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ABSTRACT
Reading is central to learning and communicating, however,
divided attention in the form of distraction may be present in
learning environments, resulting in a limited understanding of
the reading material. This paper presents a novel system that
can spatio-temporally detect divided attention in users during
two different reading applications: typical document reading
and speed reading. Eye tracking and electroencephalogra-
phy (EEG) monitor the user during reading and provide a
classifier with data to decide the user’s attention state. The
multimodal data informs the system where the user was dis-
tracted spatially in the user interface and when the user was
distracted. Classification was evaluated with two exploratory
experiments. The first experiment was designed to divide the
user’s attention with a multitasking scenario. The second ex-
periment was designed to divide the users attention by sim-
ulating a real-world scenario where the reader is interrupted
by unpredictable audio distractions. Results from both exper-
iments show that divided attention may be detected spatio-
temporally well above chance on a single-trial basis.
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INTRODUCTION
It is often easy to become distracted while reading, leaving
the reader to not fully understand or acquire knowledge from
portions of text. Typically, this happens when distracting
sounds are heard or when dividing attention while attempting
to multitask. When learning, divided attention creates inter-
ference during the encoding process of the brain, thus affect-
ing memory and retrieval of the information [7]. This could
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Figure 1. Users focus on the sequential red letters during speed reading.

have a large, negative impact in fields where sustained atten-
tion and understanding is necessary. For example, in an ed-
ucational or workplace environment, one might be distracted
by surrounding peers, causing a decrease in task performance.

Interest in reading applications is larger than ever before,
given mobile devices with high resolution screens and digital
documents such as PDFs and e-books. Digital reading mate-
rials are increasingly popular these days due to the fact that
they are instantaneously and easily accessible through the in-
ternet, and typically cheaper than their physical counterparts.
The change from physical to digital reading modalities makes
it possible to more easily employ perceptual devices [14] that
monitor one’s attention state. Here, we discuss two types of
reading applications and introduce a novel system to detect
divided attention during reading.

Ordinary reading applications are the most common as they
are analogous to reading a physical book. In this style of
reading application, the user reads from left to right, and top
to bottom. Pages are turned by button press or touch ges-
ture. Speed reading has gained recent interest with mobile
applications such as Spritz [3]. A speed reading application
shows individual, consecutive words to a user (Figure 1), at
a rate set by the user. By eliminating saccades and other
potentially-distracting words in the periphery, one can read
at much higher speeds. Speed reading applications are par-
ticularly useful on mobile devices, with screens too small to
provide a comfortable reading experience of full-sized docu-
ments (e.g. mobile phones, smart watches). By allowing the
device to rapidly display consecutive words, the user must be
fully attentive at all times. Once a word, sentence, or para-
graph is missed, the user may not be able to easily navigate
back, or may not be aware of the precise point where attention
was lost. This presents a problem to users who are, for ex-
ample, multitasking or easily distracted by audio within their
vicinity.



Novel Attention Monitoring
In this paper, we present a novel system, employing
consumer-grade EEG and eye tracking devices, to detect spa-
tially (in the reading application) and temporally if a user is
either attending to a reading application or dividing their at-
tention. The contributions of this paper are two-fold: 1) an
algorithm for accurately detecting divided attention in read-
ing applications, and 2) the coupling of consumer-grade EEG
and eye tracking modalities to improve detection.

To explore the feasibility of classifying between attention and
divided attention, two experiments were conducted for each
reading task. The first experiment explores to what degree
divided attention can be detected in a multitasking scenario.
The second experiment explores to what degree divided at-
tention can be detected in the presence of real-world unpre-
dictable distractions.

