the string
’http://www.alpha.com’. Think of mail boxes with addresses on a city street.
B(502) is the box at number 502, while B{502} is the mail in that box.

We can generate the connectivity matrix by specifying the pairs of indices
(i,j) of the nonzero elements. Because alpha.com is connected to beta.com, the
(2,1) element of G is nonzero. The nine connections are described by

j = [1 2 2 3 3 3 4 5 6]
i = [2 3 4 4 5 6 1 6 1]

A sparse matrix is stored in a data structure that requires memory only for the
nonzero elements and their indices. This is hardly necessary for a 6-by-6 matrix
with only 27 zero entries, but it becomes crucially important for larger problems.
The statements

n = 6
G = sparse(i,j,1,n,n)

generate the sparse representation of an n-by-n matrix with ones in the positions
specified by the vectors j and i. Then the statement

26 Chapter 2. Linear Equations

full(G)

displays

0 0 0 1 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0

We need to scale G by its column sums

c = sum(G)

It has been proposed that future versions of Matlab allow the expression

G./c

to divide each column of G by the corresponding element of c. Until this is available,
it is best to use the spdiags function to create a sparse diagonal matrix

D = spdiags(1./c’,0,n,n)

The sparse matrix product G*D will then be computed efficiently. The statements

p = .85
delta = (1-p)/n
e = ones(n,1)
I = speye(n,n)
x = (I - p*G*D)\(delta*e)

compute PageRank by solving the sparse linear system with Gaussian elimination.

x =
0.2675
0.2524
0.1323
0.1697
0.0625
0.1156

The Markov transition matrix is

A = p*G*D + delta

In this tiny example, the smallest element in A is δ = .15/6 = .0250.

A =
0.0250 0.0250 0.0250 0.8750 0.0250 0.8750
0.8750 0.0250 0.0250 0.0250 0.0250 0.0250
0.0250 0.4500 0.0250 0.0250 0.0250 0.0250
0.0250 0.4500 0.3083 0.0250 0.0250 0.0250
0.0250 0.0250 0.3083 0.0250 0.0250 0.0250
0.0250 0.0250 0.3083 0.0250 0.8750 0.0250

2.11. PageRank and Markov Chains 27

Notice that the column sums of A are all equal to one.
The first step of computing PageRank with inverse iteration is

e = ones(n,1)
I = eye(n,n)
x = (I - A)\e

This produces a warning message about illconditioning and a vector with elements
on the order of 1016. On one particular computer the elements of x happen to be
negative and their sum is

s = sum(x)
= -6.6797e+016

Other computers with different roundoff error might give other results. But in all
cases, the rescaled solution

x = x/sum(x)

is the same as the x computed by sparse backslash. This x satisfies the equation

x = Ax

to within roundoff error.
The bar graph of x is

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Page Rank

When the URLs are sorted in PageRank order and listed along with their in-
and out-degrees, the result is

page-rank in out url
1 0.2675 2 1 http://www.alpha.com
2 0.2524 1 2 http://www.beta.com
4 0.1697 2 1 http://www.delta.com
3 0.1323 1 3 http://www.gamma.com
6 0.1156 2 1 http://www.sigma.com
5 0.0625 1 1 http://www.rho.com

28 Chapter 2. Linear Equations

We see that alpha has a higher PageRank than delta or sigma, even though they
all have the same number of links, and that beta is ranked second because it basks
in alpha’s glory. A random surfer will visit alpha almost 27% of the time and rho
just about 6% of the time.

Our collection of NCM programs includes surfer.m. A statement like

[U,G] = surfer(’http://www.xxx.zzz’,n)

starts at a specified URL and tries to surf the Web until it has visited n pages. If
successful, it returns an n-by-1 cell array of URLs and an n-by-n sparse connectivity
matrix. The function uses urlread, which was introduced in Matlab 6.5, along
with underlying Java utilities to access the Web. Surfing the Web automatically
is a dangerous undertaking and this function must be used with care. Some URLs
contain typographical errors and illegal characters. There is a list of URLs to
avoid that includes .gif files and Web sites known to cause difficulties. Most
importantly, surfer can get completely bogged down trying to read a page from
a site that appears to be responding, but that never delivers the complete page.
When this happens, it may be necessary to have the computer’s operating system
ruthlessly terminate Matlab. With these precautions in mind, you can use surfer
to generate your own PageRank examples.

