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ABSTRACT

Curating large and high quality datasets for studying affect is a
costly and time consuming process, especially when the labels
are continuous. In this paper, we examine the potential to use
unlabeled public reactions in the form of textual comments to aid
in classifying video affect. We examine two popular datasets used
for affect recognition and mine public reactions for these videos.
We learn a representation of these reactions by using the video
ratings as a weakly supervised signal. We show that our model can Comments
learn a fine-graind prediction of comment affect when given a video
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Affective computing uses computational techniques to model hu-
man psychophysiological states[32]. Researchers have tackled the
recognition of these states uni- and multimodally. By recognizing
these states, we can enable richer human-computer interaction by
encoding human state beyond what is explicitly expressed. Applica-
tion opportunities are broad and include the ability to automatically
determine user opinion, empower individuals with better social
cues, automated detection of misbehavior and many more.
Several high quality datasets have recently been developed to
study this important problem [2, 19, 20]. These recent works provide

both categorical measures and also incorporate continuous ratings
of affect to capture subtle emotional differences. However, creating
such high quality datasets is very resource intensive.

To alleviate this issue, we investigate whether we can use unla-
beled public reactions to aid in determining the affect of a corre-
sponding video. Since many emotional reactions are gathered in
the lab by presenting a stimuli to induce an emotional response,
then we would expect some similar reactions in the wild. For ex-
m ample if the average rating by test subjects in a lab for a particular
video is 4 out of 5 for a happiness rating, then we should expect

similar reactions and statistical measures by people in the public.
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Furthermore, we examine whether these responses can then be
used to help determine the affect rating of the video.
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attempt to learn a language model respective of the affect dimen-
sions when given only the laboratory affect ratings of the video.
The learned language features are then incorporated into a multi-
modal affect prediction model to determine video affect. Since each
video has potentially millions of comments, designing an effective
way to model this data can drastically reduce the video annotation
burden.

Mathematically, our problem can be construed as learning a lan-
guage representation over a mixture of Gaussians. We assume that
each video occupies a region in affect space, and elicits emotional
responses according to its distribution (an expected value as deter-
mined in a lab). We hypothesize that these emotional responses are
reflected in the comments posted to a video. We take each video
rating to induce an emotional response which can be used to "mold"
the multiple comments associated with each video to region occu-
pied by the video. That is, when given a weak prior in the form of
expectations to video reactions, we would like to embed language
in this affect space to fit its affective properties.

To learn this, we define a custom variational objective, an ap-
proach with demonstrated effectiveness in learning unsupervised
sentence representations [6, 17]. By taking advantage of the smooth
distribution learned by a VAE as well as weakly supervised infor-
mation offered by the videos, we can mold the latent distribution of
the comments such that they conform closer to the defined affect
dimensions.

In summary, we provide the following contributions:

(1) We propose a novel problem for learning language represen-
tations from induced affect in the wild when given weakly
supervised signals.

(2) We formalize the problem within the context of a Gaussian
mixture and design an effective optimization method.

(3) We augment existing datasets with public reactions and
make these augmentations publicly available.

(4) Experiments that indicate the potential to use induced signals
in the wild for affect prediction tasks.

2 RELATED WORK

Affect representation has primarily been studied in two ways: as
a categorical selection [9] or via dimensional representations such
as the well known arousal-valence model [34, 38]. The research
field of sentiment analysis often focuses on measures the valence
dimension of affect: positive, negative or neutral [23]. We use the
arousal-valence model, which measures affect on two orthogonal
dimensions: arousal (the level of alertness/involvement) and valence
(a pleasure-displeasure continuum) [34]. However, it should be
noted that whether the dimensions are truly orthogonal can be
deemed controversial [22].

Early works in affect computation primarily attempted to group
people’s emotional state into distinct categories. Over the years,
researchers have expanded this capability to include more con-
tinuous affect representations [2, 20], by capture emotional state
in addition to intensity which enable the modelling of modelling
subtle difference. Multiple recent works have attempted to learn im-
proved multimodal representations of affect-based data to improve
downstream tasks such as video affect classification[41].
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Emotion elicitation can by achieved by having subjects watch
music videos [19, 26]. Visual [20] and audio stimuli [5] are among
the most common modalities for inducing emotions. There has
also been an increasing interest in using data collected in response
to multimodal stimuli for the task of emotion recognition. Audio-
visual stimuli have been studied in the form of monologues [44],
conversations [33], and music videos [43]. The DEAP Database
[19] contains records of EEG and peripheral physiological signals
of participants who watched selected music videos, as well as the
participants’ self assessment of their emotional state after each trial.
This has been used in emotion recognition and classification tasks
[24] [39]. We use the arousal and valence values that have been
provided for each video in the database as weak signals to supervise
the learned representations in our model.

