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INTRODUCTION 

Information systems have evolved to the point of being potential collaborators rather 
than manipulable tools. This has the potential to decrease human mental effort and 
increase the amount of data that can be incorporated into the human decision-making 
process. Intelligent agents can allow easy access to stored procedural knowledge 
and may alleviate the need to become an expert before taking action in a particular 
domain. Despite this, intelligent agents also face the danger of pushing the user out of 
the loop, such as pathfnding algorithms for automobile navigation (Ahuja, Mehlhorn, 
Orlin, & Tarjan, 1990) and collaborative fltering for movie recommendations (Breese, 
Heckerman, & Kadie, 1998), requiring only a yes-no confrmation but not reveal-
ing their underlying operations. Ideally, the complexity of these algorithms could be 
reduced to the level of common information tools such as winnowing interfaces, but 
this is not always possible. The conundrum of usefulness vs. simplicity was identifed 
by Norman as early as 1986—he writes, “simple tools have problems because they can 
require too much skill from the user, intelligent tools can have problems if they fail to 
give any indication of how they operate and of what they are doing” (1986). 

Designing interaction paradigms for intelligent agents remains an open problem 
(Gunning, 2017). The primary challenge is that most accurate algorithmic solu-
tions for complex problems would require signifcant investment from a user to gain 
complete understanding. Even then, nonlinear decision boundaries utilized by an 
algorithm are diffcult to visualize and explain, although there is progress on this 
front (Lakkaraju, Kamar, Caruana, & Leskovec, 2017; Ribeiro, Singh, & Guestrin, 
2016a, 2016b). Another contributing factor is that algorithm technology continues 
to rapidly improve while models of human interaction and cognition during use of 
these systems lags behind. This might be because human-agent interaction (HAI) is 
a chaotic system (Gregersen & Sailer, 1993), making predictions of the convergence 
unlikely or impossible, even if ideal quantitative measurements could be taken. This 



 

 
 
 
 
 
 
 

 
 

 

 

 

 
 

 
 
 
 

139 Quantitative Modeling of Cognition 

problem is further complicated by the potential of multi-agent systems, which stand 
to be even more diffcult to model and harder to understand than single, “monolithic” 
systems. Despite these challenges, these problems can still be addressed, even if only 
uncertain or approximate solutions can be given (for example, predicting rain this 
afternoon with 51% or higher accuracy is much better than no prediction at all). This 
chapter defnes and assesses the value of different cognitive and behavioral measure-
ments in an attempt to explain variability in the human-agent system. 

We propose profling complex, automated algorithms using what we refer to as the 
explanation, control, and error (ECR) profle. We profle human users based on trust 
propensity, cognitive refection, domain knowledge, and self-reported knowledge. We 
use the human and machine profle to investigate the human cognitive (trust, situation 
awareness, beliefs about an agent, perceptions of the agent, and cognitive load) and 
behavioral reactions to variations in these profles. The factors investigated are then 
used in a statistical model to explain two types of human decision-making behaviors: 
adherence and decision outcomes. Specifcally, we study how users interact with non-
embodied, monolithic systems under two different task paradigms. We follow this with 
a discussion of how to extend the analysis to systems with multiple agents. Formally, 
we ask the following three questions about dynamic human-agent cognition: 

(1) How do a person’s cognitive traits affect usage of an intelligent agent and 
resulting decision outcomes? 

(2) Which cognitive or system factors explain variability in decision making 
(interaction, adherence, success) in the HAI system? 

(3) What is the relationship between correct beliefs about agents, their use, 
and trust? 

In order to answer these questions, we generate a statistical map of all the factors 
mentioned through an exploratory factor analysis. We model the human-agent system 
by considering the agent’s profle (explanation, control, error) as predictors of adher-
ence and decisions while controlling for cognitive traits (domain knowledge, cogni-
tive refection, reported knowledge, and trust propensity). This results in the ability to 
predict the outcomes (decision making, adherence) in terms of the starting point of 
the HAI system. Moreover, we consider inter-task states and behaviors (perceptions, 
cognitive load, trust, situation awareness, interaction) as partial or full mediators of 
the starting point variables. The fnal measurement model is shown in Figure 7.1. 

Two exploratory structural equation models (SEM) (Ullman & Bentler, 2003)— 
one from each study—were ft (by testing around 85 hypotheses). Controlling for 
multiplicity was done using the Benjamini-Hochberg procedure (Benjamini & 
Hochberg, 1995) using the exploratory value of Q = 0.10, which penalizes more for 
false positives than false negatives (in other words, we do not want to miss any poten-
tially interesting effects that could be the basis for future studies). This quantitative 
map of these two studies will not only lead to better understanding of how humans 
react to intelligent agents, but also inform the design of future research in this area. 

In this section we attempt to clearly defne the semantic meaning of each factor 
studied. Then, we give a brief overview of the terminology used. Finally, we follow 
with a discussion of related work in each area. 
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141 Quantitative Modeling of Cognition 

EXAMPLE APPLICATION DOMAINS 

The context of this research is human interaction with intelligent agents when per-
forming a task or making a decision. This interaction occurs in a wide and increasing 
variety of contexts as artifcial agents’ capabilities are bolstered by increasing access 
to data and computing power. We have alluded to familiar example use cases in route 
planning by a smartphone or GPS or movie recommendations based on inferred user 
preferences from online streaming providers such as Netfix. A more complex exam-
ple is automated suggestions for disease diagnosis to supplement a doctor’s expert 
analysis. Later in this chapter, we describe in detail a movie recommendation system 
and a restaurant ordering recommendation system to aid a user in maximizing the 
value he gets from a social meal. The common thread among all these examples 
is goal-oriented human interaction with an agent whose algorithms, reliability, and 
data store may not be fully transparent. 

TERMINOLOGY AND COGNITIVE FACTORS 

• Embodiment vs. artifact: We distinguish between two types of agents, 
those that are embodied visually or physically and those that are not 
(artifacts). 

• Multi-agent systems: Multi-agent systems distinguish themselves from sin-
gle-agent systems by maintaining separate internal states and knowledge of 
the environment. 

• Subjective and objective task domains: An objective task domain has a 
criterion for success that can be measured and verifed by a third party, 
such as the goal of removing body fat in the ftness domain. A subjec-
tive task domain attempts to model and satisfy the preferences of an 
individual person, such as the goal of providing an appropriate item to 
a customer. 

• Explanation, control, and error: This is a simple method for profling an 
agent. Explanation refers to the degree that operations are communicated 
to a user, control refers to the degree that agent behavior can be re-directed, 
and error refers to the probability that the agent’s output does not solve the 
task domain. 

• Situation awareness: Situation awareness is defned as the match between 
a person’s mental model and the state of the environment. Situation aware-
ness is defned either globally or with respect to a particular object in the 
environment. 

• Trust, user experience, system perceptions: Trust is defned as a person’s 
willingness to accept an agent’s recommendations. User experience is the 
feeling (positive or negative) that a person has when interacting with an 
agent. System perceptions are defned as more nuanced forms of user expe-
rience, e.g., a person may have a good experience overall but may identify 
that an agent is bad at explaining itself. 

• Cognitive load: A person’s state of frustration while attempting to process 
task factors. 
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• Reported and true domain knowledge: Domain knowledge is defned as 
the total number of insights about a domain that a person has. Reported 
knowledge is their self-assessed knowledge level, which may not accurately 
refect their true domain knowledge. 

EMBODIMENT VS. ARTIFACT 

Embodied agents are agents that are embedded within and control a particular phys-
ical system or visual entity, whether networked or un-networked (e.g., automated 
drones, Amazon’s Alexa). Agents can also be a technological artifact of an algorithm 
(or collection thereof) that exhibits complex behavior but does not necessarily mani-
fest in a physical or visual form (e.g., recommender systems on Amazon, Netfix, etc.). 
Virtual embodied agents (typically referred to as just virtual agents) are known to 
strongly infuence the behavior of users (Hertzum, Andersen, Andersen, & Hansen, 
2002) when compared to their nonembodied “artifact” counterparts (Komiak & 
Benbasat, 2006). This is because people react to virtual agents similarly to the way 
they react to real people. They form an opinion of the agent within the frst 13 sec-
onds of interaction and become more conscientious about behaviors (Cafaro et al., 
2012). Despite this, trust relationships with non-embodied agents, especially rec-
ommender systems, continue to be studied (Benbasat & Wang, 2005; Knijnenburg, 
Bostandjiev, O’Donovan, & Kobsa, 2012a; O’Donovan & Smyth, 2005; Pu, Chen, & 
Hu, 2011), perhaps because virtual agents remain expensive and their performance is 
considered an open question (Choi & Clark, 2006; Veletsianos, 2007). 

