
A Visual Interface for Social Information Filtering
John O’Donovan∗, Brynjar Gretarsson†,
Svetlin Bostandjiev‡, Tobias Höllerer¶

Department of Computer Science
University of California, Santa Barbara

USA
∗jod@cs.ucsb.edu
†brynjar@cs.ucsb.edu
‡alex@cs.ucsb.edu
¶holl@cs.ucsb.edu

Barry Smyth§
CLARITY: Centre for Sensor Web Technologies

School of Computer Science and Informatics
University College Dublin

Ireland
§barry.smyth@ucd.ie

Abstract—Collaborative or “Social” filtering has been suc-
cessfully deployed over the years as a technique for analysing
large amounts of user-preference knowledge to predict interesting
items for an individual user. The black-box nature of most
collaborative filtering (CF) applications leave the user wondering
how the system arrived at its recommendation. In this paper we
introduce PeerChooser, a collaborative recommender system with
an interactive interface which provides the user not only an ex-
planation of the recommendation process, but the opportunity to
manipulate a graph of their peers at varying levels of granularity,
to reflect aspects of their current requirements. PeerChooser’s
prediction component reads directly from the graph to yield
the same results as a benchmark recommendation algorithm.
Users then improve on these predictions by tweaking the graph
in various ways. PeerChooser compares favorably against the
benchmark in live evaluations and equally well in automated
accuracy tests.

I. INTRODUCTION

The idea behind recommender systems is to provide a user
with a useful recommendation. Many recommender systems
use item-based [12] or user-based [11] collaborative filtering
(CF). CF models the social process of asking a friend for
a recommendation. However, without the right friends the
process obviously fails. In the CF literature, such failures have
been termed the “grey-sheep”, “sparsity” and “early-rater”
problems. In the real world it is difficult to choose who your
peers will be, as modeled in most current CF systems. Imagine
you want a movie recommendation and can choose a group of
peers, in addition to your existing group. You might choose
Stephen Spielberg, among others if you’re in the mood for a
Sci-Fi flick. However, what if you told Mr Spielberg your top
10 movies, and he hated all of them. With this knowledge,
would you still want his contributions?

In this paper we show that not only is it possible to
manipulate CF peergroups based on dynamic and informative
feedback [10], but doing so greatly improves the users expe-
rience with the recommendation system. The process is fast
and more importantly fun for the end user. Dynamic feedback
is achieved in PeerChooser by allowing a user to see what
their existing peergroup would recommend for the user’s top-
n favorite and least-favorite items. Users can then tweak the
neighborhood graph to tune the predicted ratings on their

movie list to the required level. In fact, an existing profile
is not essential for the process to work well. By starting at
an average position in the neighbourhood-space representing
all possible peers, a user can then manipulate neighbor icons
to optimize predictions on their own favorite movies. This
technique can rapidly generate information upon which the
system can base predictions on unseen items.

PeerChooser also serves as an explanation interface for CF,
affording the user the opportunity to gain an understanding of
the core trends in the data, and become more aware of where
the final predictions are really coming from. Following from
the work of Herlocker et al. in [2], we show that visualization
provides an openness to the recommender system, which in
turn enhances overall user trust in the system– something
which is lacking in traditional recommender systems [9].

Furthermore, PeerChooser’s interactive components provide
the user with the option of telling the system about current
requirements. Mood and persona are important factors to be
considered in the recommendation process [4], but they are
also highly ephemeral phenomena in the context of the web,
making them very difficult to profile. For example, a user may
purchase books on Egypt prior to a vacation, but not want
recommendations of books on ancient Egypt six months later.

The remainder of this paper is organized as follows: Sec-
tion II presents a review of the related work in recommender
systems and interfaces. Section III outlines the architecture
of the PeerChooser recommender. Section III-A details the
force directed layout used in PeerChooser. Section III-B ex-
plains how personalized neighborhood graphs are constructed
within PeerChooser. Section III-C discusses the application of
our system as a tool for visualizing trust relations between
users. Section III-D explains the prediction mechanisms in
PeerChooser. Section IV presents results of our empirical and
live-user evaluations of the system.

II. BACKGROUND

Recent research in recommender systems is taking the focus
off large scale accuracy metrics such as mean absolute error
and precision-recall, and placing more emphasis on general
user satisfaction with the system. For example McNee et al.