Language models seek to learn a representation and have been
studied actively [3] [28] [27]. More recently, work has been done
on using additional modalities in language modelling [18], incor-
porating symbolic knowledge into language models to allow for
generation of rare words [1], and learning generalized representa-
tions of data for use in multiple language understanding tasks [25].
Frameworks to learn sentence representations by unsupervised
learning methods have also been widely studied, such as asymmet-
ric encoder-decoder structures[37], improvements to the VAE that
learn semantics better [47], and the use of discourse relations to
learn accurate sentence representations [29] [14]. Our approach,
however, is to use a weakly supervised learning method, to embed
language with explainable dimensions.

Some techniques used for affect recognition tasks include trans-
fer learning [21] [8], attention modelling [49], and Tree-LSTMs
[45]. Ghosh et al. [10] extend the LSTM model for text generation
in conversations, allowing for control of the emotional content
of the sentences generated. Another approach to controlling the
emotion of generated sentences assume that the emojis in Twitter
messages indicate the emotion of the conversation, and accordingly
generates responses with appropriate emotion [48]. Song et al. [35]
have explored affect-based text generation using not only explicitly
emotional words, but also neutral words which express an emotion
when combined in a specific pattern.

Traditional variational autoencoders (VAEs) usually incorporate
a single Gaussian for regularizing latent variables, and Gaussian
for the output as well. The output of VAE has been extended with
mixture models and it has performed in unsupervised clustering
[15] where the clusters are modelled by GMM, and [46] combine
GMM and an uniform distribution to model major clusters and
the remaining data, respectively. [16] adopt mixture models in the
latent space for semi-supervised learning in classification problems,
where different mixture components share parameters.

3 PROBLEM FORMULATION

We formalize the problem as follows: We denote V as a given set
of videos that have been assigned an emotional rating, where a
rating is a two-dimensional vector consisting of valence and arousal
scores. Our task is to learn a mapping of comments f : C — R?
such that p. == f(c) and g, reflects the true valence and arousal of
the comments.
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Each video has multiple ratings, and the mean g, € R? and
variance %, € R?*? of the ratings are given. When the number of
raters is large enough, we can reasonably assume that all reactions
towards a video v follows a normal distribution N (g, ). Explic-
itly, ptp is the mean valence y1(;) and mean arousal score 15y, while
the covariance matrix X, is diagonal, since we assume that valence
and arousal are two uncorrelated [34], orthogonal criterion, i.e.,

1= () ez

%= ("(1) 0 ) :
0 0'(2)
For simplicity, we use diag{o(y), (2} to denote covariance.

The set of comments is denoted by C and comments associated
with the video v are represented by C,. Each video is given a rating
1ty which codes its effect on viewers. We are interested in exploiting
the potential emotional influence of the video on any commenters.
That is, the learned distribution of comments for a particular video
should occupy the region described by the mean and variance of the
video. Intuitively, while there may be a few deviating comments,
a large proportion of the comments C, in a video should agree
roughly with the rating. Once we obtain the learned language
model, we can then use the average comment scores for affect as
an indicator for video affect.

4 LEARNING AN AFFECT EMBEDDING

A variational autoencoder (VAE) is an unsupervised architecture
with demonstrated ability to produce quality representations of
text [6]. They work by optimizing the parameter 6 and maximizing
the probability of each ¢ such that:

P(c) = fz Po(cl2)Py(2)dz,

where z € Z is a latent variable sampled by another function Q(z|c)
in order to reproduce c. VAEs are an extension of the standard
autoencoder which imposes a prior distribution on z. It assumes
that samples of z can be first drawn from a standard Gaussian
distribution p(z) ~ N(0,I), where I is the identity matrix of the
same column dimension with z. This has been empirically shown
to learn smooth regions and enable better continuity in language
representations. [6]