The statement

[U,G] = surfer(’http://www.harvard.edu’,500)

accesses the home page of Harvard University and generates a 500-by-500 test case.
You can obtain the same data set from the NCM directory with

load harvard500

The statement

spy(G)

produces a spy plot that shows the nonzero structure of the connectivity matrix.
The statement

pagerank(U,G)

computes page ranks, produces a bar graph of the ranks, and prints the most highly
ranked URLs in PageRank order.

For the harvard500 data, the dozen most highly ranked pages are

page-rank in out url
1 0.0823 195 26 http://www.harvard.edu

10 0.0161 21 18 http://www.hbs.edu
42 0.0161 42 0 http://search.harvard.edu:8765/custom/query.html
130 0.0160 24 12 http://www.med.harvard.edu
18 0.0135 45 46 http://www.gse.harvard.edu
15 0.0129 16 49 http://www.hms.harvard.edu
9 0.0112 21 27 http://www.ksg.harvard.edu

2.11. PageRank and Markov Chains 29

17 0.0109 13 6 http://www.hsph.harvard.edu
46 0.0097 18 21 http://www.gocrimson.com
13 0.0084 9 1 http://www.hsdm.med.harvard.edu

260 0.0083 26 1 http://search.harvard.edu:8765/query.html
19 0.0081 23 21 http://www.radcliffe.edu

The URL where the search began, www.harvard.edu, dominates. Like most uni-
versities, Harvard is organized into various colleges and institutes, including the
Kennedy School of Government, the Harvard Medical School, the Harvard Business
School and Radcliffe Institute. You can see that the home pages of these schools
have high PageRank. With a different sample, such as the one generated by Google
itself, the ranks would be different.

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

nz = 2636

0 50 100 150 200 250 300 350 400 450 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Page Rank

30 Chapter 2. Linear Equations

Exercises
2.1. Alice buys three apples, a dozen bananas and one cantaloupe for $2.36. Bob

buys a dozen apples and two cantaloupes for $5.26. Carol buys two bananas
and three cantaloupes for $2.77. How much do single pieces of each fruit
cost? (You might want to set format bank.)

2.2. What Matlab function computes the reduced row echelon form of a ma-
trix? What Matlab function generates magic square matrices? What is the
reduced row echelon form of the magic square of order six?

2.3. The following diagram depicts a plane truss having 13 members (the num-
bered lines) connecting 8 joints (the numbered circles). The indicated loads,
in tons, are applied at joints 2, 5, and 6, and we want to determine the
resulting force on each member of the truss.

1 2 5 6 8

3 4 7

1 3 5 7 9 11 12

2 6 10 13

4 8

10 15 20

For the truss to be in static equilibrium, there must be no net force, hor-
izontally or vertically, at any joint. Thus, we can determine the member
forces by equating the horizontal forces to the left and right at each joint,
and similarly equating the vertical forces upward and downward at each joint.
For the eight joints, this would give 16 equations, which is more than the 13
unknown factors to be determined. For the truss to be statically determi-
nate, that is, for there to be a unique solution, we assume that joint 1 is
rigidly fixed both horizontally and vertically, and that joint 8 is fixed verti-
cally. Resolving the member forces into horizontal and vertical components
and defining α = 1/

√
2, we obtain the following system of equations for the

member forces fi:

Joint 2: f2 = f6

f3 = 10
Joint 3: αf1 = f4 + αf5

αf1 + f3 + αf5 = 0
Joint 4: f4 = f8

f7 = 0
Joint 5: αf5 + f6 = αf9 + f10

Exercises 31

αf5 + f7 + αf9 = 15
Joint 6: f10 = f13

f11 = 20
Joint 7: f8 + αf9 = αf12

αf9 + f11 + αf12 = 0
Joint 8: f13 + αf12 = 0

Solve this system of equations to find the vector f of member forces.
2.4. Here is the circuit diagram for a small network of resistors.