A physical embodied agent is tangible (e.g. drones, robots, and to some extent 
Amazon’s Alexa), while intangible agents, such as the recommender systems that are 
embedded on modern e-commerce websites, reside in digital space. Human interac-
tion with tangible agents can differ dramatically from intangible agents, even if the 
recommendations and overall system goal are the same. Interactions with physical 
agents can be colored by social cues, cultural norms, differing expectations relative 
to computers, and levels of acceptance of anthropomorphic form factors (Breazeal, 
2004). It was shown in Podevijn et al., (2016) that humans have differing physi-
ological effects when dealing with physical robot swarms than with virtual robot 
simulations. There is also evidence that users have a better subjective experience 
when performing a task aided by physical robots than by simulated robots (Wainer, 
Feil-Seifer, Shell, & Mataric, 2006). Humans have been shown to be more “polite” to 
physical robots than to virtual agents, being more likely to respond to greetings and 
afford the robot personal space while performing tasks (Bainbridge, Hart, Kim, & 
Scassellati, 2008). Perhaps most signifcantly, users may be more trusting of physical 
agents, as they were more likely to perform an unintuitive task when instructed by a 
robot than when instructed by a virtual agent (Bainbridge et al., 2008). 

MONOLOTHIC VS. MULTI-AGENT SYSTEMS 

Popular examples of monolithic systems include expert systems or recommender 
systems, which we expect many people to have come across on e-commerce sites 
such as Amazon or Netfix. There is a relative wealth of research on user behavior 



 

 
 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

143 Quantitative Modeling of Cognition 

and cognition with monolithic systems, which will be discussed in the following 
sections. Here, we focus on multi-agent systems, which is an emerging research area. 

Multi-agent systems consist of multiple agents with separate internal states and 
knowledge of the environment. This knowledge shielding is critical to the defnition 
of software multi-agent systems, as a group of software agents with perfect group 
knowledge and communication would be indistinguishable from a monolithic sys-
tem (Panait & Luke, 2005). Systems can include multiple intangible agents, such 
as multi-disciplinary design aids (Ren, Yang, Bouchlaghem, & Anumba, 2011). 
Tangible multi-agent systems, such as groups of robots, are more easily recognizable 
as their practical restrictions on communication and distribution in space ensure that 
their states and knowledge cannot be uniform. 

As autonomy becomes embedded in more objects of diverse form factors, humans 
are more likely to interact with multiple agents simultaneously. Increasing the number 
of agents in the system can place control and attention burdens on the human user, 
but there are also many benefts to distributed systems, such as adaptability and scal-
ability (Humann, Khani, & Jin, 2016; Prokopenko, 2013; Requicha, 2013). In complex 
distributed systems, agents can reduce the cognitive load on humans by making deci-
sions locally and at a lower hierarchical level. This is useful in many practical appli-
cations, such as power grid management or control of customizable manufacturing 
processes (Marik & McFarlane, 2005). This delegation to low-level agents allows the 
human to focus on decision making at a higher hierarchical level while tracking fewer 
details of the inner workings of the system. Other benefts include adaptability and 
re-confgurability, as agents continuously adapt to one another and new agents that 
are introduced into the system. Agents can also support multi-disciplinary decision 
making, as each agent can represent specialized knowledge in a domain, relieving the 
user of the responsibility to be an expert in every relevant domain. 

Multi-agent systems can be used as simulations, surrogates for the behavior 
of humans. This is especially helpful in design of systems that are meant to have 
many users simultaneously. This approach has been used to model organizational 
processes (Jin & Levitt, 1996), evacuation procedures (Mikhailov, 2011; Stuart 
et  al., 2013), seating layout design (Humann & Madni, 2014), and many others. 
The results of simulation can predict how the systems will be used in practice, and 
allow for design changes to be made up front, rather than waiting for problems to 
arise in use. 

In multi-agent intelligent systems, the intelligence can be distributed and 
devolved, so that the recommendations to the user are not coming from a single 
source. Recommendations may not always be meant for the user either; in a multi-
agent system, agents could be making intelligent recommendations for use by other 
agents. For example, in Humann and Spero (2018), a surveillance task of classify-
ing threats within a feld was carried out by humans interacting with two different 
classes of unmanned aerial vehicles (UAVs). As a frst pass, fast high-altitude vehi-
cles would tag points of interest within the feld. Their sensitivity to risk variables 
(e.g. heat, metal content, movement) could be increased to eliminate false negatives, 
but at the cost of increasing false positives. Thus the user must set the sensitivity at 
such a level that they can work effciently, be confdent that they are avoiding false 
negatives, and use further analysis to root out the false positives. At every step in this 
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process, there is an opportunity for agents to explain their recommendations to the 
user, but in large systems, this could quickly result in information overload. 

When human control of each agent is infeasible, the agents must be made more 
autonomous or hierarchical control may be introduced. In one example of hierarchi-
cal control, “RoboLeader” is an autonomous virtual intermediary between a human 
operator and tangible robotic agents (Rosenfeld, Agmon, Maksimov, & Kraus, 2017; 
Snyder, Qu, Chen, & Barnes, 2010). The human interacts with RoboLeader by issu-
ing high-level commands, and RoboLeader is responsible for controlling a team of 
robots that is searching for survivors in a simulated rescue mission. This hierarchy 
shields the complexity of multi-agent control from the human in most cases, while 
still allowing the human to take direct control of individual robots in special cases. 

EXPLANATION, CONTROL, AND ERROR 

Research on virtual monolithic agents has led us to the theory that, at a fundamen-
tal level, all agents can be profled by their levels of explanation, control, and error 
(ECR). Explanation level is the amount of output (and thus visual) bandwidth that 
is allocated for indications of operation. For instance, showing intermediate sorting 
steps would be an explanation of a sorting algorithm. Control level is the degree 
to which the system requires or allows input from the user. The ideas of control 
and automation are intrinsically linked. Increased automation necessarily leads to 
systems that more specifcally target a particular task, reducing fexibility and reus-
ability, but requiring less control. For instance, requiring the user to select the kernel 
of a support vector machine (as can be done in Weka; Holmes, Donkin, & Witten, 
1994) decreases the level of automation and increases the cognitive demands on the 
user, but also increases the overall fexibility of the system. Explanation features 
are sometimes intentionally designed to accommodate control features, such as the 
selection of an alternate route in a GPS system. Automation can also be dynamic, 
turning on or off when the system detects it is in a critical state. Finally, all computa-
tional functions and algorithms solve a well-defned problem, but due to limitations 
in information or processing power, errors can occur. For instance, recommender 
algorithms attempt to predict user preferences in sets of items, but complete knowl-
edge of a user’s preferences can only be estimated from the user’s item profle, which 
only partially defnes their tastes. In other applications, processing may be under a 
time limit, which means systems must sometimes settle for approximate solutions. 

Explanation and control from automated algorithms has been studied since at 
least 1975 (Shortliffe et al., 1975). This section presents work on explanation and 
control features in three research areas: recommender systems, expert systems, and 
scientifc computing. We will also survey research where the accuracy of decision 
support systems was experimentally manipulated. 

Explanation in Recommender Systems 
Over the last 15 years, research has shown that explanation of a recommender sys-
tem’s reasoning can have a positive impact on trust and acceptance of recommen-
dations. Recent keynote talks (Chi, 2015) and workshops (O’Donovan et al., 2015) 
have helped to highlight the importance of usability. Many recommender systems 
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function as black boxes, providing no transparency into the working of the recom-
mendation process, nor offering any additional information beyond the recommen-
dations themselves (Herlocker, Konstan, & Riedl, 2000). This may negatively affect 
user perceptions of recommendation systems and the trust that users place in predic-
tions. To address this issue, static or interactive/conversational explanations can be 
given to improve the transparency and control of recommender systems (Tintarev, 
Kang, Höllerer, & O’Donovan, 2015). 