Hence we expect the distance between Qy (z|c) and Py(z|c) to be
small. Mathematically, the standard VAE objective can be defined
as [7] :

Loy(€) = Eq, (21 log po(cl2)] —~ Dxr (g4 (zl0)llp(2)) ()

However, since the posterior distribution learned by the VAE is
arbitrary, we cannot guarantee that a representation is learned in
the dimensions that we want. Here we propose a simple tweak to use
the valence and arousal ratings as a prior to shape the distribution.
As a result, the ratings of comments from a video can be modelled as
a two-dimensional uncorrelated Gaussian distribution N (g, %),

where p = (P};ﬂ’ P;Z) ), ZP — d_iag{af(,l), gf(,z) 1-
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Giving us the following KL term instead of the KL term in (1) by
the property of a diagonal matrix:

1

Dir(QlIP) = 2 (tr(logZp) — tr(logZq) — n
+r(35'34)
+(pp — 1g) =5 (p — 1)),

where log X := diag{log af(,l) Llog a}(,z) 1

4.1 Centered VAE (C-VAE)

Since it is known that stronger stimuli tends to produce a stronger
emotional response, we introduce a second KL divergence term.
To explain the reasoning, we introduce the definition of uncertain
response: a response without a specific appropriate stimulus class
[13]. Since stimuli with an uncertain response — close to the origin
(0,0) — do not provide additional information regarding the prior,
these videos should still contain comments that can vary wildly
depending on personal preference which could "cover” the latent
space.

Since the comments should match the center of the ratings with
weight 1 — A, we construct the second KL term with the prior p(x)
sampled from the distribution of the entire dataset, i.e., forallv € V.
p(x) ~ N(py, Zy). For a total of N videos in V, py = % Ziil i

(r)

and we compute o, ', r = 1,2 as follows:

(o) = B[] - (7))

1 N
= o 2B ()
i=1

1 N
= 1 2 )+ (o) = ()7},

i=1

Using this mean and variance, we can create our new term
Dgr (QIIN (x, ox))- We use a A term to weigh the potential vari-
ance in emotional responses based on its Euclidean distance to the
original. This gives us our final loss function:

Lo:g(c) = Eg,(z|c) [log po(clz)]
— ADkL(q4(2l0)[Ip(2)) (2)
— (1= ) Dk (QIIN (pix, Zx))

4.2 Centered Gaussian Mixture VAE
(CGM-VAE)

Asitis a strong assumption that all comments to videos are normally
distributed, we propose to use a Gaussian mixture prior. This allows
us to be more accurate with respect to the center of the video
ratings given by the prior p(z). We extend the work of [11] which
demonstrates numerous ways to approximate the KL divergence of
Gaussian mixtures.

Recall that a Gaussian mixture consists of multiple Gaussian
distributions and the proportion of each mixture component which
is represented as a latent variable that yields the multinomial dis-
tribution. So we use unlabeled samples {y;}i=1,. n from n multi-
dimensional Gaussians with known covariance matrices. This yeilds
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Table 1: Summary statistics of dataset

DEAP | MOSEI
# Videos 120 3228
# Videos with comments 82 764
# Comments 31481 17217
the mixture:
n
foy) =) mig(ys i, o} 1a)
i=1

where 7. is the mixing proportion of the k-th Gaussian distribu-
tion satisfying X' | mi = 1, and ¢(-; 4, =) denotes the density of a
N(p, Z) random vector in R4:

$owin3) = () H[2] exp3 (w = )TZ 7 (w— )

Specifically, for the total n = N number of videos, we give equal
weight to each part of the mixture, i.e, 1 = % Since we don’t
distinguish the weight of each Gaussian distribution if there is no
further information on the importance of the videos, the dimension
of each Gaussian is d = 2 for the valence and arousal ratings.

Thus the second KL divergence follows

1
Dgr(Q|IP) = - Etr(log Zg) -1
N

_%]EQIlogZ

1
iz1 1Zil?