2009 International Conference on

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.26

74

2009 International Conference on d

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.26

74

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.26

74

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.26

74

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.26

74

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.26

74

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.26

74

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.26

74

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.26

74

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE

DOI 10.1109/CSE.2009.26

74

in [5] posit that the “usefulness” of a recommendation should
be determined by a user’s current need. Herlocker et al. [2]
believe that “usefulness” of a recommendation is as important
as accuracy. Ziegler et al. construct a similar argument in
[15] and analyse the importance of topical diversity within
recommendation lists. In this work, facets from visualization
research have been incorporated into a novel recommender
system to improve performance and the user’s overall experi-
ence with the system.

Many synergies have been created by applying visualization
and interactivity to existing applications, for example the
application of friend-visualization on the social networking
web site Facebook [3]. Through visualization we are creating
an “explanation interface” for our recommender system. Some
research has been carried out into the effects recommendation
explanation has on the overall user experience with the sys-
tem. A prominent work in this field is Herlocker’s study of
recommendation explanations [2]. Herlocker et al. evaluate a
“white box” conceptual model of recommendation as opposed
to the run-of-the-mill black box approach. They present a
user study where 21 different recommendation interfaces are
presented to users, explaining various types of information
from within the recommender algorithm. Herlocker found that
users preferred viewing histograms of their neighbors’ ratings
for the recommended item over all other approaches. This is
in agreement with Middleton’s findings [7] that “explanation
interfaces lead to improved acceptance of a predicted rating.”

More recent work by Freyne et al. explores the value of
explanation in the web-search domain. Their work in [1]
presents a social search application in which the “influence of
community wisdom” is presented and used to explain ranking
in a search engine. Results from their user survey show that
users generally find the social visualization both interesting
and relevant.

This brief examination of related work shows that a synergy
can be achieved by combining information filtering algorithms
with visualization tools to create an “explanation interface”.
However, the application we now present serves not only as
an explanation, but as a fully interactive control over the
neighborhood data upon which our algorithms operate.

III. ARCHITECTURE

PeerChooser is a visualization-based collaborative filtering
recommender system which allows users to explore, under-
stand and visually interact with the underlying data in the
system. The system brings a novel aspect of openness and
accountability to the recommendation process, allowing users
to familiarize themselves with the structure and trends within
the data.

To date, collaborative filtering systems have relied heavily
on what is termed the similarity assumption [9]: that similar
profiles (similar in terms of their ratings histories) make
good recommendation partners. We argue that in addition to
the standard similarity assumption, users can benefit from
incorporating facets of their current mood or persona into

Ratings Data

Permanent
Similarity Correlation

Algorithms

Clustering
Algorithms

Visualization
And Interaction
Components

X
M

L

Top-n / Specific
Predictor

Interaction

Ephemeral
“Similarity”

Specific-Item
Predictor

New Peer Data

Dynamic Feedback

via Recommendation

Pre
dic

tio
ns

Predictions

R
at

in
gs

O
ptim

ized
P

eergroup

Fig. 1. Architecture of the PeerChooser Visual Interactive Recommender
System.

the recommendation process. This is facilitated in full by
PeerChooser’s interactive neighborhood graphs.

Before presenting a discussion of the actual visualization of
the CF process, we will discuss the high level architecture of
the system. Figure 1 presents an outline of the PeerChooser
architecture. User rating data is correlated to produce a model
of similarity. For this work we use Pearson’s correlation func-
tion as used in [9] to compute correlations between users. The
resulting similarity model, ratings, and item genre information
from the database are passed to a graph generator component.
This is essentially a clustering algorithm which generates an
XML representation of a personalized graph for one “active”
user.

Section III-A describes the graph layout in detail. The graph
generated is a spoke-model with the active user positioned at
the center. Edges are shown between the active user and every
other user in the system, up to a threshold number. These
edges represent the Pearson correlation between the active user
and each neighbor node. Edges are also drawn between non-
active user nodes and genre nodes. These edges indicate an
affinity for the associated genre based on underlying rating
data. The following section details the processes by which
these connections are determined.