Bilgic and Mooney (2005) furthered this work and explored explanation from 
the promotion vs. satisfaction perspective, fnding that explanations can actually 
improve the user’s impression of recommendation quality. Later work by Tintarev 
and Masthoff (2007) surveyed literature on recommender explanations and noted 
several pitfalls to the explanation process, notably including the problem of con-
founding variables. This remains a diffcult challenge for most interactive recom-
mender systems (Tintarev et al., 2014), where factors such as user cognitive ability, 
mood and other propensities, experience with the interface, specifc interaction pat-
terns, and generated recommendations can all impact on the user experience with the 
system. Sinha and Swearingen (2002) noted that users liked and felt more confdent 
about recommendations they perceived as transparent. The importance of system 
transparency and explanation of recommendation algorithms has also been shown 
to increase the effectiveness of user adoption of recommendations by Knijnenburg 
et al. (2012a). 

Explanation in Expert Systems 
Work in knowledge-based or “expert systems” has illuminated the effects of expos-
ing explanations from complex agents. Gregor and Benbasat (1999) provide an excel-
lent summary of the theory of crafting explanations for intelligent systems. User 
studies which test the effects of explanation typically vary explanation level and 
quantify concepts such as adherence or knowledge transfer. Key fndings show that 
explanations will be more useful when the user has a goal of learning or when the 
user lacks knowledge to contribute to problem solving. The impact of explanation on 
both novices and experts has also been extensively studied (Arnold, Clark, Collier, 
Leech, & Sutton, 2006): novices are much more likely to adhere to the recommender/ 
expert system due to a lack of domain knowledge, and expert users require a strong 
“domain-oriented” argument before adhering to advice. Experts are also much more 
likely to request an explanation if an anomaly or contradiction is perceived. Most of 
these studies focus on decision-making domains (fnancial analysis, auditing prob-
lems) and were conducted before the explosion of data that is available to modern 
tools. When browsing or analyzing data that is too large to be analyzed by hand, 
decision makers have no choice but to utilize automated fltering techniques as part 
of their search strategy. This creates new questions about what might change in the 
dynamics between humans and automated algorithms. 

Automation and Error 
Intelligent assistants often vary in their degree of automation and effectiveness, but 
these have not garnered as much attention as the explanation issue. The pros and 
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cons of varying levels of automation have been studied in human-agent teaming 
(Chen & Barnes, 2014). Less prompting of the user for intervention may reduce cog-
nitive load, but might also reduce awareness of system operations. Although system 
effectiveness continues to improve (e.g. Koren & Bell, 2015), it is not conclusive 
that improved algorithms result in improved adherence to system recommendations. 
For instance, no effect of system error was found in Salem et al. (2015). In con-
trast, Yu et al. (2017) found that system errors do have a signifcant effect on trust 
and Harman et al. (2014) found that users trust inaccurate recommendations more 
than they should. These research studies also call the relationship between trust and 
adherence into question. In this study, we attempt to clarify this relationship through 
simultaneous measurement of trust and adherence while controlling for system error 
and automation. 

SITUATION AWARENESS 

The theory of situation awareness (SA) can answer some questions about human 
decision making in contexts where intelligent agents are present (Endsley, 1995b; 
Parasuraman, Sheridan, & Wickens, 2008). Maximal SA is a requirement for optimal 
decision making. If an analyst cannot understand what an intelligent agent is doing 
and an error is made, it could potentially result in catastrophic errors. For example, 
the Air France 447 crash1 was caused by a combination of system error and lack of 
transparency. Measurement methodologies for SA have been established (Endsley, 
1995a), although new SA question items must be devised for each new domain. 

SA-Based Agent Transparency 
The theory of SA has also been applied to the problem of agent transparency (Chen 
et al., 2014). Chen’s theory is called SA-based agent transparency (SAT), which is 
based on Endsley’s three levels of SA and other theories. Chen refers to Endsley’s SA 
as “global” SA, while SAT is relevant only to transparency requirements relevant to 
understanding the intelligent agent’s task parameters, logic, and predicted outcomes. 

Incorporating all three levels of SA into SAT should help a user gain understand-
ing of an agent’s reasoning and operation and help the user make informed decisions 
about “intervention,” or what we call here as the manipulation of a “control” parame-
ter. Chen notes that automation reliability strongly infuences a user’s attitude toward 
automation which can have signifcant impacts on trust, and thus has an impact on 
the degree to which that automation is leveraged. Over-trusting automation leads to 
automation bias (Cummings, 2004) and under-trusting results in disuse of the auto-
mation. Chen notes that information visualization and the display of uncertainty are 
key factors in understanding automation and discussed this in more detail in Chen, 
Barnes, and Harper-Sciarini (2011a). 

TRUST, USER EXPERIENCE, AND SYSTEM PERCEPTIONS 

The word “trust” has been used to describe a number of phenomena in many different 
domains and therefore it is carefully defned in this section. In this work, the word trust 
refers to the user’s perception that he or she can blindly rely on the system. This view was 
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strongly infuenced by the research of McKnight, which distinguishes the concepts of 
trust in technology and trust in other people (McKnight, Carter, Thatcher, & Clay, 2011; 
McKnight, Carter, & Clay, 2009), showing that people can discriminate between the two. 

Trust propensity and its relationship to trust has been studied extensively in psy-
chology, notably Colquitt et al. (2007) and Gill et al. (2005). Behavioral outcomes are 
affected by trust propensity when partially mediated by trust and trustworthiness, 
which is information about a trustee. The effects of trust propensity on behavioral 
outcomes disappears when information about the trustee becomes more reliable. 
Other studies in e-commerce have also found similar mediating effects between trust 
and trust propensity (Lee & Turban, 2001). Both trust and trust propensity need to be 
measured simultaneously to isolate system properties that instill trust from effects 
caused by highly trusting users. 

COGNITIVE LOAD 

The term “cognitive load” originates from education and learner theory (Sweller, 
1994) and problem solving (Sweller, 1988) and is loosely defned as a “multidimen-
sional construct representing the load that performing a particular task imposes on 
the learner’s cognitive system.” Information overload (Eppler & Mengis, 2004), a 
related concept, shares many of the same properties. Greater cognitive effort by 
users of systems leads to increased error when performing tasks. Paas et al. (2003) 
surveys numerous methods of measuring cognitive load during participant tasks, 
noting that cognitive load can be assessed by measuring mental load (portion of 
cognitive load that originates from task to subject relationship characteristics), men-
tal effort (the actual effort exerted as demanded by task requirements), and perfor-
mance. Participant self-reported rating scale techniques have been successful, as 
participants seem capable of accurately reporting their mental burden. Physiological 
techniques, such as the measurement of heart rate, brain activity, and pupil dila-
tion, have also been successful. Finally, other kinds of performance measures can be 
applied, such as measuring the participant’s effectiveness at managing a secondary 
task periodically while performing the primary task. 

COGNITIVE REFLECTION 

Work on attention and cognitive refection (CRT) by Daniel Kahneman (1973) has 
been successful in discriminating between “fast” and “slow” thinking using a vari-
ety of questions that effectively trick the human processing system. Since then, CRT 
tests have been frequently used due to a correlation with human intelligence and 
decision making (Toplak, West, & Stanovich, 2011; Welsh, Burns, & Delfabbro, 
2013). This work hypothesizes that CRT would be a strong predictor of a person’s 
decision behavior when interacting with an agent. 

REPORTED AND TRUE DOMAIN KNOWLEDGE 

Consequences of self-reported ability have been recently discovered in studies of 
cognitive psychology (Hoorens, 1993; Kruger, 1999). The Dunning-Kruger effect 
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predicts that low-ability individuals maintain an over-estimated belief in their own 
ability. This work also illustrates how quantitative metrics collected through ques-
tionnaires do not always measure their face value. For instance, the Dunning-Kruger 
effect shows us that asking a user how much he knows about a particular topic will 
only quantify the number of “unknown unknowns” relative to the user, rather than 
the user’s actual ability in that area (Merritt, Smith, & Renzo, 2005). Defcits in 
knowledge are a double burden for these users, not only causing them to make mis-
takes but also preventing them from realizing they are making mistakes (Kruger & 
Dunning, 1999). 

The Dunning-Kruger effect is part of a larger group of cognitive effects some-
times referred to as “illusory superiority.” Other effects in this category create an 
additional concern for the success of intelligent assistants. For instance, it is known 
that estimating the intelligence of others is a diffcult task (the Downing effect) 
(Davidson & Downing, 2000) that requires high intelligence. This explains the ten-
dency of people to be very likely to rate themselves as “above average,” even though 
not everyone can be so. We might expect that lower-intelligence users would fail to 
accurately gauge the intelligence of information systems, leading to disuse. 

The research on self-reported ability leads us to hypothesize that overconfdent 
individuals are less likely to interact with or adhere to intelligent assistants, due to 
the over-estimation of their own ability and their inability to assess the accuracy of 
the system. 