(&)

e 74 l R
where Ay = (x — ,uk}TZEl{x — g)-

One possible way to make (3) computationally tractable is through
Monte Carlo sampling. We draw K i.i.d samples {x; };.’zl from the
distribution of Q, N'(pg, Zg):

1
Dir(QIIP) = — Str(logZg) — 1

n

1 \ _
+ N Z {tr( logZi) + tr[Eklpkp;{}
k=1
1 K
—1_ (T _ o Ty
+ e Z;‘tr(Eklxj(xj - 2,uk)_]},
J:

where Ai = (xj— ,uk}TEEI (xj — pgc)-

5 EXPERIMENT SETUP

We conduct two primary experiments to validate our optimization
methods presented in equations 2 and 3. We examine the predictive
power of our technique and its ability to learn embeddings through
induced emotion signals. We then compare the fusion of our learned
embeddings into a multimodal model to examine results compared
on a state of the art benchmark. Our optimization methods are
referenced as VAE (the standard VAE objective but with a modified
prior), C-VAE (Centered VAE), and CGM-VAE (Centered Gaussian
Mixture VAE).
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5.1 Data

We apply our approach to use text comments on videos as a signal
provider for instilled affect to augment two different datasets for
affect prediction:

DEAP [19] provides affect annotations for music videos available
on Youtube. We used the online subjective annotations video list
containing 120 Youtube videos each with 14 to 16 ratings. A 9-
point rating for valence, arousal, and dominance were collected,
although we only examine the valence and arousal dimensions. We
ask readers to refer to the original paper for detailed analysis [19].
For our use case, we used DEAP’s valence and arousal ratings to
embed comment language in a 2-dimensional space.

MOSEI [2] is a large multimodal sentiment and emotional dataset
containing 23453 segments of videos by 1000 distinct speakers. Each
video is an opinion video clip which is annotated in segments by 14
expert judges. Sentiment annotations on a Likert scale from -3 to 3
and Ekman emotions are annotated on a Likert scale of [0,3] from
no evident emotion to high presence of emotion. For our use case,
MOSETI’s emotional space provided an additional 6-dimensional
embedding vector for each comment. Additionally, since no video
rating was provided, we took the mean of all segment-level ratings
for each video as the overall video rating as input to our model.

For all videos we crawled the available comments. The maxi-
mum number of comments per video was limited to 1000 and we
exclude videos with no comments. Additionally, some videos were
no longer available at the time of data collection. This resulted in 82
videos with comments for DEAP and 764 usable videos for MOSEL
Summary statistics are available in Table 1.

DEAP expresses instilled emotion (i.e. emotion of the viewer of
a music video), while MOSEI characterizes the emotional state of
the speaker in a video. User comments on a video may be more
directly indicative of the user’s emotion than the speaker’s emo-
tion, and we will evaluate this use case in Sections 6.1-6.3. Regard-
ing the second case, it is our hypothesis that a causal connection
sufficient for a distinctive signal likely exists as well, i.e., if I see
a video of a happy/angry/sad person, I'm more likely to write a
happy/angry/sad comment myself. We will show results on the
MOSEI dataset in Section 6.4.

5.2 Preprocessing

The crawled comments are preprocessed to keep only the top-most
level comment to remove any unrelated discussion using the @user
expression. We also removed non-english comments and discarded
sentences longer than 50 words, and shorter than 2 words for ease
of language modeling. GloVE [31] word embeddings are used and
kept fixed during training.

The dataset is split into an 80%-20% training-testing by randomly
selecting 80% of the videos and their associated comments for train-
ing and the rest for testing. Validation is split from the training set
during model tuning and for cross validation experiments in an
80%-20% fashion. For MOSEI evaluations, we observed the train-
ing, validation and testing splits provided by the MOSEI sentiment
classification dataset.
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Figure 2: Average of fine grained scores provided by LIWC for top and bottom 500 comments of learned embeddings. Anger
is associated with high arousal but neutral valence, while sadness is associated with low arousal and low valence. A large
inflection can be seen at approximately 12 epochs of training time due to the delay of kl-annealing. As can be seen, there is a

correlation with some tested models

5.3 Network Architecture

We train our comments embedding network using a Recurrent
Neural Networks (RNNs) connected in an end-to-end fashion [36]
as the foundation for our modeling. We follow the the work from
[6] closely in learning and optimization procedures, but use our
learning objective.

Multiple network architectures were evaluated for our experi-
ments. We used a Gated Recurrent Unit (GRU) as the base recurrent
architecture. Single layer and 2 layer GRUs were used to evaluate
our results. A 2-layer MLP is added to the output of the GRU to pre-
dict output distributions. Decoder architectures were varied with
single, and 2-layer bidirectional GRU variants. The BIGRU tag is
used to indicate the 2-layer bidirectional variant.

