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Abstract

Ground truth depth information is necessary for many
computer vision tasks. Collecting this information is chal-
lenging, especially for outdoor scenes. In this work, we pro-
pose utilizing single-view depth prediction neural networks
pre-trained on synthetic scenes to generate relative depth,
which we call pseudo-depth. This approach is a less expen-
sive option as the pre-trained neural network obtains ac-
curate depth information from synthetic scenes, which does
not require any expensive sensor equipment and takes less
time. We measure the usefulness of pseudo-depth from pre-
trained neural networks by training indoor/outdoor binary
classifiers with and without it. We also compare the differ-
ence in accuracy between using pseudo-depth and ground
truth depth. We experimentally show that adding pseudo-
depth to training achieves a 4.4% performance boost over
the non-depth baseline model on DIODE, a large stan-
dard test dataset, retaining 63.8% of the performance boost
achieved from training a classifier on RGB and ground truth
depth. It also boosts performance by 1.3% on another
dataset, SUN397, for which ground truth depth is not avail-
able. Our result shows that it is possible to take information
obtained from a model pre-trained on synthetic scenes and
successfully apply it beyond the synthetic domain to real-
world data.

1. Introduction
Depth information is critical in the field of computer vision.
However, collecting accurate depth data is a challenging
problem as it requires expensive hardware and time, result-
ing in the lack of expansive RGB and depth datasets for
training. Our research focuses on investigating the useful-

ness of neural networks pre-trained on synthetic scenes to
obtain depth information. Specifically, we tackle the task of
indoor-outdoor scene classification using additional depth
information from networks pre-trained on synthetic data.
Indoor-outdoor classification is a critical part of the scene
classification process, with applications including photo
tagging, image retrieval [40], robot navigation [7], and color
constancy [3].

In recent years, researchers have developed state-of-the-
art machine learning models that perform indoor-outdoor
classification. Common approaches include Neural Net-
works [38, 39] and Support Vector Machines [23, 33, 17].
Non-parametric techniques involve performing classifica-
tion directly on the data without learning any parameters,
such as K-Nearest Neighbors [22] and Bayesian methods
[34]. Most of these processes involve extracting low-level
information such as color, edges, and textures embedded in
image pixels.

We use a pre-trained neural network trained on syn-
thetic data to generate depth information used as an addi-
tional cue for indoor-outdoor classification. We choose the
indoor-outdoor classification task because intuitively, out-
door images are likely to have a higher range of depth values
than indoor images. However, estimating accurate absolute
depth requires calibrated stereo image pairs, and collecting
accurate absolute depth requires expensive sensors. This is-
sue with collecting depth is compounded by a lack of ready-
made indoor and outdoor datasets containing ground truth
depth, making the training of classification models a diffi-
cult task. Existing outdoor datasets such as KITTI [12] are
usually collected for specific use cases (self-driving cars)
and are acquired using monocular cameras or LiDAR sen-
sors. Although depth sensors have a high sample rate, they
have relatively low spatial resolution and lack dense depth
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imaging at far ranges.
Using an off-the-shelf single-view depth estimation net-

work, our method provides an alternative to the lack of
ground-truth depth data in the form of synthetic depth.
Specifically, we utilize Omnidata [10], which is pre-trained
on synthetic scenes, in order to generate relative depth of
pixels in RGB images. While not as accurate as ground
truth depth maps, the ease of use and lack of a need for
additional equipment offer a valuable trade-off for obtain-
ing depth information. Additionally, using Omnidata gives
us insights into how information transfer from a network
trained from synthetic data to real-life data.

Our experiments demonstrate that a ResNet50 convolu-
tional neural network [15] trained with a 4-channel input of
RGB and relative depth is able to correctly classify indoor
and outdoor scenes to a higher degree than a network trained
solely on RGB input. In addition, our analysis shows that
a CNN trained on RGB and relative depth retains 63.8%
of the performance boost achieved from training a CNN on
RGB and ground truth depth. We offer insights into failure
cases and why depth information acts as a strong cue for
classification by analyzing the depth distributions of indoor
and outdoor scenes. Furthermore, we experimentally prove
that we can transfer knowledge from the synthetic domain
to the real domain.