1
2

3

4

5

r
23

r
34

r
45

r
25

r
13

r
12

r
14

r
35

v
s

i
1

i
2

i
3

i
4

There are five nodes, eight resistors, and one constant voltage source. We
want to compute the voltage drops between the nodes and the currents around
each of the loops.
Several different linear systems of equations can be formed to describe this
circuit. Let vk, k = 1, . . . , 4 denote the voltage difference between each of
the first four nodes and node number 5 and let ik, k = 1, . . . , 4 denote the
clockwise current around each of the loops in the diagram. Ohm’s law says
that the voltage drop across a resistor is the resistance times the current. For
example, the branch between nodes 1 and 2 gives

v1 − v2 = r12(i2 − i1)

Using the conductance, which is the reciprocal of the resistance, gkj = 1/rkj ,
Ohm’s law becomes

i2 − i1 = g12(v1 − v2)

32 Chapter 2. Linear Equations

The voltage source is included in the equation

v3 − vs = r35i4

Kirchoff’s voltage law says that the sum of the voltage differences around
each loop is zero. For example, around loop 1,

(v1 − v4) + (v4 − v5) + (v5 − v2) + (v2 − v1) = 0

Combining the voltage law with Ohm’s law leads to the loop equations for
the currents.

Ri = b

Here i is the current vector,

i =

i1
i2
i3
i4

b is the source voltage vector,

b =

0
0
0
vs

and R is the resistance matrix.

r25 + r12 + r14 + r45 −r12 −r14 −r45

−r12 r23 + r12 + r13 −r13 0
−r14 −r13 r14 + r13 + r34 −r34

−r45 0 −r34 r35 + r45 + r34

Kirchoff’s current law says that the sum of the currents at each node is zero.
For example, at node 1,

(i1 − i2) + (i2 − i3) + (i3 − i1) = 0

Combining the current law with the conductance version of Ohm’s law leads
to the nodal equations for the voltages.

Gv = c

Here v is the voltage vector,

v =

v1

v2

v3

v4

c is the source current vector,

c =

0
0

g35vs

0

Exercises 33

and G is the conductance matrix.

g12 + g13 + g14 −g12 −g13 −g14

−g12 g12 + g23 + g25 −g23 0
−g13 −g23 g13 + g23 + g34 + g35 −g34

−g14 0 −g34 g14 + g34 + g45

You can solve the linear system obtained from the loop equations to compute
the currents and then use Ohm’s law to recover the voltages. Or, you can
solve the linear system obtained from the node equations to compute the
voltages and then use Ohm’s law to recover the currents. Your assignment is
to verify that these two approaches produce the same results for this circuit.
You can choose your own numerical values for the resistances and the voltage
source.

2.5. The Cholesky algorithm factors an important class of matrices known as
positive definite matrices. Andre-Louis Cholesky (1875-1918) was a French
military officer involved in geodesy and surveying in Crete and North Africa
just before World War I. He developed the method now named after him to
compute solutions to the normal equations for some least squares data-fitting
problems arising in geodesy. His work was posthumously published on his
behalf in 1924 by a fellow officer, Benoit, in the Bulletin Geodesique.
A real symmetric matrix A = AT is positive definite if any of the following
equivalent conditions hold:

• The quadratic form

xT Ax

is positive for all nonzero vectors x.

• All determinants formed from symmetric submatrices of any order cen-
tered on the diagonal of A are positive.

• All eigenvalues λ(A) are positive.

• There is a real matrix R so that

A = RT R

These conditions are difficult or expensive to use as the basis for checking if
a particular matrix is positive definite. In Matlab the best way to check
positive definiteness is with the chol function. See

help chol

Which of the following families of matrices are positive definite?