5.4 Hyperparameter Tuning

A the encoder and decoder hidden vector size was set to 100. Glove
embeddings of 100 dimensions were used and kept fixed during
model training. A two layer feed-forward network is attached to
the output of the decoder GRU to predict word tokens. Monte Carlo
samples used to approximate the gaussian mixture prior was set to
200. Although we experimented with different A values, no large
differences were noticed and were set at .5 for the entire experiment.

Hyperparameters were tuned on the validation set. The standard
AdamW optimizer with all default options. A batch size of 128. Both
Dropout and word dropout are used and is set to 0.2. Sigmoid KL
annealing as used to train the evaluated VAEs offset by 15 epochs.
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6 RESULTS & DISCUSSION

1) We provide empirical evaluation of the predicted video emotion
ratings (Sections 6.1 & 6.2). 2) We show that our metric approxima-
tions agree with crowd-sourced user rated affect scores (Section
6.3). 3) We apply our technique to a large-scale public benchmark
dataset for multimodal emotion analysis (MOSEI) and show that
we can learn fine-grained emotion ratings for individual user com-
ments while matching overall video emotions as the aggregate
emotion of all user comments. We also demonstrate the ability for
our embeddings to successfully extend an existing model with user
comments as an additional dimension (Section 6.4).

6.1 Analysis on predictive power of comments

We perform an empirical evaluation of the learned language rep-
resentations using the augmented DEAP dataset, as music perfor-
mance is known for its ability to induce emotions, as demonstrated
in lab studies. DEAP provides annotations for each video by multi-
ple users in a valence, arousal and dominance space. We examine
whether individual comments can be placed in a space close to
their valence and arousal rating without the supervised informa-
tion from the videos. We perform multiple experiments to correlate
our predictions of valence and arousal scores with supervised tools

which analyze language affect.

6.1.1 Supervised language analysis tools. The evaluations of the
learned language representations are compared with two well-
known tools for analyzing affect content in text. These tools are
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often used to provide distantly supervised information for related
machine learning tasks[10] and are built on supervised knowledge.
It is our expectation that if our learned representation without
supervised information, demonstrates a positive correlation with
existing supervised techniques, then we can expect that the video
has 1) induced an expected emotion in the user and 2) our model
can extract this information. This supervised information is not
provided during training or testing time.

Two popular language analysis tools are used to analyze the
video coments:

LIWC2015 [30] is a proprietary tool which produces scores for
various dimension of language use. The typical output measures
the fraction of words which fall under some variable.

The tone score is used to analyze our predicted valence score. It
is a variable that measures the positive or negative tone of a text.
Additionally, measures for anxiety, anger and sadness are provided
which are typically associated with high, high and low arousal
emotions [4].

VADER [12] is a lexicon and rule-based sentiment analysis tool
designed for social media contexts. provides ratings for proportion
of text which fall under categories of positive, neural, or negative as
well as a normalized compound score. The compound score ranges
from -1 to 1 and represents a summarizing of the overall positive-
ness or negativeness of the input text sequence. It is the expectation
that the compound score most closely related to valence.

6.1.2 Metrics. As we do not have ground truth for sentence-level
affect scores, we define an approximation based on expected emo-
tion correlations:

A=S4+5; —Ss

Where the S, represents the normalized (between 0 and 1) in
VADER compound score, and Sz, Sa, SxSs represents the normalized
in LIWC tone, anger, anxiety, and sadness scores respectively.

The tone and compound scores reflect the positive versus nega-
tive emotions present in the sentence. As there is no direct measure
for arousal, we correlate with the LTWC measure for anger and
sadness which are respectively positively and negatively correlated
with arousal. We found that these metrics typically produced affect
scores between -.5 and .5.

6.2 Video Affect Regression

We perform a 10-fold cross-validation evaluation with random
initialization. The training set is split into 80% training and 20%
validation. The MAE distance of predicted affect scores from our
model with our valence and arousal metrics are shown in Figure
3. As can be seen, while the initial training shows large variations,
all models eventually converge to a value closer to scores given by
supervised approaches. Our Gaussian mixture optimization tech-
nique also shows the best average overall performance at epoch
50.