2. Related Work
We review related work on synthetic pre-training, indoor-
outdoor image classification, automatic depth estimation,
and large-scale ground-truth and synthetic training datasets.

Synthetic Pre-training: It is well-known now that syn-
thetic data can be successfully employed in training net-
works for computer vision tasks. For high-level vision
tasks, previous work has demonstrated that we can train
object detectors, semantic segmentation networks, etc., us-
ing simulations [26, 11, 12]. For low level vision tasks,
DeTone et al. demonstrated that it is possible to learn deep
image descriptors [8, 28] using synthetic pre-training. Sim-
ilar success has also been observed in training optical flow
networks [37]. Our work takes advantage of a synthetically
pre-trained depth estimation network [10] to better classify
indoor-outdoor scenes.

Indoor-Outdoor Classification: Feature extraction is a
crucial part of indoor-outdoor scene classification. Widely
studied features include edges, color, texture, and shape
properties. Payne and Singh proposed a technique for
indoor-outdoor classification using the concept that indoor
images have a greater proportion of straight edges in com-
parison with outdoor images [22]. Their method failed in
cases when objects overlapped between indoor and outdoor

environments. In addition, most classification algorithms
extract color since cues such as green grass and blue skies
can be highly discriminating to distinguish between indoor
and outdoor scenes [20, 34]. However, the existence of col-
ors similar to sky or grass can often yield false positives.
Kim and Park combat this deficiency by partitioning im-
ages into 5 blocks, which are then represented using edge
and color orientation histograms [17]. Many approaches are
also based on textures [32, 33, 34].

Previously, relative depth has been used as a novel infor-
mation source for Support Vector Machines to discriminate
between indoor and outdoor images [23]. Ignazio et al. use
the Make3D monocular depth estimation tool [31] in con-
junction with feature sets that have previously attained high
performance in classification tasks. They demonstrated that
by using an SVM classifier on the existing Gist feature
set [21] and Make3D relative depth feature set, indoor-
outdoor classification performance was almost always im-
proved. While the Make3D depth estimation tool was pre-
trained using real-life images collected with 3D laser scan-
ners, the Omnidata depth tool was pre-trained on purely
synthetic data. We extend upon the work in [23] by an-
alyzing the indoor-outdoor classification performance of a
ResNet50 neural network when given Omnidata’s relative
depth as an additional input. This provides greater insight
into transferring knowledge from a synthetic domain to a
real domain.

Depth Estimation: Extracting depth information from
indoor and outdoor scenes is an important task that provides
context about the spatial relationships between entities. Vi-
able solutions for depth extraction include robust point-
cloud based methods or stereo-based methods [5, 19, 24].
However, these techniques are limited from being widely
used due to their requirement of specific equipment such as
Kinect cameras and LiDAR sensors. Pulsed LiDAR scan-
ners have high costs and power consumption. Moreover,
existing scanning LiDAR systems achieve low spatial res-
olution at far ranges due to mechanically-limited angular
sampling rates [14]. Time-of-flight depth cameras simi-
larly provide high-resolution depth at close ranges indoors
[1, 16], but lack dense depth imaging in far range outdoor
scenes that go beyond 30 meters.

Alternatively, pre-trained monocular depth estimation
systems such as Make3D [31], MiDaS [25], Ade-
laiDepth [43] and Omnidata [10] can provide the rela-
tive depth of pixels in a singular image. MiDaS demon-
strated that zero-shot cross-dataset transfer greatly im-
proved monocular depth estimation, indicating the need for
large and diverse training sets. Omnidata’s dense prediction
transformer hybrid was shown to be comparable to, or even
outperform MiDaS. Despite the loss in measurement of ex-
act depth, relative depth maps computed using pre-trained



monocular depth estimation networks have been shown to
embed useful information for discriminating between in-
door and outdoor images [23].