INTRODUCTION TO TASK PARADIGMS 

We considered two tasks to ft and validate the cognitive measurement model pre-
sented here. The frst was a subjectively validated task—Movie Recommendation 
(MR)—and the second was an objectively validated game theoretic task—the 
Diner’s Dilemma (DD). 

In the MR task participants interacted with an interface dubbed “Movie Miner” to 
fnd a set of movies to watch in the future. This is a common setup in studies of rec-
ommendation, however, we improve upon these studies by including better model-
ing of decision satisfaction (Schaffer, O’Donovan, & Höllerer, 2018) and behavioral 
(rather than reported; Pu et al., 2011) adherence. Behavioral adherence modeling is 
only possible if the task is unrestricted and participants have the freedom to choose 
between alternative tools. Thus, participants were given two tools to work with and 
their behavior was not restricted. The methodology was thus very similar to typical 
online browsing sections, such as on Amazon, where a customer is browsing a prod-
uct catalog and adding items to their “shopping cart.” In summary, we kept the fol-
lowing three goals in mind: (1) to make the system as familiar to modern web users 
as possible, (2) to make the system as similar to currently deployed recommender 
systems as possible, and (3) to ensure that the study can be completed without forc-
ing the users to accept recommendations from the system, so adherence can be mea-
sured. The use of novelty in any design aspect was minimized so that results would 
have more impact on current practice. 

The second study, DD, was chosen due to its wide applicability, limited complex-
ity, and research base. The Diner’s Dilemma is an n-player, iterated version of the 
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basic prisoner’s dilemma. In the basic prisoner’s dilemma, two players decide to take 
an action (cooperate or defect) without communication beforehand, where defection 
leads to a higher outcome for an individual regardless of the other players’ actions, 
but with mutual cooperation leading to a higher outcome than mutual defection. The 
iterated form of this game can show evolution in player strategies as they learn the 
other player’s tendencies to defect or cooperate. 

Multi-player versions of this game, such as the Diner’s Dilemma, are more com-
plex, which has made them suitable for studying the effects of increased information 
available to players through a user interface (Gonzalez, Ben-Asher, Martin, & Dutt, 
2013; Martin, Juvina, Lebiere, & Gonzalez, 2011). In this experiment, the iterated 
three-player version was used, which limits the complexity of the game such that it 
is within the comprehension of human players, but is still suffciently complex to 
warrant a computational aid. In this chapter, our DD gives the user a choice between 
ordering a hot dog or lobster when dining out with friends, under the agreement that 
the table’s total bill will be split evenly among the diners. The defect strategy is to 
order the expensive and satisfying lobster, hoping that others will order hot dogs and 
subsidize the user’s bill. The cooperate strategy is to order the inexpensive hot dog. 

Participants in both studies were recruited on Amazon Mechanical Turk (AMT). 
AMT is a web service that gives tools to researchers who require large numbers of 
participants and are capable of collecting data for their experiment in an online set-
ting. AMT has been studied extensively for validity; notably Buhrmester, Kwang, 
and Gosling (2011) found that the quality of data collected from AMT is comparable 
to what would be collected from laboratory experiments (Hauser & Schwarz, 2015). 
Furthermore, since clickstream data can be collected, satisfcing—the act of rapidly 
“tab-clicking“ through study questionnaires—is easy to detect. 

MOVIE RECOMMENDATION METHODOLOGY 

This section details the methodology used in the Movie Recommendation (MR) 
study. 

TASK AND USER INTERFACE DESIGN 

The MR interface was closely modeled after modern movie “browsers” (such as IMDb 
or MovieLens) that typically have recommender functionality. On the left side of the 
interface, the system featured basic search, sort, and flter for the entire movie dataset. 
The right side of the interface provided a ranked list of recommendations derived 
from collaborative fltering, which interactively updated as rating data was provided. 

The user interface provided the following functionality: mousing over a movie 
would pop up a panel that contained the movie poster, metadata information, and 
a plot synopsis of the movie (taken from IMDb); for any movie, users could click 
anywhere on the star bar to provide a rating for that movie, and they could click the 
green “Add to Watchlist” button to save the movie in their watchlist (CS was mea-
sured on their chosen movies at the end of the task). Clicking the title of any movie 
would take a user to the IMDb page where a trailer could be watched (this was also 
available during the CS feedback stage). 
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On the left (browser) side of this interface, users had three primary modes of 
interaction which were modeled after the most typical features found on movie 
browsing websites: 

(1) Search: Typing a keyword or phrase into the keyword matching box at the 
top of the list returned all movies that matched the keyword. Matches were 
not personalized in any way (a simple text matching algorithm was used). 

(2) Sort: Clicking a metadata parameter (e.g. Title, IMDb Rating, Release 
Date) at the top of the list re-sorted the movies according to that parameter. 
Users could also change the sort direction. 

(3) Filter: Clicking “Add New Filter” at the top of the list brought up a small 
popup dialog that prompted the user for a min, max, or set coverage value 
of a metadata parameter. Users could add as many flters as they wanted 
and re-edit or delete them at any time. 

The recommendation side operated identically to the browser side, except that the 
list was always sorted by the collaborative fltering prediction and the user could not 
override this behavior. 

When explanations were provided, they appeared on mouse over and could not be 
hidden. First, each explanation stated: “Movie Miner matches you with other people 
who share your tastes to predict your rating.” The rest of the explanation was gener-
ated by examining the three users in the database that were most similar to the user 
at the current point in time and taking the intersection of their rated movies with the 
user’s profle. This identifes the movies that are most responsible for an item appear-
ing at its respective location in the recommendation list. 

The MovieLens 20M dataset was used for this experimental task. The MovieLens 
dataset has been widely studied in recommender systems research (Miller, Albert, 
Lam, Konstan, & Riedl, 2003; Jung, 2012; Harper & Konstan, 2016). Due to update 
speed limitations of collaborative fltering, the dataset was randomly sampled for 
4 million ratings, rather than the full 20 million. 

AGENT DESIGN 

A traditional user-user collaborative fltering approach was chosen for the agent. 
Details for this can be found in Resnick et al. (1994). Collaborative fltering was chosen 
due to the fact that it is well understood in the recommender systems community and 
it achieves extremely high performance on dense datasets such as MovieLens (Koren 
& Bell, 2015). The results from this study should generalize reasonably well to other 
collaborative-fltering-based techniques, such as matrix factorization and neighbor-
hood models. We made two minor modifcations to the default algorithm based on test 
results from our benchmark dataset: Herlocker damping and rating normalization.2 

ECR MANIPULATION 

Two levels of control, two levels of explanation, and two levels of recommenda-
tion error were manipulated. All manipulations (three parameters, two values taken, 
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23 = 8 manipulations) were used as between-subjects treatments in this experiment. 
Text-based explanations were chosen due to their similarity to real-world systems 
such as Netfix and Amazon. To add user control, we chose to allow users to defne 
flters on the list of recommendations. This approach is similar to real-world sys-
tems that are currently deployed on MovieLens, IMDb, and so on. To vary recom-
mendation error, noise was added to the algorithm. This approach was validated 
by verifying that the random noise was reducing accuracy by performing a fve-
fold cross validation on our ratings data set. The error-free recommender achieved a 
mean absolute error of 0.144, while the noisy version did considerably worse at 0.181 
(nearly a 26% difference). 

Explanation Manipulation 
• Opaque (Explanation = 0): The opaque recommender simply provided the 

recommendations without any explanation. 
• Justifcation (Explanation = 1): The justifcation explained how ratings were 

calculated with the following blurb: “Movie Miner matches you with other 
people who share your tastes to predict your rating.” This was followed by a 
list of the items in the user’s profle that most affected the recommendation. 

Control Manipulation 
• Automatic (Control = 0): The recommender would update and re-sort its 

recommendations automatically. Participants could only affect the recom-
mender’s behavior by changing their user profle. 

• Customizable (Control = 1): On top of the partial control features, users 
were allowed to defne custom flters on recommender results to narrow 
the recommendations. Additionally, users could remove individual movies 
(indicating they were “not interested”) from the recommendation list. 

Error Manipulation 
• Collaborative Filtering (Error = 0): Collaborative fltering: user-user simi-

larity, Herlocker damping, and normalized across the 0.5–5 star rating scale. 
• Collaborative Filtering with Noise (Error = 1): A vector of noise (of up 

to two stars difference) was calculated at session start and the vector was 
added in to the recommendation vector before normalization. From the 
participant’s perspective, the list of recommendations thus appeared to be 
reordered as affected by this noise. 