M = magic(n)
H = hilb(n)
P = pascal(n)
I = eye(n,n)
R = randn(n,n)
R = randn(n,n); A = R’ * R

34 Chapter 2. Linear Equations

R = randn(n,n); A = R’ + R
R = randn(n,n); I = eye(n,n); A = R’ + R + n*I

If the matrix R is upper triangular, then equating individual elements in the
equation A = RT R gives

akj =
k∑

i=1

rikrij , k ≤ j

Using these equations in different orders yields different variants of the Cholesky
algorithm for computing the elements of R. What is one such algorithm?

2.6. This example shows that a badly conditioned matrix does not necessarily
lead to small pivots in Gaussian elimination. The matrix is the n-by-n upper
triangular matrix A with elements

aij =

−1, i < j
1, i = j
0, i > j

Show how to generate this matrix in Matlab with eye, ones, and triu.
Show that

κ1(A) = n2n−1

For what n does κ1(A) exceed 1/eps?
This matrix is not singular, so Ax cannot be zero unless x is zero. However,
there are vectors x for which ‖Ax‖ is much smaller than ‖x‖. Find one such
x.
Because this matrix is already upper triangular, Gaussian elimination with
partial pivoting has no work to do. What are the pivots?
Use lugui to design a pivot strategy that will produce smaller pivots than
partial pivoting. (Even these pivots do not completely reveal the large con-
dition number.)

2.7. The matrix factorization

LU = PA

can be used to compute the determinant of A. We have

det(L)det(U) = det(P)det(A)

Because L is triangular with ones on the diagonal, det(L) = 1. Because U is
triangular, det(U) = u11u22 · · ·unn. Because P is a permutation, det(P) =
+1 if the number of interchanges is even and −1 if it is odd. So

det(A) = ±u11u22 · · ·unn.

Modify the lutx function so that it returns four outputs:

Exercises 35

function [L,U,p,sig] = lutx(A)
%LU Triangular factorization
% [L,U,p,sig] = lutx(A) computes a unit lower triangular
% matrix L, an upper triangular matrix U, a permutation
% vector p and a scalar sig, so that L*U = A(p,:) and
% sig = +1 or -1 if p is an even or odd permutation.

Write a function determ(A) that uses your modified lutx to compute the
determinant of A. In Matlab, the product u11u22 · · ·unn can be computed
with prod(diag(U)).

2.8. Modify the lutx function so that it uses explicit for loops instead of Matlab
vector notation. For example, one section of your modified program will read

% Compute the multipliers
for i = k+1:n

A(i,k) = A(i,k)/A(k,k);
end

Compare the execution time of your modified lutx program with the original
lutx program and with the built-in lu function by finding the order of the
matrix for which each of the three programs takes about 10 seconds on your
computer.

2.9. Let

A =

1 2 3
4 5 6
7 8 9

 , b =

1
3
5

(a) Show that the set of linear equations Ax = b has infinitely many solutions.
Describe the set of possible solutions.
(b) Suppose bslashtx is used to solve Ax = b on a hypothetical computer
that does exact arithmetic. Because there are infinitely many solutions, it is
unreasonable to expect one particular solution to be computed. What does
happen?
(c) Use bslashtx to solve Ax = b on an actual computer with floating-point
arithmetic. What solution is obtained? Why? In what sense is it a “good”
solution? In what sense is it a “bad” solution.
(d) Explain why the built-in backslash operator, x = A\b, gives a different
solution from x = bslashtx(A,b).

2.10. This chapter describes two algorithms for solving triangular systems. One
subtracts columns of the triangular matrix from the right hand side; the
other uses inner products between the rows of the triangular matrix and the
emerging solution.
(a) Which of these two algorithms does bslashtx use?
(b) Write another function, bslashtx2, that uses the other algorithm.

2.11. The inverse of a matrix A can be defined as the matrix X whose columns xj

solve the equations

Axj = ej

36 Chapter 2. Linear Equations

where ej is the jth column of the identity matrix.
(a) Starting with the function bslashtx, write a Matlab function

X = myinv(A)

that computes the inverse of A. Your function should call lutx only once and
should not use the built-in Matlab backslash operator or inv function.
(b) Test your function by comparing the inverses it computes with the inverses
obtained from the built-in inv(A) on a few test matrices.