Image Datasets and Simulators: There are two meth-
ods for which training data containing depth informa-
tion for indoor-outdoor classification networks is gener-
ally made available: data generation frameworks, and pre-
pared datasets containing images and ground truth scans.
Data generation frameworks create synthetic data on the
fly from existing 3D scene descriptions. There are several
data generation platforms for indoor 3D datasets, such as
Habitat [30] and MINOS [29], which can utilize many 3D
datasets, most notably SUNCG [36] and Matterport3D [4].
Scanned 3D scene datasets such as Matterport3D come with
limitations in scanning accuracy and fixed scene lighting.
Datasets built from computer graphics assets, such as Hy-
persim [27] on the other hand provide more flexibility for
view-dependent lighting effects and scene adaptation.

Simulators, such as iGibson [35], AI2-THOR [18], and
Kubrik [13] add support for physics interactions between
agents and objects in the scene, but don’t yet provide
large-area outdoor realism. Driving simulators, such as
CARLA [9] provide more meaningful realistic outdoor im-
agery, but mostly focus on urban environments from a
driver’s perspective. Combinations of synthetic data and 3D
point clouds from aerial photography can also be used for
believable outdoor scene image generation [6].

We experimented with the Grad-3D tool [2] developed
with the Unity game engine, which allows for direct-
ing a virtual agent to navigate through an arbitrary Unity
3D scene, while capturing data during each movement.
The tool outputs sequences of synthetic RGB images and
ground-truth depth maps along flythrough paths. While data
generation frameworks allow greater flexibility to users for
controlling camera parameters and 3D scenes, the process
of importing and setting up virtual datasets to work with
these frameworks can be time-consuming.

On the other hand, there is a lack of publicly available
outdoor datasets for the training and evaluation of mod-
els [44]. Outdoor datasets containing RGB images with
their ground truth depth are even more rare. However,
there are still several notable datasets which can be used
for training. These include the KITTI dataset [12], Make3D
dataset [31], DIODE dataset [41], and SUN397 dataset [42].
The KITTI dataset contains outdoor images and true depth
maps taken from a moving vehicle. One set of images is
for training/testing, with 23,488 pairs for training and 697
for testing. Another set of images is from a crash scene.
The Make3D outdoor dataset contains 400 RGB image and
depth map pairs for training, and 134 RGB image and depth
map pairs for testing. Make3D images primarily depict
cityscapes and nature taken during the daytime. DIODE

contains 8,574 indoor training images and 16,884 outdoor
training images along with their depth maps. Additionally,
it contains 325 indoor and 446 outdoor validation images.
This dataset contains scenes taken both during the daytime
and night. Unlike the other datasets, SUN397 does not pro-
vide depth maps. However, it contains 108,754 images of
both indoor and outdoor scenes.

3. Methods
Our proposed method for testing the usefulness of depth ob-
tained from a pre-trained neural network utilizes Omnidata
[10], a single-view depth prediction neural network trained
on synthetic data. While a variety of pre-trained depth pre-
diction networks are available, we choose Omnidata as we
hope to study domain transfer from synthetic to real-life
data, and Omnidata has shown results outperforming other
state-of-art depth estimation networks. We use this pre-
trained network to generate depth maps for the data and use
the corresponding depth information as an additional chan-
nel when training our indoor-outdoor classifier. Lastly, we
aim to understand how information learned from the syn-
thetic domain transfers to real-life data.

3.1. Omnidata

The Omnidata depth prediction neural network generates
depth maps for RGB images where the depth value for each
pixel is relative and normalized 0 to 1. We apply Omnidata
to SUN397 and DIODE; some representative RGB images
from these datasets and their corresponding depth maps are
shown in Figure 2 and Figure 3. Compared to ground truth
depth maps, the generated Omnidata depth maps have a
smaller range. Additionally, there is less color contrast and
sharp edges, making it difficult to identify individual ob-
jects. However, the generated depth maps are a good ap-
proximation to the ground truth depth maps as there are sig-
nificant similarities between them.

3.2. Problem Formulation

The binary classification task can be described as

y = ArgMax(Softmax(F (x,!))))

! 2 RN represents the trainable weights, x 2 RH⇥W⇥D

are images from the datasets to be classified with or without
depth information included,

F : RH⇥W⇥D ⇥ RN ! R
2

is a neural network, and y 2 {0, 1}, which represents the
classes indoor and outdoor, respectively. If no depth infor-
mation is included, D = 3, otherwise D = 4.