Table 2 shows the epochs with the minimum valence and arousal
MAE values. As can be seen, the learned embeddings are moving
away from a randomly embedded space into one which correlates
with valence and arousal. Additionally, we see in figure 2, emotion
scores from LIWC for each comment correlates with the expected
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Figure 3: 10-fold Cross-validation prediction of video rating
with the DEAP dataset. MAE valence and arousal of our pre-
dicted comments ratings with defined metrics per epoch is
shown.

embedding within valence and arousal space. We also see that
comments are slowly conforming to the mold given by the prior
distribution.

6.3 Perception Study

We conducted a user study via Amazon Mechanical Turk asking
users to rate the valence and arousal properties of learned com-
ments representations. We compare the top and bottom ranked
100 comments for each dimension (valence and arousal) for each
algorithm. All participating workers were from the US, with an
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Table 2: Minimum MAE for valence and arousal ratings
of video. Random shows the average MAE from randomly
choosing scores and represents a baseline. Minimum possi-
ble value and best possible score is 0. As can be seen, our
optimization method can learn embeddings that enable pre-
dictions close to the valence and arousal rating of the video.

Model Valence MAE Arousal MAE
Random 33 33

VAE 222 225

C-VAE 217 220

GM-VAE 217 220
BIGRU-VAE 223 221
BIGRU-C-VAE .198 221
BIGRU-GM-VAE .218 222

Table 3: User valence scores for the comments with model-
estimated valence scores ranked in the top 100 and bottom
100. Scores range from 0 to 1. As we can see based on user rat-
ings, the comments scored lower by our algorithm exhibit
lower valence ratings and higher ranked comments received
overall higher ratings from human raters.

Method | Bottom 100 Top 100

VAE 0.58 + 0.02 0.60 +0.02
CVAE 0.50 + 0.03 0.67 £ 0.02
GM-VAE 0.56 + 0.02 0.66 +0.02
BiGRU-VAE 0.54 + 0.01 0.65 +0.02
BiGRU-CGM-VAE | 0.54 + 0.01 0.62 + 0.02

Table 4: User arousal scores for the comments with model-
estimated arousal scores ranked in the top 100 and bottom
100. Scores range from 0 to 1. A similar correlating trend is
seen here with arousal scores.

Method Bottom 100 Top 100

VAE 0.47 + 0.02 0.61 +0.02
CVAE 0.45 + 0.02 0.57 £ 0.02
GM-VAE 0.50 + 0.03 0.59 + 0.02
BiGRU-VAE 0.51 + 0.01 0.59 + 0.02
BiGRU-CGM-VAE | 0.51 + 0.01 0.57 £ 0.01

approval rating greater than 98%. Workers provides ratings ona 5
point Likert scale, for valence as well as arousal of each comment.

Workers worked in batches of 16 comments with each sentence
being rated by two unique workers. Inter-rater agreement was
measured using Krippendorff’s & as an ordinal metric, with @ = 0
representing perfect disagreement and a = 1 representing perfect
agreement. For this study @ = 0.475 for the arousal scale, and
a = 0.686 for the valence scale.

Table 3 shows the mean valence scores, as rated by the workers,
of the top and bottom 100 comments. We perform a two population
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Figure 4: Percentage of emotions predicted by our learned
comments compared to the original dataset.

means t-test to compare the models, with a significance level & = 1%.
C-VAE is significantly better than GM - VAE (p-value = 0.0444) and
VAE (p-value = 0.0126) when identifying low-valence comments,
and also outperforms VAE (p-value = 0.0135) in identifying high-
valence comments.

The mean arousal scores are displayed in Table 4. The empirical
analysis suggested that no model significantly outperforms another,
and the results of this perception study indicate the same - no model
performs significantly better than the others, both for low as well
as high arousal sentences.

6.4 MOSEI benchmark

We evaluate the performance of our learned comment embeddings
to aid in a multimodal affect classification task. We used the MOSEI
sentiment unaligned dataset for this task. We compare against two
state of the art techniques MulT [40] and Raven [42]. We follow
the experiment setup from [40] and use their CTC augmentation
of RAVEN.

We learn comment-level embeddings on the training set and
accordingly predict the 6-dimensional emotion vector for each com-
ment in the test set. Figure 4 shows that our video predictions
capture the overall relative distribution of emotions from the origi-
nal segment ratings.