As the user manipulates icons on the graph, dynamic
predictions are generated by the system. These can be seen
on the right panel in Figure 2. The active user can specify
the items to be dynamically predicted by the system. In our
user trials we suggest that this be a list of 5 liked and 5
disliked movies. Users play around with the graph until they
are satisfied with the dynamic predictions on their movie list.
When a user reports that they are satisfied with the layout, the
personalized graph is saved for later use. The user can now
receive specific, or top-n recommendation lists based on their
personalized graph configuration.

The graph is currently scalable to approximately 1000
users, but fewer nodes are easier for a user to understand

757575757575757575757575

K-nearest neighbor
highlighting.

Distance From Avatar is
Pearson Correlation

Mouseover
Highlights and
Shows Rating
info.

Dynamic Predictions
on User-Selected
ItemsTop-n, Cluster,

Correlation, Prediction
and Database Options

Active User’s
Avatar

Link Shows Affinity for
Genre

Fig. 2. Annotated Screenshot of PeerChooser’s Interactive Interface.

and manipulate. Accordingly, the number of users shown is
thresholded according to similarity with the active user. The
PeerChooser graph is highly interactive, users can freely move
nodes around, delete nodes or edges at an individual level
or on a per cluster level. In doing this the active user is
effectively changing the value of the similarity weight to be
used in our CF prediction formula. For this work we use
a standard Resnick prediction formula, shown in Formula
2. By moving an icon representing “comedy”, for example,
closer to the center of the graph, the user is essentially telling
the system, “right now I feel more similar to comedy fans
than fans of other genres.” This allows a user to express
current mood/requirements to the system quickly and easily.
PeerChooser then overrides the existing similarity value by
creating an ephemeral similarity model based on the new
values.

A. Forces in the Visualization

PeerChooser uses a simple force-directed spring layout
algorithm [14]. Figure 3 provides an overview of the node
interactions in the layout algorithm. Edges between all nodes

Fig. 3. Node interactions and forces in PeerChooser

are represented as springs. All the springs have a natural
length, measured in the same units as the screen coordinate
system, i.e: pixels, which they attempt to achieve constantly.
Force F1 operates between genre nodes and non-active user
nodes. Force F2 acts between non-active users’ nodes and
prevents them from collapsing in on each other. There is a

767676767676767676767676

constant centripetal force that prevents nodes from drifting
too far from the center. The key point of this layout is that
the distances D1, D2, ..., Dn are static and cannot be changed
by other forces in the algorithm. Only mouse movements
from the user can change these distances, which represent
the correlation between the active user and the individual
peer nodes. PeerChooser is a Java/OpenGL application and
can automatically detect screen resolution and adjust its pixel
map accordingly. If a spring in PeerChooser is shorter than its
natural length it extends, pushing the nodes at either end of
the edge apart. If a spring is longer than its natural length
it contracts, pulling the nodes at either end together. The
force exerted by the spring is proportional to the difference
between its current length and its natural length. Nodes linked
together tend to form clusters so a repulsive force is also
added so there will still be distinguishing space between the
nodes. To keep the nodes in the PeerChooser graph from
drifting into too large a space, a weak centripetal force is
applied to each node. Intra-node forces keep the graph from
collapsing in on itself. The lengths are changed iteratively to
obtain a well spaced out layout by minimizing the total energy.
During initial implementation it was found that nodes tended
to “quiver”, i.e: jump back and forward rapidly between two
or more approximately equal resting positions. To address this
issue a resting-heuristic was introduced to settle each note once
it had minimized its energy to within a threshold. The spring
layout is initialized with a graph of nodes and edges. X/Y
locations are assigned to each node in the network. The nodes
are then moved iteratively to minimize the energy.