3.3. Binary Classification Methods
3.3.1 RGB Model

To understand the effect of adding depth information in
training indoor/outdoor classification models, we first train
with RGB images only (D = 3 channel dimensions), using
ResNet50 described in Figure 1. This serves as the baseline
model that estimates the performance of our network on a
specific dataset.

3.3.2 RGB-D Model

We hypothesize that adding depth information generated
from pre-trained depth-prediction networks trained on syn-
thetic scenes will help improve indoor-outdoor classifica-
tion accuracy on real data. We test our hypothesis by con-
catenating depth maps with the RGB images along the chan-
nel dimension for all the data (D = 4 channel dimensions),
training and testing our model with 4 channel inputs. As
we keep the network architecture, data transformation, and
hyperparameters consistent, the RGB-D model can be com-
pared to the RGB model to measure the effect of adding
depth information for our task.

3.3.3 Network Architecture

We choose to use ResNet50, a well-known network that out-
performs many other networks on image classification [15].
We follow the implementation from the original paper [15],
using identical layers. The only difference is that our im-
ages are resized to H = W = 250 instead of 224. We
find that resizing the images to 250 x 250 retains the maxi-
mum amount of information while minimizing the training
time. In order to incorporate the depth information into our
data, we added a depth channel to the RGB images. Lastly,
the network outputs two classes, indoor and outdoor. The
architecture of the network is shown in Figure 1.

4. Experiments
With the SUN397 and the DIODE datasets, we conduct
two experiments to prove the effectiveness of our proposed
method. Each experiment consists of training RGB mod-
els and RGB-D models, and the performance of the trained
classifiers is analyzed using accuracy, precision, recall, and
f1-score on the test set. In order to minimize the number of
variables and to isolate the effect of adding depth informa-
tion, all the training is done with the same network architec-
ture described in Figure 1. Training hyper-parameters and
image transformation are also identical for all experiments.

4.1. Datasets
We select the DIODE dataset and SUN397 dataset for the
training and evaluation of our model. DIODE provides a

Figure 1: Network Architecture

large quantity of indoor and outdoor RGB images, as well
as their corresponding depth maps and depth map masks.
Other options we considered are KITTI and Make3D, but
they both face limitations in the diversity of their scenes.
KITTI contains images of mostly roads, with little varia-
tion in camera height and lighting. Similarly, Make3D only
contains images taken during daytime. On the other hand,
DIODE contains images taken during different seasons in
both daytime and night, with scenes from several cities and
various indoor/outdoor environments. Despite the lack of
depth, the SUN397 dataset is also useful because of the
sheer quantity of indoor and outdoor images which can be
used for training. SUN397 is highly diverse, with a total
of 397 scenes taken from indoor settings, outdoor natural
settings, and outdoor man-made settings.

Figure 2: DIODE Dataset



Figure 3: SUN397 Dataset

4.2. Experiment 1: Training on DIODE

The first experiment consists of applying our method of
training RGB and RGB-D models on the DIODE dataset.
The original partition of the data can be seen in Table 1.

class # of scenes # of scans # of images
train indoors 7 80 8574
train outdoor 12 100 16884

validation indoors 3 10 325
validation outdoor 3 10 446

Table 1: DIODE Dataset: Original Partition

Since the test set is not available, we use the entire vali-
dation set as the test set. Two scenes from the training set,
one indoor and one outdoor, are set aside as the validation
set. Our partition for the dataset can be seen in Table 2.

class # of scenes # of scans # of images
train indoors 6 75 8108
train outdoor 11 91 15253

validation indoors 1 7 466
validation outdoor 1 10 1631

test indoors 3 10 325
test outdoor 3 10 446

Table 2: DIODE Dataset: Our Partition

4.2.1 Using Omnidata Depth

The first part of the experiment studies the effect of adding
Omnidata depth for indoor/outdoor classification of the
DIODE dataset. Five RGB-D models are trained with cor-
responding Omnidata depth for each image. Similarly, five
RGB models are trained. These models are tested on the
test set, and we record the average metrics for RGB and
RGB-D models in Table 4. We can see from all the metrics
that the RGB-D models outperform the RGB models as all
the metrics are significantly greater, especially in the 4.4%
improvement in accuracy.