2.12. When built-in Matlab lu function is called with only two output arguments

[L,U] = lu(A)

the permutations are incorporated into the output matrix L. The help entry
for lu describes L as “psychologically lower triangular.” Modify lutx so that
it does the same thing. You can use

if nargout == 2, ...

to test the number of output arguments.
2.13. The pivot selection strategy known as complete pivoting is one of the options

available in lugui. It has some slight numerical advantages over partial
pivoting. At each state of the elimination the element of largest magnitude
in the entire unreduced matrix is selected as pivot. This involves both row
and column interchanges and produces two permutation vectors p and q so
that

L*U = A(p,q)

Modify lutx and bslashtx so that they use complete pivoting.
2.14. The function golub in the NCM directory is named after Stanford’s professor

Gene Golub. The function generates badly conditioned test matrices with
random integer entries that do not produce small pivots with Gaussian elim-
ination with no pivoting.
(a) How does condest(golub(n)) grow with increasing order n? Because
these are random matrices you can’t be very precise here, but you can give
some qualitative description.
(b) What atypical behavior do you observe with the diagonal pivoting option
in lugui(golub(n))?
(c) What is det(golub(n))? Why?

2.15. The function pascal generates symmetric test matrices based on Pascal’s
triangle.
(a) How are the elements of pascal(n+1) related to the binomial coefficients
generated by nchoosek(n,k)?
(b) How is chol(pascal(n)) related to pascal(n)?
(c) How does condest(pascal(n)) grow with increasing order n?
(d) What is det(pascal(n))? Why?
(e) Let Q be the matrix generated by

Exercises 37

Q = pascal(n);
Q(n,n) = Q(n,n) - 1;

How is chol(Q) related to chol(pascal(n))? Why?
(f) What is det(Q)? Why?

2.16. The object of this exercise is to investigate how the condition numbers of
random matrices grow with their order. Let Rn denote an n-by-n matrix with
normally distributed random elements. You should observe experimentally
that there is an exponent p so that

κ1(Rn) = O(np)

In other words, there are constants c1 and c2 so that most values of κ1(Rn)
satisfy

c1n
p ≤ κ1(Rn) ≤ c2n

p

Your job is to find p, c1, and c2.
Here is an M-file to start your experiments. The text is also in the file
NCM/randncond.m. The program generates random matrices with normally
distributed elements and plots their l1 condition numbers versus their order
on a loglog scale. The program also plots two lines that are intended to
enclose most of the observations. (On a loglog scale, power laws like κ = cnp

produce straight lines.)

% RANDNCOND Condition of random matrices

nmax = 100;
n = 2:nmax;
kappalo = n.^(1/2);
kappahi = 500*n.^3;

shg
clf reset
h = loglog(n,[kappalo; kappahi],’-’,nmax,NaN,’.’);
set(h(1:2),’color’,[0 .5 0]);
set(gca,’xtick’,[2:2:10 20:20:nmax])
kappamax = 1.e6;
axis([2 nmax 2 kappamax])
stop = uicontrol(’pos’,[20 10 40 25], ...

’style’,’toggle’,’string’,’stop’,’value’,0);

h = h(3);
set(h,’erasemode’,’none’,’color’,’blue’)
while get(stop,’value’) ~= 1

n = ceil(rand*nmax);
A = randn(n,n);
kappa = cond(A,1);

38 Chapter 2. Linear Equations

set(h,’xdata’,n,’ydata’,kappa)
drawnow

end

(a) Modify the program so that the two lines have the same slope and enclose
most of the observations.
(b) Based on this experiment, what is your guess for the exponent p in
κ(Rn) = O(np)? How confident are you?
(c) The program uses (’erasemode’,’none’), so you cannot print the re-
sults. What would you have to change to make printing possible?