PROCEDURE 

Participants made their way through four phases: the pre-study, the ratings phase, the 
watchlist phase, and the post-study (Figure 7.4, top). The pre-study and post-study 
were designed using Qualtrics.3 In the “ratings” phase, participants accessed Movie 
Miner and were shown only the blue “Movie Database” list and the ratings box. 
We asked participants to fnd and rate at least ten movies that they believed would 
best represent their tastes, but many participants rated more than the minimum. In 
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the “watchlist phase,” participants were shown the brown “Recommended for You” 
list and the watchlist box. Instructions appeared in a pop-up window and were also 
shown at the top of the screen when the pop-up was closed. Participants were told 
to freely use whichever tool they preferred to fnd some new movies to watch. They 
could add movies to their watchlist with the green button that appeared on each 
individual movie (regardless of the list that it appeared in). We asked them not to 
add any movies that they had already seen, required them to add at least fve movies 
(limited to seven maximum), and required them to spend at least 12 minutes interact-
ing with the interface. A 12-minute session in which fve to seven items are selected 
was deemed suffcient time to select quality items, given that people only browse 
Netfix for 60 to 90 seconds to fnd a single item before giving up (Gomez-Uribe & 
Hunt, 2016). 

ACCOMMODATING SUBJECTIVE DECISION MAKING 

Quantifying decision satisfaction is problematic because it can be infuenced by user 
experience, mood, health, and so on. To improve modeling of subjective decision sat-
isfaction, we used the satisfaction baseline approach (Schaffer et al., 2018). Baseline 
satisfaction was measured shortly after the pre-study by getting participant feedback 
on movies that were chosen from the database at random. 

Ten random movies were shown, one at a time, and the responses (question items, 
bs1–4, given in Table 7.4) were averaged together. Satisfaction with selected items 
was measured after the “watchlist” phase. For this, the recommender interface was 
removed and the questions items were shown for each item chosen by the participant. 
Note that the question items are phrased in terms of the recommendations (Table 7.4, 
ds1–4), not the interface. This is to help the participant distinguish between the 
browsing tools and the features of the recommender system. By modeling changes 
between baseline satisfaction and satisfaction with selected items, it is possible to 
quantify the change in satisfaction, which is what the user interface would actually 
infuence. 

DINER’S DILEMMA METHODOLOGY 

This section details the methodology used in the Diner’s Dilemma (DD) study. A 
screenshot of the interface used is shown in Figure 7.2. 

TABLE 7.1 
Diner’s Dilemma Choice Payoff Matrix 

Player Chooses: 

Hot Dog Lobster 

Two co-diners 20.00 24.00 Cooperate 

One co-diner 12.00 17.14 Cooperates 

8.57 13.33 Neither cooperates 
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TASK AND USER INTERFACE DESIGN 

In the Diner’s Dilemma, several diners eat out at a restaurant over an unspecifed 
number of days with the agreement to split the bill equally each time. Each diner 
has the choice to order the inexpensive dish (hot dog) or the expensive dish (lob-
ster). Diners receive a better dining experience (here, quantifed as dining points) 
when everyone chooses the inexpensive dish compared to when everyone chooses 
the expensive dish. To be a valid dilemma, the quality-cost ratio of the two items 
available in a valid Diner’s Dilemma game must meet a few conditions. First, if the 
player were dining alone, ordering hot dog should maximize dining points. Second, 
players must earn more points when they are the sole defector than when all players 
cooperate. Finally, the player should earn more points when the player and the two 
co-diners all defect than when the player is the only one to cooperate. This “game 
payoff matrix” means that in one round of the game, individual diners are better off 
choosing the expensive dish regardless of what the others choose to do. However, 
over repeated rounds, a diner’s choice can affect the perceptions of other co-diners 
and cooperation may develop, which affects long-term prosperity of the group. Hot 
dog/lobster cost and values for the game are shown in Figure 7.2, under each respec-
tive item, resulting in the payoff matrix that is shown in Table 7.1. 

Participants played the Diner’s Dilemma with two simulated co-diners. The co-
diners were not visually manifested as to avoid any confounding emotional responses 
from participants (see Choi, de Melo, Khooshabeh, Woo, & Gratch, 2015). The co-
diners played variants of tit-for-tat (TFT), a proven strategy for success in the Diner’s 
Dilemma wherein the co-diner makes the same choice that the participant did in 
the previous round. To make the game more comprehensible for participants, simu-
lated co-diners reacted only to the human decision and not to each other. In order 
to increase the information requirements of the game, some noise was added to the 
TFT strategy in the form of increased propensity to betray (respond to a hot dog 
order with a lobster order) or forgive (respond to a lobster order with a hot dog order). 
Participants played three games with an undisclosed number of rounds (approxi-
mately 50 per game) and co-diner strategies switched between games. This means 
that the primary task for the user was to fgure out what strategies the co-diners were 
employing and adjust accordingly. In the frst game, co-diners betrayed often and 
the best strategy was to order lobster. In the second game, co-diners betrayed at a 
reduced rate and also forgave to some degree, which made hot dog the best choice. 
In the fnal game, co-diners were very forgiving and rarely ordered lobster even 
when betrayed, which again made lobster the best choice. The mean performance of 
participants in each game is shown in Table 7.2. 

Participants played the game through the interface shown in Figure 7.2. This 
interface contains four components: the last round panel (left), the control panel 
(center), the history panel (bottom), and the virtual agent, the Dining Guru (right). 
Across treatments, all panels remained the same except for the Dining Guru, which 
varied (see Figure 7.3). 

Participants were provided with a basic interface containing all of the information 
that the Dining Guru used to generate its advice. The last round panel was shown on 
the left side of the interface and the control panel was shown in the middle. Together, 
these panels displayed the current dining points, the food quality and cost of each 
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TABLE 7.2 
Performance of the Dining Guru (DG) across All Games Compared to 
Participants 

Game # Optimal Choice # Rounds DG/No Error DG/Weak Error DG/Error Participants 

1 LOBSTER 55 0.92 0.75 0.63 0.70 

2 HOT DOG 60 0.65 0.62 0.56 0.46 

3 LOBSTER 58 0.79 0.69 0.60 0.62 

All 17 0.78 0.68 0.60 0.59 

Note: The ratio of optimal moves made by the error-free Dining Guru (DG/No Error), weak-error Dining 
Guru (DG/Weak Error), full-error Dining Guru (DG/Error), and participants are given. DG/Error per-
formed as well as the participants on average. 

FIGURE 7.2 The user interface for the game. 

menu item, the current round, and the results from the previous round in terms of 
dining points. These panels allowed the participant to make a choice in each round. 
On the lower portion of the screen a history panel was provided. This panel con-
tained information about who chose what in previous rounds and reciprocity rates. 

AGENT DESIGN 

The Dining Guru was shown on the right side of the screen. In each round, the 
Dining Guru could be examined by a participant to receive a recommendation 
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about which item (hot dog or lobster) would maximize their dining points. As with 
the simulated co-diners, the Dining Guru was not given any dynamic personality 
beyond being presented as an agent—a static drawing was used to communicate 
this. Users were required to mouse over the Dining Guru to invoke a recommenda-
tion, which made it possible to measure adherence. Recommendations were gener-
ated by calculating the expected value of ordering hot dog or lobster in the future, 
based on the maximum likelihood estimates of the rates of forgiveness and betrayal 
from co-diners. Due to the fxed strategy of the simulated co-diners, the Dining 
Guru made the “best possible” choice in each round, with most of the errors occur-
ring in earlier rounds when information was incomplete. A “manual” version of the 
Dining Guru was given some treatments, which required participants to supply the 
Dining Guru with estimates of hot dog and lobster reciprocity rates (see Figure 7.3). 

ECR MANIPULATION 

Two levels of control (Automation = 0, Automation = 1), two levels of explanation 
(Explanation = 0, Explanation = 1) and three levels of recommendation error (Error 
= 0, Error = 0.5, Error = 1) were manipulated between subjects (see Figure 7.3 for a 
visual). All manipulations (three parameters, 3 × 22 = 12 manipulations) were used 
as between-subjects treatments in this experiment. 