4.2.2 Ablation Study

Since the DIODE dataset contains ground truth depth, we
perform an ablation study, where we train RGB-D models
with the provided depth.

We quantify the usefulness of depth information pro-
vided by the pre-trained Omnidata network by compar-
ing the classification accuracy against models trained with
perfect depth information and no depth information. Five
models are trained under the same configurations using the
ground truth depth. Each model is then tested on the test
set, and the results are averaged and recorded in Table 4.
We can see that by removing ground truth depth, we lose
6.9% in accuracy and 5.9% in F1-score. More importantly,
comparing the metrics between RGB-Dmodels trained with
ground truth depth to the ones trained with Omnidata depth
show that using the generated depth retains 63.8% of the
performance boost in accuracy achieved with ground truth
depth. This is an indicator that the information learned by
the pre-trained Omnidata network on synthetic scenes can
be transferred to real-life data.

4.3. Experiment 2: Training On SUN397
With the experiment on the DIODE dataset as the controlled
experiment, we then test the effect of adding Omnidata
depth to the SUN397 dataset for indoor/outdoor classifica-
tion. We hypothesize that similar to experiment 1, adding
Omnidata depth will boost the performance of the classi-
fier. However, since this dataset does not have ground truth
depth, we cannot study the effect of how much of the miss-
ing depth information can be filled in with Omnidata.

SUN397 contains 108,754 images, 47,549 indoor, and
61,205 outdoor. Table 3 shows our partition for the dataset.

class # of images
train indoors 32549
train outdoor 46205

validation indoors 5000
validation outdoor 5000

test indoors 10000
test outdoor 10000

Table 3: SUN397 Dataset Partition

Similar to experiment 1, we train 5 RGB models and
5 RGB-D models with Omnidata depth. The models are
tested on the test sets, and the average results are recorded
in Table 4. We can see that the RGB-D model achieves a
1.3% performance boost in accuracy compared to the RGB
model, which is significant and further proves the benefit of
using depth from networks pre-trained on synthetic data.



Acc Prec Recall F1-score
DIODE
RGB 0.873 0.875 0.913 0.893

RGB-D with Omnidata depth 0.917 0.885 0.979 0.929
RGB-D with Ground Truth depth 0.942 0.927 0.978 0.952

SUN397
RGB 0.919 0.906 0.956 0.930

RGB-D with Omnidata depth 0.932 0.910 0.959 0.933
RGB-D with Ground Truth depth N/A N/A N/A N/A

Table 4: Testing Results

4.4. Image Transformation
The datasets contain images of different sizes. We normal-
ize all the RGB images by the mean and standard devia-
tions of the dataset. Additionally, both the RGB images and
the depth maps are resized to 250x250, using the nearest-
neighbor interpolation.

4.5. Training Hyper-parameters
Each model is set to train for 80 epochs on a single
RTX 3090 and evaluated using the validation set (partitions
shown in Table 2 and Table 3) at the end of each epoch.
The model with the highest accuracy on the validation set is
saved, and the saved model is tested on the test set. We use
Cross-Entropy Loss, and the Adam Optimization algorithm
to update the weights. We also use a batch size of 128, and
a learning rate of 0.001.

4.6. Hardware and Training Time
For the DIODE experiment, each epoch trains for about
350±10 seconds on the RTX 3090, for both with and with-
out depth. With the batch size of 128, about 18 GB, out
of 24 GB, of the VRAM is used. SUN397 uses the same
amount of VRAM as we keep the batch size consistent.
This dataset takes about 900 ± 10 seconds to train on the
same GPU. The longer training time comes from the fact
that SUN397 is a much bigger dataset.

5. Discussion
While using Omnidata depth in training DIODE is 2.5%
less accurate compared to using the ground truth depth, it
only takes around 5 minutes (measured on an NVidia RTX
3090 card) to generate depth maps for the entire dataset.
The time it takes to train Omnidata can be considered in-
significant as it is a one-time process. The ground truth
depth for DIODE is collected using sensors that take 11
minutes to complete a single scan [41]. This means that
it takes about 36 hours to collect data for the whole 200
scans provided. Using Omnidata to generate the depth takes
99.8% less time compared to using the sensors. Over-
all, using generated depth from Omnidata retains 63.8%
of the performance in terms of accuracy gained by using

Figure 4: Depth Distributions

the ground truth depth. Specifically, Omnidata boosts the
accuracy of the model by 4.4% on DIODE and 1.3% on
SUN397. As there is no significant difference in training
time between Omnidata and ground truth, the advantages of
using a pre-trained network are obvious.