Video-level emotional embeddings are generated by averaging
the segment level predictions.

We concatenate the predicted video emotion ratings for each
video onto the text embedding to fuse the comments context vector
with segment-level text information. The resulting text represen-
tation is fed through the the network from [41] to perform the
prediction.

Table 6 shows results from the MOSEI sentiment classification
task which predicts sentiment classes for video segments. Our aug-
mented affect predictions incurs but a slight effect on the final pre-
dicted segment sentiment scores. One limitation of our approach
is that the user comments refer to the entire video, whereas MO-
SEI sentiment classification occurred on the level of shorter video
segments.

Note also that the YouTube dataset makes up a small portion of
the overall dataset and thus of the original 3228 videos, only 764
had comments (cf. Table 1). With additional comment information
performance could potentially improve.
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Table 5: Selected results, comparing the ground truth and predicted emotion of a video to that of a single comment on the
same video. This demonstrates that the network learns better fine-grained embeddings than are provided by the overall video
ratings. The six dimensions of emotion are happiness(H), sadness(Sa), anger(A), fear(F), disgust(D) and surprise(Su). A higher

score indicates a stronger presence of the emotion.

GT Video Emotion
H Sa A F D Su | H

Comment

Predicted Video Emotion
Sa A F D Su H Sa A F D

Predicted Comment Emotion

Su

1 liked lord of the flies
in High School . It was
really good i thought .

013 0.07 017 017 01 0 | 0.18

0.07 0.07 001 005 0 0.3 008 004 0 0.03

0.01

I hate how my Eng-| 033 0 017 0 0 0 | 023
lish teacher just makes
us write and give a
public speech without

even teaching how to

0.07 0.06 0 0.04 0.01 | -0.05 0.09 017 -0.02

0.08

Very interesting video, | 0.17 0.17 0 006 006 0 | 0.18

Melody, thank you!

0.09 0.08 001 005 0 041 0.05 0.04 001 0.02

As usual, she is excel- | 0.07 0.07 0.11 007 015 0 0.17

lent!

008 006 0 0.04 0 031 007 002 0

0.02

This made me real-
ized how emotionally
wounded I am, and I
thought it was all nor-
mal.

019 01 005 0 0 0 | 018

0.09 0.06 001 004 0 0.01 0.19 0.06 0.01

0.07

0.02

Table 6: MOSEI Sentiment classification results on un-
aligned data. We see the augmentation of existing state of
the art techniques improves its performance in a few situa-
tions.

Model Acc7 Acc2 Fl1 MAE Corr
CTC+RAVEN 455 75.4 75.7 0.664 0.599
MulT 50.1 81.0 81.2 .610 681
MulT + C-VAE (ours) 49.1 81.2 81.5 .618 681

Additionally, we provide a case study on the predicted emotion
ratings of individual comments in table 5. As can be seen in multiple
examples, despite the overall video not providing detailed emotion
representations, we can still provide an effective prediction of the
comment’s emotions. For example, looking at the last row of table 5,
we notice that the video has a positive emotion overall (H is larger
than all the negative emotions). The comment however (which is
clearly sad), is predicted to have Sa larger than H, which is accurate.

7 CONCLUSION

In this paper we examined the problem of learning sentence repre-
sentations in affect space when given a weak prior in the form of a
video affect rating. We introduced a novel problem and proposed
and evaluated an effective optimization technique.

Our empirical evaluation of the predicted video emotion ratings
show that it is possible to deduce affect from video content alone

and that our approximation metrics agree with crowd-sourced user
rated affect scores.

When applying our technique to a large-scale public benchmark
dataset for multimodal emotion analysis (MOSEI), we show that
we can learn fine-grained emotion ratings for individual user com-
ments while matching overall video emotions as the aggregate emo-
tion of all user comments. This demonstrates that our embeddings
can successfully extend an existing multimodal model with user
comments as an additional dimension. While we did not achieve
the best performance here likely due to the differences in the way
MOSEI and DEAP obtained affect labels.

Overall, we provided new augmentations of multi-modal video
datasets and demonstrated the potential for reactive signals in the
wild, in the form of user comments, to predict the affect induced by
the videos, through modeling effective language representations in
affect space.

In the future, we hope to explore better fusion of comment in-
formation, e.g. by aligning comments with references to specific
portions of videos and other more fully understood content seman-
tics.
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