The explanation for the Dining Guru was designed to accurately refect the way 
that it was calculating recommendations. Since the Dining Guru calculates maxi-
mum-likelihood estimates of co-diner behavior and cross references this with the 
payoff matrix to produce recommendations, the explanation thus needed to contain 
estimates for the expected points per round of each choice. Additionally, in the man-
ual version, a text blurb appeared explaining the connection between co-diner reci-
procity rates and the expected per-round average. Reciprocity rates were provided by 
participants in the non-automated version, so the explanatory version only required 
the addition of the expected per-round averages. A bar graph was used to represent 
the averages so that participant attention would be drawn to the explanation. 

Three levels of error were manipulated: no error, weak error, and full error. In 
the no-error treatment (Error = 0.0), the Dining Guru produced recommendations 
that could be considered fawless, which if followed would result in mostly optimal 
moves. The weak error (Error = 0.5) version would randomly adjust the reciprocity 
estimates up or down by up to 25%. For instance, if the true hot dog reciprocity rate 
was 65%, the Dining Guru would use a value anywhere between 40% and 90%. 
Finally, the “full” error (Error = 1.0) condition adjusted reciprocity estimates by 
up to 50% in either direction. A practical consequence of this was that the Dining 
Guru would fip its recommendation almost every round. The error in the recom-
mendations was reasonably hidden from participants and indeed was only notice-
able when either explanation was present or the Dining Guru was not automated. 

Explanation Manipulation 
• Opaque (Explanation = 0): The opaque recommender simply provided the 

recommendations without any explanation. 
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• Justifcation (Explanation = 1): The justifcation explained the relationship 
between co-diner reciprocity rates and optimal choices. This was commu-
nicated visually with a bar graph, showing the expected points per round for 
each choice based on historical co-diner data. 

Control Manipulation 
• Automatic (Control = 0): The recommender would update its recommenda-

tions automatically. Participants would have to mouse over the Dining Guru 
each round to check the most up-to-date recommendation. 

• Customizable (Control = 1): The recommender required the user to provide 
estimated reciprocity rates for each co-diner. The estimates were provided 
by moving two sliders, which took no value until users frst interacted with 
them. Users could freely experiment with the sliders, which means that they 
could be used to understand the relationship between the payoff matrix and 
co-diner reciprocity rates. 

Error Manipulation 
• Maximum Likelihood Estimation (Error = 0): Dining Guru produced rec-

ommendations that would be unbeatable, which if followed would result in 
the maximum number of optimal moves. 

• Maximum Likelihood Estimation with Weak Noise (Error = 0.5): Randomly 
adjusts estimates for reciprocity rates up and down 25%, resulting in occa-
sionally inaccurate recommendations. 

• Maximum Likelihood Estimation with Noise (Error = 1.0): Randomly 
adjusts estimates for reciprocity rates up and down 50%, resulting in fre-
quently inaccurate recommendations. 

PROCEDURE 

An overview of the procedure for the DD study is given in Figure 7.4 (bottom). 
Before playing the game, participants were introduced to game concepts and the 
Dining Guru by playing practice rounds (training phase). Several training question-
naires, which could be resubmitted as many times as needed, were used to help 
participants learn the game. The Dining Guru was introduced as an “AI adviser” 
and participants learned how to access it and what its intentions were. Participants 
were told that the Dining Guru was not guaranteed to make optimal decisions and 
that taking its advice was their choice. Participants played three games of Diner’s 
Dilemma against three confgurations of simulated co-diners with varying behavior 
characteristics. 

TASK COMPARISON 

This section details the differences in measurements and tasks between the DD and 
MR studies. 
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ITEM OPERATIONALIZATION 

A comparison of the differing procedures is shown in Figure 7.4. This fgure indi-
cates where measurements were taken for each study, which was largely the same. 
The most critical difference is that the DD study contained a training phase, so 
the domain knowledge test measured retention rather than the participant’s stored 
knowledge. 

In the MR study, quantity (and type) of interaction with each tool was measured, 
constituting recommender and browser interaction. Adherence was measured as the 
percentage of items in each participant’s watchlist that originated from the recom-
mender side of the interface. Decision satisfaction was modeled as a two-wave, multi-
item factor, so was modeled via confrmatory factor analysis (CFA). In the DD study, 
the quantity of interactions with the Dining Guru constituted recommender interac-
tion. Absence of interaction with the Dining Guru was treated equivalent to browser 
interaction in the MR study. Adherence occurred for each round where the user choice 
matched the last recommendation given by the Dining Guru. The fnal adherence mea-
surement was scaled between 0 and 1, where 0 indicates no adherence and 1 indicates 
complete adherence. Some users never accessed the Dining Guru, which caused their 
adherence score to become 0. Decision optimality was quantifed as the total percent-
age of rounds where optimal decisions were made. An optimality score of 1 indicates 
the player ordered 100% lobster in games 1 and 3, and 100% hot dog in game 2. 

We used a SAGAT-style freeze (Endsley, 2000) to assess situation-awareness-
based agent transparency (SAT). For MR, this was done eight minutes into the 
watchlist phase of the task, whereas for DD it was done partway through game 2. 
Awareness of game factors (SAG) was also taken in the DD study. The SAG ques-
tionnaire contained fve questions related to the current game state. The situation 
awareness question items each contained a slider (min: 0%, max: 100%) and asked 
participants to estimate their current cooperation rate (1) and the hot dog (2, 3) and 
lobster (4, 5) reciprocity rates for each co-diner. The game interface was not avail-
able at this time. The SAG score was calculated by frst summing up the errors from 
each of the fve estimation questions and then inverting the scores based on the par-
ticipant with the highest error, such that higher SAG scores are better. 

CFA was used to eliminate measurement error when possible. Factor fit 
was improved iteratively by removing items until Cronbach’s alpha was maxi-
mized, resulting in the list of items shown in Table  7.4. Internal reliability 
fit metrics for each factor are shown in Table 7.6. Domain knowledge, SAT, 
and SAG were expected to be multidimensional at the outset, and thus were 
parceled instead of factored—the question items used for the parcels is shown 
in Table 7.5. For the parceling, question items were summed and the loading 
of the factor on the parcel was set to 1. The variance of the parcel was freed 
to maximize fit. 

In this study, we originally intended to model perceived transparency, control, 
effectiveness, and trust as separate factors. However, during the confrmatory factor 
analysis, inter-item correlations indicated we only had a single factor for MR and two 
factors for DD: perceived control and trust. Moreover, the perceived control factor 
complicated pathways in the model and was not strongly predictive of each outcome. 
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Thus, we collapsed these factors into a single factor, which we referred to as user 
experience with the agent (UXA). Doing so not only increased factor ft, but model 
ft as well. Once this was done, all factors in Table 7.6 achieved discriminant validity 
using the Campbell and Fiske test (Campbell & Fiske, 1959). 

TASK DIFFERENCES 

The main difference between the MR and DD studies lies in the nature of the task and 
the criterion for decision success. Both task spaces have been studied extensively. 
The DD task is a variant of the iterated Prisoner’s Dilemma, whose applicability 
to real-world situations has been well established4 (Stephens, McLinn, & Stevens, 
2002; Ainslie, 2001; Varian, Bergstrom, & West, 1996). Decision success for each 
study was based on different parameters, with success in the MR study being sub-
jective and success in the DD study being objective. It should also be noted that the 
treatment manipulations for explanation and control were minimal. This was done 
due to an understanding that decision makers are sensitive to the environment in 
which decisions are made (Payne, Bettman, & Johnson, 1993) and also to increase 
the relevance of the results (it is easier to implement a text-based explanation that a 
visual one). Differences between effects in the studies can thus be attributed to dif-
ferences in the task parameters and decision criterion (Table 7.3), while similarities 
in effects thus have strong support for their generalization. 

TABLE 7.3 
Comparison of Task Parameters, Decision Success Criteria, and Treatment 
Differences between the Movie Recommendation (MR) and Diner’s 
Dilemma (DD) Studies 

Study MR DD 

Decision task Catalog browsing Binary choice 

Number of decision 5–7 173 
iterations 

Agent support Collaborative fltering Maximum likelihood estimation 

Alternative Winnowing interface History visualization 

Embodiment Artifact Picture 

Decision Criteria Subjective Objective 

Domain Movie metadata Game rules 

Explanation Text-based explanation of Text-based explanation of agent’s 
manipulation agent’s calculation calculation 

Control Optional metadata flters to be Requires specifcation of input 
manipulation applied on ranked parameters but allows exploration 

recommendation list of metadata space 

Error manipulation Noise added to Noise added to expected values of 
recommendation score, binary choice, changing per-round 
changing top recommendations recommendations 
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RESULTS 

We collected more than 1,055 samples of participant data using Amazon Mechanical 
Turk: 526 samples for MR and 529 samples for DD. Participant data was checked 
carefully for satisfcing and these records were removed (approximately ten per 
study), resulting in the 1,055 complete records. Participants were paid $3.00 for the 
DD and $1.50 for MR. In either case, participants spent between 25 and 60 minutes 
completing the study. Participants were between 18 and 71 years of age and were 
50% male, however, DD attracted more male participants (54%) while MR attracted 
more female (55%). 