RELATED WORK
There have been a handful of attempts to accurately measure
states of attention using a wide variety of EEG devices. Berka
et al. developed one of the first commercial systems, known
as B-Alert [6], to detect states of attention (high-engagement,
low-engagement, relaxed wakefulness, and sleepy) in real
time by a medical grade EEG device, but were not config-
ured to detect divided attention. Hamadicharef et al. were the
first to apply the filter bank common spatial pattern (FBCSP)
[8] algorithm to an attention task with EEG data. They found
that the FBCSP method classified up to 89.4% between states
of attention and relaxation using a 15-channel medical grade
EEG device. Liu et al. [10] used a consumer-grade EEG de-
vice with one electrode (Fp1) to create an attention classifier
from pooled subject data. The participants listened to English
phrases then answered related questions on a quiz under at-
tentive and distracted conditions. Classification was reported
to be on average 76% accurate (55%-60% for the inattention
class, 87%-90% for attention, depending on the cost func-
tion used). Martı́nez-Gómez et al. [11] found characteristic
features from eye tracking data that describe a subject’s level
of understanding and English language skill. Putze et al. [13]
used the combination of EEG and eye tracking to facilitate
video surveillance event selection. They demonstrated accu-
rate event detection in an abstract event selection task, using
a set of five electrodes.

The majority of the above attempts were performed uni-
modally, with devices far too expensive for the average con-
sumer. Similarly, the previously stated work has not at-
tempted classifying divided attention from attention. Hence,
we explore the possibility of combining low-cost EEG and
eye tracking to detect states of attention from divided atten-
tion in popular reading applications.

BRAIN-COMPUTER INTERFACE
The Emotiv Epoc [1], a consumer-grade EEG device, was
used for signal acquisition. The device samples at 128hz
and is equipped with 14 electrodes (AF3, AF4, F3, F4, F7,
F8, FC5, FC6, O1, O2, P7, P8, T7, T8) which are po-
sitioned according to the international 10-20 system. The
brain-computer interface developed for this system detects
changes in power from the frequency bands α (8-13hz), β
(14-30hz), and θ (4-7hz) between divided and non-divided
attention states.

EEG Preprocessing
EEG data was first low-pass filtered with a cutoff frequency of
50hz and high-pass filtered with a cutoff frequency of 0.16hz,
both using a third-order butterworth filter. The data was then
segmented into 1.5-second epochs, overlapping each previous
epoch by 50%.

Epochs that contained eye blinks were detected using an eye
tracker, and filtered according to [15]. An artifact removal
algorithm was implemented based on Adaptive SWT-based
Denoising (ASWTD). For the detected EEG segments, the
wavelet coefficients at level 6 were obtained using the sta-
tionary wavelet transform (SWT) and thresholded with the
adaptive thresholding mechanism using a hard thresholding
function. Denoised signals without artifacts were obtained
by computing an inverse SWT on the thresholded wavelet
coefficients. Since we were removing ocular artefacts, only
the wavelet coefficients from levels 3 to 6 were thresholded.
Epochs with other types of artifacts above a predetermined
threshold were discarded.

Filter-Bank Common Spatial Pattern
EEG data was spatially filtered according to an adapted
FBCSP algorithm [5], which involved IIR filtering the data
into frequency bins, then performing the common spatial pat-
tern algorithm on each frequency bin to find the source loca-
tion of the signal on the scalp. CSP spatially filters the EEG
channels by determining a matrix W such that WΣ1W

> =
D1 and WΣ2W

> = D2 where Σ1 and Σ2 are the estimated
class covariance matrices, and D1 and D2 are diagonal ma-
trices such that D1 +D2 = I . The first and last n (n = 6, in
practice) columns of W contain spatial filters that maximally
discriminate between the two classes.

Each preprocessed EEG epoch was first band pass filtered,
using a third-order butterworth filter, in the α, β, and θ fre-
quency bands. Literature [9] suggests that changes in the cho-
sen frequency bands are correlated with attention. A dedi-
cated portion of the EEG data was deployed to train a corre-
sponding spatial filter Wα, Wβ , and Wθ using the common
spatial pattern algorithm (CSP). The remaining band-pass fil-
tered epochs were then spatially filtered by their correspond-
ing spatial filter, using the n = 6 most discriminative spatial
filters as reported by the CSP algorithm.