5.1. Depth Distributions

Intuitively, we expect a difference in the depth distributions
of indoor and outdoor scenes. Outdoor scenes usually have
a larger range of depth, as they are likely to contain ob-
jects very far away. Indoor scenes are generally limited by
walls and ceilings and as such would have a smaller range in
depth. In Figure 4, we show the average depth distributions
of all the indoor and outdoor images within the DIODE and
SUN397 datasets. We observe that outdoor image depth
tends to follow the shape of a long-tailed distribution. On
the other hand, the average indoor image depth distribution
has a large peak within the smaller ranges, before quickly
dropping off. Compared to indoors, the outdoor depth dis-
tribution has a smaller peak. As a result, outdoor scene
depth distributions are found to have a larger standard devi-
ation than indoor scene depth distributions, and this distinc-
tion may be a helpful cue for training indoor/outdoor binary
classifiers. These three diagrams show that this trend holds
regardless of using pseudo- or ground truth depth, which in-
dicates that information from a network pre-trained on syn-



Figure 5: Outdoor Images with High Percentage of
Pixels with Invalid Depth (Black Regions)

Figure 6: Left: RGB; Center: Ground Truth
Depth; Right: Omnidata Depth

thetic scenes generalizes to real data.
Although all three figures follow the same trend, there is

still a distinct difference between the Omnidata depth distri-
bution and the ground truth depth distribution for DIODE.
The ground truth depth information is provided in the form
of validity masks and depth maps, where the validity mask
indicates whether the depth at each pixel is valid. The out-
door ground truth distribution has a peak at the depth of
zero, meaning there is a high percentage of pixels with in-
valid depth. It is difficult for physical sensors to detect ex-
treme distances such as the sky. We verify that images with
sky yield a high percentage of invalid depth, which acts as
a strong cue for classifying an image as an outdoor scene.
Figure 5 shows two example images where there is a high
percentage of sky and are classified correctly as outdoor
scenes. However, using invalid pixels as cues for classifi-
cation is dangerous as it is biased towards outdoor scenes.
Certain indoor images will be incorrectly classified as sen-
sors cannot detect the depth of objects such as mirrors and
windows. Figure 6 shows an incorrectly classified indoor
image where the window region has invalid ground truth
depth, and we can see that the Omnidata depth map is a
better representation of the scene. Despite this, our exper-
iments show that RGB-D models trained with the ground
truth depth still outperform the ones trained with Omnidata
depth. A possible explanation is that there are more out-
door than indoor images in both of the datasets, and models
biased towards outdoor scenes will have a higher accuracy
overall.

5.2. Failure Cases

On indoor scenes, specifically in the DIODE test set, the
RGB-D model trained with Omnidata depth performs ap-

proximately 4.1% worse than the one trained on ground
truth depth. Specifically, the accuracy of the Omnidata
depth model and ground truth depth model is at 81.8% and
85.9%, respectively. Figure 7 displays two indoor images
in which our Omnidata-trained model misclassified while
the ground truth-trained model made the correct prediction.
Comparing the corresponding depth distributions, we notice
that the Omnidata pseudo-depth distribution spans a larger
range of normalized depth values than the ground truth.
This is more similar to the longer-tail average outdoor depth
distribution observable in Figure 4, partially explaining the
classification difference. Regarding outdoor data, classifi-
cation differences could also be linked to Omnidata’s dif-
ficulties with capturing the correct depth for vegetation, as
exemplified in columns 4,5, and 6 of Figure 2.

In general, we find that classification using Omnidata
tends to have difficulty with indoor images that feature
larger ranges of depths, such as underground subways, stair-
cases, and hallways. In these cases, the percentage of pixels
would be more widely spread along a larger depth range.
This results in a longer-tailed depth distribution that resem-
bles an outdoor scene more than an indoor scene.