B. Building Neighborhood Graphs

We are interested in allowing a user to manipulate a
neighborhood space to generate better recommendations and
express current preferences. So far we have explained how we
use Pearson’s correlation coefficients to place users relative to
the active user node in the graph. Without suitable information
about these connected nodes the user would not gain from
interacting with the graph. Ideally, we would like to show
the correlation between each pair of users in the system and
have this information displayed to the active user. However,
expressing a high-dimensional neighborhood space in a 2-
dimensional, or even 3-dimensional space is a complex task
and difficult for a user to understand. To maintain ease of
use for the end user we map the complex ratings data onto
the space of movie genres and present this to the end user.
An edge is formed from a user to a genre if their affinity
for that genre is above a threshold value. The spring forces
in PeerChooser cause a natural clustering of non-active user
nodes based on genre affinity. Since each user is clustered to
a genre, the active user can gain a lot of information about the
neighborhood at a glance. Each genre cluster is labeled with
the appropriate name. The clustering algorithm can associate
with 1 to many genres, Figure 4 shows the visualization for a
graph with 2 connections from user nodes to genre nodes (i.e,
a user’s favorite and second favorite genre).

The genre distribution in the MovieLens data has a strong

bias towards three genres: Drama, Action, and Comedy. As a
result, our initial clustered graphs tended to only show con-
nections between non-active user nodes and nodes representing
these three genres. To counter this problem and provide a more
diverse set of neighbors we apply a scaling function to our
edge drawing threshold based on number of occurrences of
a genre in the database. Equation 1 shows how the system
computes user to genre connectivity on a per-user basis. In
Equation 1 G is the set of all genres, g represents one genre.
Term Uliked,g indicates the number of items user U liked in
genre g. Utotal represents the total number of ratings by U ;
gtotal is the number of movies in genre g and c is a scaling
constant.

Max(g∈G)(
Uliked,g

Utotal
+

Uliked,g

gtotal
· c) (1)

C. Visualizing Trust Relations

In addition to providing an explanation of the recommenda-
tion process to the end user, PeerChooser enables the user not
only to visualize correlation, but also the trust-space generated
from the underlying ratings data.

A trust matrix from [9] built on the MovieLens dataset
was incorporated into the visualization mechanism as a means
to provide at-a-glance information to the end user on trust
in conjunction with similarity. For this experiment, trust was
computed using the CITEM algorithm from [9], and similarity
was computed in the usual way, using Pearson’s correlation
over the raw rating data.

Figure 5 shows the PeerChooser application displaying trust
and correlation in parallel. In this personalized graph, the ac-
tive user is positioned at the center with a personalized avatar.
Non-active nodes are positioned around this, again with edge
length fixed proportional to the Pearson correlation between
the users. Node size is a function of trust – smaller icons
are less trustworthy and larger ones have higher trust. Using
this graph the active user can easily discern the differences
between similar users and trustworthy users. In this example,
a highly trusted neighbor can be seen just below the active
user’s avatar. This neighbor is also highly correlated due to
the close proximity to the active user node. Attached to the
trusted peer is an icon representing the “horror” genre. In the
right panel the top-n recommendation list contains the slightly
esoteric movie “Hellraiser” in the top three, with a prediction
of 4.1 from 5. This is most likely the influence of the trusted
and correlated peer who likes horror movies.

D. Visualisation-Based Prediction

In the previous section we focused on PeerChooser’s visu-
alization interface, which allows the user to manipulate their
direct neighbors and genre preferences; these manipulations
are the user’s hints for the recommender. In this section we will
explain how these hints translate into actual recommendation
influences. In PeerChooser the k nearest (user) nodes are
selected as the neighborhood for the purpose of recommenda-
tion; these are the more shaded nodes in Figures 2 and 4. Our
benchmark CF prediction algorithm uses Resnick’s formula

777777777777777777777777

Fig. 4. PeerChooser multiple genre associations.

which is reproduced below as Equation 2; see also [11]. In
this formula c(i) is the rating to be predicted for item i for an
active profile c (the user receiving the recommendation), and
p(i) is the rating for item i by a peer profile p who has rated
i. c and p refer to the mean ratings for c and p respectively.
The weighting factor sim(c, p) is a measure of the similarity
between profiles c and p, which is traditionally calculated
as Pearson’s correlation coefficient and has a range of -1 to
+1. In our evaluation section we test the performance of this
standard benchmark algorithm against our visualization-based
approaches, which allow user hints to influence the similarity
values used during recommendations as we shall now discuss.

c(i) = c +

∑
p∈P (i)

(p(i)− p)sim(c, p)

∑
p∈Pi

|sim(c, p)|
(2)