EEG Classification
Offline EEG data was determined to be representative of at-
tention or divided attention by extracting features from the
CSP source signals, and classifying test examples with a
trained classifier. Log-variance features were extracted from
the spatially filtered data fα = log (var (WαX)), fβ =
log (var (WβX)), fθ = log (var (WθX)). 10x10-fold cross
validation with a support vector machine (SVM) classifier
was employed using the MATLAB implementation with an
RBF kernel, to decide if an EEG epoch was in the attention
or divided attention state. A grid search was performed to op-
timize σ for all participants, the remaining parameters were
left as default.

EYE TRACKING
The Eye Tribe [4], a consumer-grade eye tracker was used for
this work. Raw data was recorded at 60hz and divided into
four-second epochs. Each EEG epoch had a corresponding,



Table 1. Average classification accuracy and per-class classification accuracy for EEG, eye tracking and combined modalities.
EEG Eye Tracking EEG + Eye Tracking

Average Att. Div. Att. Average Att Div. Att. Average Att. Div. Att.

Exp. ISR

Subject 1 95.93% 97.45% 94.40% 63.04% 71.43% 54.05% 96.54% 98.43% 93.74%
Subject 2 97.68% 97.22% 98.13% 65.99% 54.7% 77.28% 97.79% 96.92% 98.66%
Subject 3 87.99% 88.21% 87.77% 67.81% 65.88% 69.75% 90.06% 90.97% 89.15%

Exp. IR
Subject 1 98.16% 99.59% 96.73% 72.26% 69.53% 74.09% 97.8% 99.28% 95.09%
Subject 2 99.97% 99.95% 100% 74.01% 71.6% 76.42% 99.19% 99.82% 98.56%
Subject 3 92.41% 93.02% 91.81% 63.14% 51.98% 74.31% 91.25% 93.51% 88.99%

Exp. IISR

Subject 1 84.52% 85.71% 83.33% 66.31% 68.77% 64.02% 83.51% 82.35% 84.60%
Subject 2 74.82% 73.76% 75.89% 72.34% 75.18% 69.5% 79.43% 75.18% 83.69%
Subject 3 69.07% 65.56% 73.33% 73.61% 71.48% 75.74% 82.41% 80.0% 84.81%

Exp. IIR
Subject 1 85.71% 88.10% 83.33% 78.57% 73.81% 83.33% 90.48% 95.24% 85.71%
Subject 2 77.14% 80.0% 74.29% 69.29% 57.14% 81.43% 84.29% 81.43% 87.14%
Subject 3 75.93% 74.63% 77.22% 71.39% 70.37% 72.41% 80.93% 79.26% 82.59 %

four-second eye tracking epoch, aligned at the last sample.
The Eye Tribe eye tracking algorithms are currently in active
development. We used version 0.9.41 of the SDK, and a chin
rest was used to minimize noise.

Fixation and Saccade Detection
An offline saccade and fixation detection algorithm adapted
from [12] was employed. Saccades were found by finding the
distance between the mean of two consecutive sliding win-
dows,
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where n is the sample of interest, and r is the window size.
The distance d is calculated at every sample in eye tracking

data by d =

√
(mafter −mbefore) · (mafter −mbefore)

>

which forms a sequence of peaks, where the max of each
peak represents a saccade. Once saccades are detected in
the epoch, the median of the samples between saccades are
marked as fixations. This algorithm may be applied to real-
time system where data is processed in epochs.

Eye Tracking Classification
Four of the most discriminative eye tracking features from
[11] were used for in our classifier: number of fixations,
median saccade length, mean saccade velocity x, and mean
saccade velocity y. Among other tested features, the cho-
sen features were found to best characterize between states of
attention in this experiment. Median was chosed instead of
mean saccade length so that outliers would not affect classifi-
cation. Additionally, log-variance features for saccade length
and mean pupil size were employed after observing discrim-
inative differences in the data. The features were added to
their corresponding EEG-epoch feature vector and then clas-
sified with the SVM classifier to determine attention states.