2.17. For n = 100, solve this tridiagonal system of equations three different ways.

2x1 − x2 = 1
−xj−1 + 2xj − xj+1 = j, j = 2 . . . n− 1

−xn−1 + 2xn = n

(a) Use diag three times to form the coefficient matrix and then use lutx
and bslashtx to solve the system.
(b) Use spdiags once to form a sparse representation of the coefficient matrix
and then use the backslash operator to solve the system.
(c) Use tridisolve to solve the system.
(d) Use condest to estimate the condition of the coefficient matrix.

2.18. Use surfer and pagerank to compute PageRanks for some subset of the Web
that you choose. Do you see any interesting structure in the results?

2.19. Suppose that U and G are the URL cell array and the connectivity matrix
produced by surfer and that k is an integer. What are

U{k}, U(k), G(k,:), G(:,k), U(G(k,:)), U(G(:,k))

2.20. The connectivity matrix for the harvard500 data set has four small, almost
entirely nonzero submatrices that produce dense patches near the diagonal
of the spy plot. You can use the zoom button to find their indices. The
first submatrix has indices around 170 and the other three have indices in
the 200s and 300s. Mathematically, a graph with every node connected to
every other node is known as a clique. Identify the organizations within the
Harvard community that are responsible for these near cliques.

2.21. The function surfer uses a subfunction, hashfun, to speed up the search for a
possibly new URL in the list of URLs that have already been processed. Find
two different URLs on the MathWorks home page, http://www.mathworks.com
that have the same hashfun value.

2.22. Here is the graph of another six-node subset of the Web. In this example
there are two disjoint subgraphs.

Exercises 39

alpha

beta

gamma

delta

sigma rho

(a) What is the connectivity matrix, G?
(b) What are the page ranks when the hyperlink transition probability p is
the default value, 0.85?
(c) Describe what happens with this example to both the definiton of page
rank and the computation done by pagerank in the limit p → 1.

2.23. The function pagerank(U,G) computes page ranks by solving a sparse linear
system. It then plots a bar graph and prints the dominant URLs.
(a) Create pagerank1(G) by modifying pagerank so that it justs computes
the page ranks, but does not do any plotting or printing.
(b) Create pagerank2(G) by modifying pagerank1 to use inverse iteration
instead of solving the sparse linear system. The key statements are:

x = (I - A)\e
x = x/sum(x)

What should be done in the unlikely event that the backslash operation in-
volves a division by zero?
(c) Create pagerank3(G) by modifying pagerank1 to use the power method
instead of solving the sparse linear system. The key statements are:

while termination_test
x = A*x;

end

What is an appropriate test for terminating the power iteration?
(d) Use your functions to compute the page ranks of the six-node example
discussed in the text. Make sure you get the correct result from each of your
three functions.
(e) Measure the execution time of each of your three functions on the harvard500
data or some other large problem. Which function is the fastest? Why? If
the times are too small to measure accurately, use something like

40 Chapter 2. Linear Equations

tic
for k = 1:100

x = pagerank(U,G);
end
average_time = toc/100

2.24. Here is yet another function for computing PageRank. This version uses
the power method, but does not do any matrix operations. Only the link
structure of the connectivity matrix is involved.

function [x,cnt] = pagerankpow(G)
% PAGERANKPOW PageRank by power method.
% x = pagerankpow(G) is the PageRank of the graph G.
% [x,cnt] = pagerankpow(G) counts the number of iterations.

% Link structure

[n,n] = size(G);
for j = 1:n

L{j} = find(G(:,j));
c(j) = length(L{j});

end

% Power method

p = .85;
delta = (1-p)/n;
x = ones(n,1)/n;
z = zeros(n,1);
cnt = 0;
while max(abs(x-z)) > .0001

z = x;
x = zeros(n,1);
for j = 1:n

if c(j) == 0
x = x + z(j)/n;

else
x(L{j}) = x(L{j}) + z(j)/c(j);

end
end
x = p*x + delta;
cnt = cnt+1;

end

(a) How do the storage requirements and execution time of this function
compare with the three pagerank functions from the previous exercise?
(b) Use this function as a template to write a function in some other pro-
gramming language that computes PageRank.