To incorporate user hints into the recommendation process
we simply replace the standard similarity values (based on
user-user ratings correlations) with a new similarity value
that is based on the inverse Euclidean distance between the
active user node and each of the k peer nodes that have been
manipulated by the user. This is our ephemeral similarity

value and is given by Equation 3. Here, Euclidean distance
between pixels on the graph is normalized to the Pearson’s
correlation range of (-1, +1), max dist is the maximum
possible distance between the active user node and a peer
node, while node dist is the distance between the active node
(ie: the center of the graph) and each peer node. Equation 4
shows the original Resnick prediction formula using ephemeral
similarity in place of the standard Pearson correlation. The
nomenclature is similar to that in Equation 2 with c(i) being
the predicted rating for an active user c on item i.

eph sim(c, p) = (2(1− node dist

max dist
)− 1) (3)

c(i) = c +

∑
p∈P (i)

(p(i)− p)eph sim(c, p)

∑
p∈Pi

eph sim(c, p)
(4)

IV. EVALUATION

The majority of experiments involving recommender system
algorithms are based on some form of automated testing,
for example, predicting ratings for some “hidden” subset
of the rated data. This is only possible in the absence of

787878787878787878787878

Fig. 5. The PeerChooser OpenGL application showing trust values as node size and correlation as edge length.

interactive components such as the ones of our PeerChooser
system. Visualisation and interaction are additional “tiers” to
the process of collaborative filtering. The visualization and
interaction tiers bring many obvious advantages, however, it
does prohibit the standard automated testing procedure since
real people must explore the graph and interact with it to obtain
results.

A. Procedure

To assess users’ opinions of PeerChooser’s interactive visu-
alizations and to assess predictive accuracy we conducted an
evaluation with twenty five participants which examined four
techniques for generating recommendations with PeerChooser,
two with interaction (hints) and two without. The source data
for this survey was the smaller MovieLens[8] dataset, which
contains 943 user ratings on 1682 items. Participants were
asked to generate recommendations using the techniques listed
below. Three values per recommendation were recorded: the
predicted rating, the actual rating, and the average rating for
that item across the entire database.

1) Average Layout - (non-interactive) The graph was laid
out based on an “average user”. This profile was created
by taking the average rating for the 50 most rated items.
Participants were then asked to rate recommendations
generated for this user. This technique was expected to

yield the worst results as it contained no personalized
information.

2) Profile-Based Layout - (non-interactive) This is our
benchmark CF algorithm. Users rated 30 items in the
right hand panel. Correlations computed from these were
used to generate predictions.

3) Profile-Based Layout with Manipulation - (interactive)
Same as above but the user can manipulate the graph to
provide information on current requirements.

4) Profile-Based Layout with Manipulation and Feedback
- (interactive) Same as above except the user receives
dynamic recommendations on their salient items with
each graph movement. We expected this to exhibit the
best performance.

In all cases, the system’s predicted rating was not shown
to participants until after they had provided their rating for
each predicted item. This follows from work by Swearingen
et al. in [13] which suggests that users tend to rate towards
the machine-provided ratings. In all cases the number of
neighbors was set to k=30, an optimal value for CF on our
dataset reported in [6]. For associating or clustering non-active
user nodes to genre nodes we used the scaling function from
Equation 1 with a liked-item threshold of 3 (ie: liked-items
had a rating of 4 or 5). For each test, the 400 most similar
users based on Pearson’s correlation were displayed on the
graph. In all tasks where the user interacted with the graph,

797979797979797979797979

Fig. 6. Comparison of ratings distributions between existing MovieLens data
and data from the user trials.

Fig. 7. Error results for each technique in the user trials compared with
average predictions for each item recommended.

predictions were made using our distance-based version of
Resnick’s prediction formula (given by Equation 4); in all
others the standard Resnick prediction formula (Equation 2)
was used.

In the final task, Profile-Based Layout with Manipulation
and Feedback the graph layout was as in the previous tasks,
built from correlation over the profile data. Users were asked
to select checkboxes next to the 5 movies they really liked
and the 5 that they disliked. Users were then told to select
a button marked “specific predictions” see the benchmark CF
predictions on those items. Users were then told to take some
time to manipulate the graph of connected peers to try and
tweak the recommendations for their chosen items to a value
that most suited their needs and preferences. With no time
constraints imposed, all users in the survey reported that they
had arrived at a satisfactory position within 2 mins. With each
interaction users were provided with dynamic recommenda-
tions based on their “salient” item-set and according to the
current neighborhood configuration. This allowed the users to
dynamically assess the goodness of the evolving neighborhood
space as each interaction was performed. When a user becomes
satisfied with predictions generated from the “tweaked” graph
on the salient item sets, a list of top-n recommendations was
presented and the user was asked to rate them individually.