EXPERIMENTS
In this section, we’ll discuss two experiments to study the
effects of distraction from multitasking, and external stimuli
on classification. Both experiments required the subject to
complete two tasks, both split up into attention and divided

attention conditions. The first task involved speed reading a
passage of text. Each session lasted approximately two min-
utes. An open source speed reading application, Spray [2],
was used for this task. The second task required the subject
to read a normal passage of text, one page at a time. Each
session lasted the necessary amount of time for the subject to
finish two pages, which was approximately two minutes. Par-
ticipants were not allowed to go back to a previous page, but
were encouraged to read as they normally would. Both tasks
were split up into two conditions: attention and divided at-
tention, and required the subjects to wear headphones. After
each task, the participant reported a summary of what they
had read to ensure the subject was participating in the task.
EEG electrodes were checked after each task to ensure proper
impedance levels, and eye tracking calibration was checked
between experiments, but no recalibration was ever needed.

Experiment I
The first experiment was designed to simulate internal di-
vided attention, such as multitasking. Three participants (one
female, two males, ages 25-27) volunteered for the experi-
ment. All had normal or corrected to normal vision. A total
of eight sessions were performed, within subjects, for each
task. The names of nine different colors were spoken through
the headphones in a random order at one-second intervals.
The volume of the headphones were set to be as low as possi-
ble while still allowing the subject to hear the colors clearly.
During the attention condition, the participant was asked to
ignore the colors and completely focus on the speed reading
task. During the divided attention condition, the participant
was told to focus on the reading material but also count the
number of times a target color was spoken during the session.
The participant reported the number of colors heard after each
session, which was compared to ground truth data to ensure
the user was dividing attention between both stimuli.

Experiment II
The second experiment was designed to simulate an environ-
ment where a reader is distracted by external stimuli. Three
participants (three male, ages 22-34) volunteered for the ex-
periment. All had normal or corrected to normal vision. A
total of four sessions were performed, within subjects, for
each task. The headphones were set to a moderate volume
as determined by the participant. During the reading task, the
participant heard multiple, unique sound clips that lasted for
30 seconds each and would play randomly, but never overlap.



The sound clips contained distracting noises one might typ-
ically hear in their environment while reading, such as ener-
getic music, television shows, movies, dogs barking, or con-
versations from other people. After each session, the partici-
pant reported how distracted they were during audio playback
(1-9 Likert scale, 9 being most distracted). Distractions rated
below 4 were not used for classification. Three detachable
EEG electrodes were found to be damaged and thus excluded
from data acquisition: (F3, FC6, P7), (AF3, F3, FC5), and
(F7, P7, T7), for subjects one, two and three, respectively.

RESULTS AND DISCUSSION
The objective of this work was to develop algorithms which
allow EEG and eye tracking consumer devices to accurately
detect divided attention from attention during reading. Ad-
ditionally, we wanted to provide a proof of concept for map-
ping human attention into a user interface, so software could
intelligently react to and provide useful information about a
reader’s experience. A user’s eye fixations are seen in (Fig-
ure 3) which shows a clear discrimination between attention
and divided attention conditions.

To avoid any bias in the data, a 10x10-fold cross-validation
was used on the feature data for both experiments. Table
1 shows that classification accuracy of EEG and combined
modalities in experiment I exceeds those for experiment II
for both tasks. Figure 2 shows the higher dimensional EEG
features from the highest classification accuracy obtained in
experiment I. The feature data was projected onto the two
largest principal components in order to visualize the higher
dimensional feature space. It is clear from the visualization
that the two classes are highly separable, resulting in accurate
classification. The first experiment simulated a multitasking
scenario, where the reader may be engaging in other activi-
ties while they are reading, e.g. listening to a breaking news
story on the television while reading. This type of task was
designed to keep the subject’s attention divided among two
sets of stimuli. The EEG classification accuracy is high, most
likely due to the fact that the multitasking distraction effect
was stronger, resulting in different power in the frequency
bands between conditions. This experiment ensured that clas-
sification was based on true divided attention and not driven
by auditory perception signals in the brain, given that an iden-
tical auditory signal (a spoken set of colors in pseudo-random
order) was present across both conditions.
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Figure 2. First two principal components of EEG features from subject
two during the ordinary reading condition for experiment I.