On the DIODE outdoor scenes, our RGB-D model
trained with Omnidata is 0.25% less accurate than the one
trained on ground truth depth. We notice that Omnidata
generally fails when all objects are relatively the same dis-
tance away from the camera, in which a high percentage of
pixels would be squeezed to a limited depth range. In this
case, the depth distribution would not display the traditional
long-tailed shape of outdoor scenes and instead would fea-
ture a single large peak of a typical indoor scene. Depth
generated by Omnidata is only an approximation, and it is
not accurate enough for these cases.

5.3. Edge Cases

Within the SUN397 dataset there are many edge-case
images, as seen in Figure 8. Images that were taken un-
derwater are very difficult for our model to handle. Fur-
ther analysis shows that depth maps produced by Omnidata
seem to treat the water as one object, leading to a consol-
idation of pixels in limited depth range. This indicates an
indoor classification. Within the data set, we also noticed
mixed-environment images that combined both indoor ar-
chitecture and distinct outdoor features such as the sky. This
conflict is represented in the depth distribution, in which
there are rising peaks over a large range of depths. This
distribution is unlike the typical outdoor or indoor depth
distribution, and classification is therefore challenging. It
is likely that Omnidata fails to predict accurate depth maps
for images like these because it has not seen them during
training.



Figure 7: Omnidata Versus Ground Truth Indoor Classifications, Normalized Depth Distribution Cropped to [0-0.1]

Figure 8: SUN397 Edge Cases

6. Conclusions and Future Work

In this work, we investigate the usefulness of pre-trained
depth prediction neural networks in scene classification by
using predicted depth as an additional cue when training
indoor-outdoor classifiers. Our method tackles the problem
of the lack of diverse, expansive indoor-outdoor datasets
containing ground truth depth and physical limitations with
existing depth sensors. Specifically, we combat this is-
sue by utilizing a pre-trained, single-view depth estima-
tion network in order to generate predicted relative depth.
Our results with DIODE show that using synthetically gen-
erated depth maps as an additional input for training a
ResNet50 CNN achieves a 4.4% performance boost over
the non-depth baseline model, retaining 63.8% of the per-
formance boost achieved from training a classifier on RGB
and ground truth depth. For the SUN397 dataset, RGB-
D trained with Omnidata depth similarly showed a 1.3%
performance boost over the non-depth baseline. Although
pseudo-depth obtained from Omnidata contains less infor-
mation overall than ground truth depth, we find evidence
that using relative depth maps provided by pre-trained net-

works still provides a strong cue for indoor-outdoor classi-
fication.

We show that adding Omnidata depth improves the per-
formance of our network due to the differences in depth dis-
tributions between indoor and outdoor images. Depth dis-
tributions for outdoor images tend to have a long tail, while
indoor depth distributions have a higher peak. This dis-
tinct difference is consistent for both ground truth depth and
Omnidata-generated depth across the SUN397 and DIODE
datasets. This further demonstrates how pre-trained net-
works such as Omnidata can extend their applicability to
real-life data.

Additionally, despite losing around 2.5% in accuracy
compared to using the ground truth depth, using depth gen-
erated from pre-trained models is still the more viable op-
tion. Ground truth depth for DIODE took 36 hours to
collect, while Omnidata generated depth maps for the en-
tire dataset in five minutes — using a pre-trained depth-
prediction network is 99.8% faster. Moreover, the entire
process does not require any expensive sensors or cameras.

Since our experiments show that depth information
transfers from the synthetic domain to real-life data, possi-
ble future work includes investigating what other synthet-
ically generated knowledge can be transferred using pre-
trained models. Omnidata also provides a surface normal
estimation neural network, so we can perform an experi-
ment using surface normals as an additional cue for indoor-
outdoor classification. The DIODE dataset also contains
ground truth surface normal, so a similar experiment could
be conducted to learn about what kind of information is
useful and transferable from synthetic data. Additionally,
we expect that other image classification tasks would also
benefit from additional information provided by networks
pre-trained on synthetic scenes. These tests would further
explore the limits of information transfer from the synthetic
domain to real-life data.
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