QuestionDescription
S1 I am familiar with recommender systems
S2 I am familiar with interactive computer graphics
S3 I am familiar with graph visualizations
S4 Which did you think was the most accurate
S5 I found the graph easy to understand
S6 Look at the 4 graphs and rate each one
S7 Did you prefer the visualization approach
S8 I gained knowledge about the underlying data from the

visualization
S9 I felt that the labeling was appropriate

S10 I felt that the information in the right panel was helpful
S11 I felt that the visualization system gave me more control of

the recommendation algorithm
S12 Would you like to see this interface on other domains (eg:

Amazon.com)
S13 I felt that I benefitted from interaction with the system

TABLE I
LIKERT SCALE QUESTIONS FROM THE USER SURVEY.

This list did not contain any items previously rated by the
user.

B. Recommendation Accuracy

To evaluate the accuracy of the techniques, mean absolute
error was computed between the predicted rating and the
user’s actual rating for each of the methods. Results are
presented in Figure 7 for each of the four techniques. As
expected, the average predictions– that is, predictions based
on the average user described earlier, exhibited the worst
performance, producing accuracy of 80.5%. Predictions based
on an average user (column 1 in Figure 7) have high accuracy,
this is not surprising if we take a look at the rating distribution
graph in Figure 6. Users tended to rate only movies they
liked, and the average user was constructed from a list of
the most commonly rated movies, which as it turns out were
generally the most highly rated movies. This may be attributed
to the fact that users tended to remember older movies in
a good light. Our profile-based technique (column 3) with
manipulation beats the benchmark (column 2) achieving a
small relative increase of 1.05%. P-tests indicate that these
differences are significant in each case with p <0.01. This
small increase is an important result because it indicates that
current information does help the recommendation process.
Future work includes conducting this experiment with the
more modern Netflix dataset and a larger user-base through
a fully web-based user study.

The most surprising result was that the dynamic feedback
technique performed worse than the other profile-based tech-
niques. After much analysis of the graphs it was determined
that users tended to over-tweak the system to achieve desired
results for their salient item sets. In doing this, much of the
existing correlation information was reduced and the resulting
layout was overfitted to the specific item sets. A solution to
this may be to ensure diversity within the salient item sets.

C. User Satisfaction

To assess the effects of user interaction with the system a pre
and post study questionnaire was answered by each participant.

808080808080808080808080

Fig. 8. Results of the Post-Study Questionnaire from the User Trials.

Table 1 lists each question from the survey and references the
columns in Figure 8. S1 to S3 indicate that all participants
had experience with graphical interfaces, recommenders and
visualizations. S4 tells us that, in contrast to our empirical
accuracy tests, users felt that manual rating provided more
accurate results. This was an interesting result which may
indicate that users are more comfortable with familiar, manual
rating systems. The four columns marked S6 represent partici-
pants’ opinions on a range of different graph representations of
the data, with column 8 being an exceptionally poor display.
S7 shows a clear preference for the visualization approach,
with 75% of users preferring PeerChooser over the traditional
approach. The benefit of our technique as a recommendation
explanation is shown by S8, where the majority of users felt
they gained knowledge of the data from their interaction with
the graphs. S9 and S10 indicate that users felt that labeling and
node information were appropriate. S11 shows us that there
were mixed views about the control that the interface provided
on the CF algorithms. This response may be due to insufficient
familiarization time, since the technique does provide more
access points to influence the CF process. S12 shows that
more than 80% of participants agreed that they would like
to see a PeerChooser-like interface on other domains such
as Amazon.com. This is an encouraging result, given that
there is a broad scope of applications for our technique. More
importantly, S15 shows that more than 80% of participants
felt they benefitted overall from interacting with the system.