Figure 3. Classified user fixation data visualized from experiment I. Red
circles represent divided attention, blue circles represent attention.

Whereas experimenent I was highly controlled to rule out the
possibility that auditory brain signals are driving classifica-
tion results, experiment II was designed to test a more real-
istic scenario in which a user’s attention is divided by unex-
epected and intrusive auditory distractions. Table 1 shows a
lower classification percentage using both modalities for ex-
periment II, but still well above chance. One possibility for
lower classification accuracy was the exclusion of three EEG
electrodes for each participant. Also, the second experiment
did not guarantee that a subject would be distracted during
the distraction condition. Given that some people may not
have an issue with background noise as they read, e.g. people
who commonly read with a running television in the room,
this experiment may not have distracted all of the participants
equally. This was also observed from the post-session ques-
tionnaire, which confirmed that the external stimuli were not
fully distracting to all participants. Mean scores for distrac-
tion level during the two tasks were (6, 6.25), (7.25,4.75), and
(4, 4.5), with their respective standard errors (0.629, 0.722),
(0.913, 0.479), (0.408,0.654) for the three participants. Ad-
ditionally, EEG classification from this experiment may have
been partially influenced by the user’s perception of hearing
different, intermittent audio clips.

CONCLUSION
We proposed a novel approach to detecting attention and di-
vided attention during reading applications, using EEG and
eye tracking consumer devices. Results from two experi-
ments show that EEG classification is highly accurate during
controlled multitasking scenarios, and still well above chance
during unpredictable distraction scenarios. On the other hand,
eye tracking data while not as accurate as EEG data, may be
effective as a single mode of input for certain types of appli-
cations. Additionally, by combining EEG and eye tracking
features, classification generally performs better than either
modality on its own. Future work will focus on classifying
attention from divided attention in real-time. For example,
the system could make note of when the user was distracted
during speed reading, providing an easy way to navigate to
areas the user missed, or warn the user, to regain focus. Simi-
larly, during ordinary reading, the system could make note of
spatio-temporal data received from the EEG and eye tracker,
and remind the user to go back and review those areas. Other
future work involves detection and multiclass classification
among other states of attention (e.g. mind wandering), and
attention detection in other evironment scenarios.
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11. Martı́nez-Gómez, P., and Aizawa, A. Recognition of
understanding level and language skill using
measurements of reading behavior. In Proceedings of the
19th International Conference on Intelligent User
Interfaces, IUI ’14, ACM (New York, NY, USA, 2014),
95–104.

12. Olsson, P. Real-time and offline filters for eye tracking.
Master Thesis (2007).

13. Putze, F., Hild, J., Kärgel, R., Herff, C., Redmann, A.,
Beyerer, J., and Schultz, T. Locating user attention using
eye tracking and EEG for spatio-temporal event
selection. In Proceedings of the 2013 International
Conference on Intelligent User Interfaces, IUI ’13,
ACM (New York, NY, USA, 2013), 129–136.

14. Turk, M., and Robertson, G. Perceptual user interfaces
(introduction). Commun. ACM 43, 3 (Mar. 2000), 32–34.

15. Yong, X., Fatourechi, M., Ward, R. K., and Birch, G. E.
Automatic artefact removal in a self-paced hybrid brain-
computer interface system. Journal of
NeuroEngineering and Rehabilitation 9, 1 (July 2012),
50.

http://www.emotiv.com/
https://github.com/chaimpeck/spray/
http://www.spritzinc.com/
http://www.theeyetribe.com/

	Introduction
	Novel Attention Monitoring

	Related Work
	Brain-Computer Interface
	EEG Preprocessing
	Filter-Bank Common Spatial Pattern

	EEG Classification

	Eye Tracking
	Fixation and Saccade Detection
	Eye Tracking Classification

	Experiments
	Experiment I
	Experiment II

	Results and Discussion
	Conclusion
	Acknowledgements
	REFERENCES 