Means and variances of non-factor measurements are given in Table 7.7 (fac-
tors are not listed here—all factors are modeled to have a mean of 0 and standard 
deviation of 1). Scores on tests were normalized between 0 and 1. Note that in the 
DD study, absence of interaction with the agent was considered interaction with the 
alternative. Decision optimality was modeled as two-wave decision satisfaction in 
the MR study, meaning that it was modeled as a factor and thus does not appear in 
the table. 

FIT SEM MODELS 

Data from each study was ft using an exploratory SEM, with the exception that 
decision satisfaction from the MR study was analyzed separately in a Raykov 
change model (Raykov, 1992) (Table 7.8). This is because baseline satisfaction 
needs to be taken into account when evaluating subjective satisfaction (Schaffer 
et  al., 2018). A visual comparison of the results from both studies is shown in 
Figure 7.5, along with ft statistics and regression statistics. Due to being non-nor-
mal, treatment variables take the value of 0 or 1 and coeffcients reported in the 
fgure are B values (effect sizes in the units of the original measurement), which 
predict a change in standard deviation of the regressand when the treatment is 
switched on. All dependent and latent variables were standardized to have a mean 
of 0 and variance 1 and coeffcients reported are β values, which predict a change 
in standard deviation of the regressand with a standard deviation change in the 
regressor. Both models were built using R 3.0.3, lavaan 0.5–17. 

Multiplicity control was enforced in our chosen SEM using the Benjamini-
Hochberg procedure with Q = 0.10 (Benjamini & Hochberg, 1995), which is recom-
mended for exploratory SEM analysis (Cribbie, 2007). This procedure indicates how 
many of the tested relationships in the all-factor SEM are expected to be false posi-
tives. The MR and DD tasks had 86 and 87 hypotheses, respectively. These hypoth-
esis numbers are derived from the exploratory way in which the SEMs were built, 
that is, specifying some factors/variables as downstream from others and testing the 
presence of signifcant predictive or causal relationships. Effects that failed the false 
discovery rate test were trimmed from the models—these were typically regressions 
on target variables whose regressor was already signifcantly correlated with another 
variable that predicted on the regressand. For example, reported and domain knowl-
edge had a signifcant negative correlation in both studies. When controlling for one 
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FIGURE 7.5 A comparison of the two ftted SEMs from each study. Movie Recommendation 
model ft: N = 526 with 77 free parameters = approximately 6.5 participants per free param-
eter, RMSEA = 0.054 (CI: [0.050, 0.057]), TLI = 0.919, CFI = 0.926 over null baseline model, 
χ2(512) = 1285.408. Diner’s Dilemma model ft: N = 529 with 72 free parameters = approxi-
mately 7 participants per free parameter, RMSEA = 0.030 (CI: [0.025, 0.035]), TLI = 0.969, 
CFI = 0.973 over null baseline model, χ2(378) =557.889. 

or the other, effects on regressands (e.g., SAT) become less signifcant and fail the 
false discovery rate threshold. 

DISCUSSION 

This section frst discusses the statistical effects observed in each study in detail. 
Then, we compare the results from two studies. Finally, we discuss the implications 
of these effects in the context of multi-agent and physical systems and highlight 
future research challenges. 
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MOVIE RECOMMENDATION: STATISTICAL EFFECTS 

In the MR data, we found that splitting user experience into different subjective user-
experience factors (similar to the ResQue framework (Pu et al., 2011) and the model 
in Knijnenburg et al. (2012a)) decreased model ft, despite each sub-factor (perceived 
transparency, perceived control, perceived quality, and trust) having items with accept-
able ft but high inter-correlation (about 0.95), implying poor discriminant validity. 
Generally, high correlations among factors are undesirable due to the decreased ques-
tionnaire item-to-information ratio. For instance, in this study, a three-item scale for 
“trust” would have captured nearly the same signal as the 12-item SSA model that 
was used. This may have occurred because participants had a unidimensional percep-
tion of the recommender (i.e. “I like this” or “I don’t like this”), which was a surpris-
ing fnding. We considered it important to compare our results with Knijnenburg et al. 
and the ResQue framework. The Knijnenburg data was available5 and we examined 
the covariances of perceived quality, satisfaction, control, and understandability. The 
scales in Knijnenburg’s study were slightly better in terms of discriminatory power: 
about a 0.7 Pearson correlation between perceived overall system satisfaction, qual-
ity, and control, but this correlation level is still quite high. The transparency sub-
construct, “understandability,” is much more discriminative (0.34), perhaps due to the 
user-centric phrasings used. Unfortunately, discriminant validity between factors in 
the ResQue framework were not reported. For interested readers, a detailed discus-
sion of user experience modeling along this vein is discussed in Schaffer et al. (2018). 
In light of this analysis, we encourage other researchers to consider the inter-factor 
correlations and discriminant validity of their chosen factors. 

As evidenced by the profling traits of CRT, domain knowledge, reported knowl-
edge, and trust propensity, users of intelligent agents can be broken into two groups 
of high and low task ability. Higher-ability users are more likely to understand the 
recommender but less likely to form positive perceptions of it, while lower-ability 
users reported being more trusting and over-estimating their task knowledge, subse-
quently interacting and adhering to the system to a lesser degree and having worse 
decision outcomes overall. 

Despite the recommender system community’s emphasis on user experience, we 
found that user experience with the agent (UXA) was perhaps the most trivial factor 
in predicting adherence. This is evidenced in Figure 7.5, where it can be observed 
that SAT, recommender interaction, and browser interaction all are better predictors of 
adherence than UXA. The exception to this was cognitive load, which does not corre-
late with adherence in the fnal ftted model. However, cognitive load and user experi-
ence were strongly negatively correlated, so any alternative model using cognitive load 
as a predictor of adherence instead of UXA is valid. This result reinforces the idea that 
cognitive load and user experience have an inverse relationship (see Jung (2012)). 

Curiously, UXA was a negative predictor of decision satisfaction, as was adher-
ence to recommendations. This again contradicts results from other studies of rec-
ommendation (Knijnenburg, Willemsen, Gantner, Soncu, & Newell, 2012; Pu et al., 
2011), however, this study has the advantage of modeling change in satisfaction over 
the baseline (Schaffer et al., 2018)—∆ Decision Satisfaction, rather than just satisfac-
tion at one point in the task. This modeling is more accurate because it accounts for 
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TABLE 7.4 
Factors Fit from Participant Responses to Subjective Questions 

Code MR Item DD Item 

re1 I am an expert on movies. I am familiar with abstract trust games. 

re2 I am a flm enthusiast. I am familiar with the Diner’s Dilemma. 

re3 I closely follow the directors that I I am familiar with the public goods game. 
like. 

crt1 If it takes fve machines fve minutes (same as MR) 
to make fve widgets . . . 

crt2 A bat and ball together cost $1.10, (same as MR) 
and the bat costs $1.00 more than 
the ball . . . 

crt3 In a pond there is a patch of lily (same as MR) 
pads that doubles in size every day 
. . . 

tp1 I think I will trust the movie I think I would trust an AI adviser if one were 
recommendations given in this task. available. 

tp2 I think I will be satisfed with the I think I would be satisfed if I adhered to advice 
movie recommendations given in from an AI adviser. 
this task. 

tp3 I think the movie recommendations I think AI advisers give accurate information. 
in this task will be accurate. 

pt1 How understandable were the The Dining Guru’s recommendations were 
recommendations? understandable. 

pt2 Movie Miner succeeded at justifying I did not understand the Dining Guru. 
its recommendations. 

pt3 The recommendations seemed to be The Dining Guru’s recommendations were 
completely random. groundless. 

pa1 I preferred these recommendations 
over past recommendations. 

pa2 How accurate do you think the The Dining Guru was accurate. 
recommendations were? 

pa3 How satisfed were you with the The Dining Guru’s recommendations were 
recommendations? satisfactory. 

pa4 To what degree did the The Dining Guru’s recommendations helped me to 
recommendations help you fnd maximize points. 
movies for your watchlist? 

pc1 How much control do you feel you I had control over the Dining Guru. 
had over which movies were 
recommended? 