V. CONCLUSIONS

Traditionally collaborative filtering systems have relied
heavily on similarities between the ratings profiles of users as a
way to differentially rate the prediction contributions of differ-
ent profiles. We have shown how interactive visualization tech-
niques can be incorporated into the mechanics of a standard
collaborative filtering algorithm to greatly expedite the process
of profile generation, helping to ease the “cold start” problem
that exists in most collaborative filtering systems. Visualization
enhances the user experience by providing a user with at-a-
glance information about the underlying structure of the data
upon which predicted ratings are generated. Interaction with

the visualization affords the user the opportunity to express
facets of current mood and requirements.

This paper evaluated our visualization-based approach
against a benchmark collaborative filtering algorithm using
mean error accuracy tests. A live user survey was carried out to
assess a range of aspects of user interaction with the system
from a HCI and predictive accuracy perspectives. Accuracy
experiments indicate that there is a benefit to the visualization
approach to profile generation for collaborative filtering over
each of the four techniques tested.

VI. ACKNOWLEDGMENTS
This research was supported in part by Science Foundation

Ireland under Grant No. 07/CE/I1147 as well as by NSF grants
IIS-0840585, CNS-0722075, and IIS-0808772.

REFERENCES

[1] Jill Freyne, Rosta Farzan, Peter Brusilovsky, Barry Smyth, and Maurice
Coyle. Collecting community wisdom: integrating social search & social
navigation. In IUI ’07: Proceedings of the 12th international conference
on Intelligent user interfaces, pages 52–61, New York, NY, USA, 2007.
ACM Press.

[2] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining
collaborative filtering recommendations. In Computer Supported Coop-
erative Work, pages 241–250, 2000.

[3] Cliff Lampe, Nicole Ellison, and Charles Steinfield. A face(book)
in the crowd: social searching vs. social browsing. In CSCW ’06:
Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work, pages 167–170, New York, NY, USA, 2006.
ACM Press.

[4] Hugo Liu, Pattie Maes, and Glorianna Davenport. Unraveling the taste
fabric of social networks. The Media Laboratory, Massachusetts Institute
of Technology.

[5] Sean M. Mcnee, Nishikant Kapoor, and Joseph A. Konstan. Don’t look
stupid: avoiding pitfalls when recommending research papers. In CSCW
’06: Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work, pages 171–180, New York, NY, USA, 2006.
ACM Press.

[6] P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative
filtering for improved recommendations, 2002.

[7] Stuart E. Middleton. Exploiting synergy between ontologies and
recommender systems.

[8] Bradley N. Miller, Istvan Albert, Shyong K. Lam, Joseph A. Konstan,
and John Riedl. Movielens unplugged: experiences with an occasionally
connected recommender system. In IUI ’03: Proceedings of the 8th
international conference on Intelligent user interfaces, pages 263–266,
New York, NY, USA, 2003. ACM Press.

[9] John O’Donovan and Barry Smyth. Trust in recommender systems. In
IUI ’05: Proceedings of the 10th international conference on Intelligent
user interfaces, pages 167–174. ACM Press, 2005.

[10] John O’Donovan, Barry Smyth, Brynjar Gretarsson, Svetlin Bostandjiev,
and Tobias Höllerer. Peerchooser: visual interactive recommendation. In
CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems, pages 1085–1088, New York, NY,
USA, 2008. ACM.

[11] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom,
and John Riedl. Grouplens: An open architecture for collaborative
filtering of netnews. In Proceedings of ACM CSCW’94 Conference
on Computer-Supported Cooperative Work, Sharing Information and
Creating Meaning, pages 175–186, 1994.

[12] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John Reidl.
Item-based collaborative filtering recommendation algorithms. In World
Wide Web, pages 285–295, 2001.

[13] Rashmi Sinha and Kirsten Swearingen. The role of transparency in
recommender systems. In CHI ’02 extended abstracts on Human factors
in computing systems, pages 830–831. ACM Press, 2002.

[14] LLC TouchGraph. Touchgraph available at www.touchgraph.com.
[15] Cai-Nicolas Ziegler, Sean M. Mcnee, Joseph A. Konstan, and Georg

Lausen. In WWW ’05: Proceedings of the 14th international conference
on World Wide Web, New York, NY, USA.

818181818181818181818181