pc2 To what degree do you think you I could affect what the Dining Guru recommended. 
positively improved 
recommendations? 

pc3 I could get Movie Miner to show the I had no control over the Dining Guru. 
recommendations I wanted. 

t1 I trust the recommendations. I trusted the Dining Guru. 
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TABLE 7.4 (Continued) 
Factors Fit from Participant Responses to Subjective Questions 

Code MR Item DD Item 

t2 I feel like I could rely on Movie I could rely on the Dining Guru. 
Miner’s recommendations in the 
future. 

t3 I would advise a friend to use the I would advise a friend to take advice from the 
recommender. Dining Guru if they played the game. 

cl1 There was too much information on It was hard to keep track of all of the information 
the screen. needed to play the game. 

cl2 I got lost when performing the task. I got lost while playing the game. 

cl3 Interacting with Movie Miner was I got frustrated during the game. 
frustrating. 

cl4 I felt overwhelmed when using 
Movie Miner. 

ds1 How excited are you to watch 
<movie>? 

ds2 How satisfed were you with your 
choice in <movie>? 

ds3 How much do you think you will 
enjoy <movie>? 

ds4 What rating do you think you will 
end up giving to <movie>? 

bs1 How excited would you be to watch 
<movie>? 

bs2 Would you be satisfed with 
choosing <movie>? 

bs3 How much do you think you would 
enjoy <movie>? 

bs4 What rating do you think you would 
end up giving to <movie>? 

Note: Items that were removed due to poor ft are not shown. All items achieved good ft, except for per-
ceived transparency in the DD task, which was borderline. 

TABLE 7.5 
Question Items Used for Parceled Factors in Both Studies. Sum of Correct 
Responses Were Used to Calculate the Parcel 

Code MR Item DD Item 

dom1 Online, which genre has the In a one-round Diner’s Dilemma game (only 
highest current average audience one restaurant visit), you get the least amount of 
rating? dining points when . . . (four 

options) 

dom2 Online, which of these genres In a one-round Diner’s Dilemma game (only 
tends to be the most common one restaurant visit), you get the most amount of 
among the movies with the dining points when . . . (four 
highest average audience rating? options) 

(Continued ) 
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TABLE 7.5 (Continued) 
Question Items Used for Parceled Factors in Both Studies. Sum of Correct 
Responses Were Used to Calculate the Parcel 

Code MR Item DD Item 

dom3 Online, which of these genres has Suppose you know for sure that your co-diners 
the highest current popularity? reciprocate your hot dog order 100% of the time 

and reciprocate your lobster order 100% of the 
time. Which should you order for the rest of the 
game? (H/L) 

dom4 Generally, which of these genres Suppose you know for sure that your co-diners 
has the most titles released, for reciprocate your hot dog order 0% of the time 
all time periods? and reciprocate your lobster order 100% of the 

time. Which should you order for the rest of the 
game? (H/L) 

dom5 Online, which of these decades Suppose you know for sure that your co-diners 
has the highest current average reciprocate your hot dog order 50% of the time 
audience rating? and reciprocate your lobster order 50% of the 

time. Which should you order for the rest of the 
game? (H/L) 

dom6 How many movies have an How much does a hot dog cost? (slider 
average audience rating great response) 
than 9/10? 

dom7 Popular movies tend to have an How much does a lobster cost? (slider response) 
average rating that is lower/ 
average/higher. 

dom8 Movies with an average rating of What is the quality of a hot dog? (slider 
9/10 or higher tend to have fewer/ response) 
average/more votes. 

dom9 What is the quality of a lobster? (slider 
response) 

dom10 Which situation gets you more points? (two 
options) 

dom11 Which situation gets you more points? (two 
options) 

sat1 What is the recommender trying The Dining Guru updates automatically every 
to predict? round. (T/F) 

sat2 Are the recommendations I see When the Dining Guru is updated, it predicts 
just for me? the choice I should make in the next round. 

(T/F) 

sat3 What are the recommendations When the Dining Guru is updated, it predicts 
affected by? the choice I should make in all remaining 

rounds. (T/F) 

sat4 What are the recommendations When does the Dining Guru recommend hot 
based on? dog? 

sat5 When does the recommender How does the accuracy of the Dining Guru 
update? change as the game progresses? 

sat6 What happens if I delete all Generally, I can maximize the dining points I 
drama movies from my ratings? get per round by ordering a mix of hot dog and 

lobster, regardless of what the Dining Guru 
recommends. (T/F) 
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TABLE 7.5 (Continued) 
Question Items Used for Parceled Factors in Both Studies. Sum of Correct 
Responses Were Used to Calculate the Parcel 

Code MR Item DD Item 

sat7 What if I were to highly rate Generally, I can maximize the dining points I 
movies in the sci-f genre? get per round by only ordering what the Dining 

Guru recommends. (T/F) 

sat8 What happens if I rate more 
movies according to my tastes? 

sat9 What happens if I remove 
accurate ratings? 

sag1 What is your current cooperation rate? (slider 
0–100%) 

sag2 What is Player 2’s hot dog reciprocity rate? 
(slider 0–100%) 

sag3 What is Player 2’s lobster reciprocity rate? 
(slider 0–100%) 

sag4 What is Player 3’s hot dog reciprocity rate? 
(slider 0–100%) 

sag5 What is Player 3’s lobster reciprocity rate? 
(slider 0–100%) 

TABLE 7.6 
Factors Corresponding to User Metrics 

Factor Description 

Trust propensity (tp) The participant’s propensity to 
trust the agent’s 
recommendations. 

Cognitive refection (crt) A measurement of decision-
making ability. 

Reported expertise (re) The participant’s self-assessed 
domain knowledge. 

Perceived control (pc) The participant’s subjective 
assessment of their degree of 
control over the agent. 

Perceived transparency (pt) The participant’s subjective 
assessment of the agent’s 
ability to explain itself. 

Perceived accuracy (pa) The participant’s subjective 
assessment of the agent’s 
accuracy. 

Trust (t) The participant’s reported 
overall trust in the agent. 

MR α DD α 

0.92 0.91 

0.79 0.73 

0.82 0.80 

0.86 0.96 

0.61 0.44 

0.91 0.90 

0.93 0.90 

User experience with the agent A combination of items from 0.89 0.95 
(UXA) (ux) pc, pt, pa, and t. 

(Continued ) 
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TABLE 7.6 (Continued) 
Factors Corresponding to User Metrics 

Factor Description MR α DD α 
Cognitive load (cl) The participant’s subjective 0.82 0.75 

assessment of frustration that 
occurred during the task. 

Baseline satisfaction (bs) The participant’s self-reported 0.93 
satisfaction with random items 
(MR only). 

Decision satisfaction (ds) The participant’s self-reported 0.93 
decision satisfaction (MR only). 

Note: α is Cronbach’s alpha—a measure of internal reliability (this would mean the items that make up the 
factor are highly correlated). Items that were removed due to poor ft are not shown. 

TABLE 7.7 
Observed Dependent Variables in the Movie Recommendation Study 

Variable Name Description MR µ MR σ DD µ DD σ 

Recommender int. Number of interactions with the agent 14 29 25 34 

Browser int. Number of interactions with the simple, 37 23 
alternative tool 

Adherence Proportion of the recommendations used in 0.67 0.36 0.33 0.25 
decision making 

Domain knowledge Score on initial insight questionnaire 0.45 0.16 0.73 0.15 

SAT Score on recommender beliefs questionnaire 0.67 0.2 0.55 0.18 

SAG Score on game state estimation questionnaire 0.99 0.556 

Decision optimality Percentage of moves made that were optimal 0.59 0.12 
(0.0 to 1.0) 

Note: Scores on tests were normalized. 

each participant’s inherent ease of satisfaction and represents the quantitative change 
from that level of satisfaction and satisfaction arising from different task factors. The 
data here indicates that users who would be most likely to take recommendations at 
face value (without further interaction or investigation) would also be more easily 
satisfed by a random selection of items. Moreover, it is the knowledgeable users who 
engage with the system (as evidenced by increased recommender interaction) and 
understand it (as indicated by increased SAT) that are able to do better, especially 
when the system allows the user to override its behavior (as evidenced by the effect 
of Control on ∆ Decision Satisfaction). 

We believe the results in this work help to demonstrate the value of domain knowl-
edge measurement, SAT, and CRT tests for recommender systems research. These 
constructs signifcantly increased the amount of explainable variance in decision sat-
isfaction and adherence without affecting the order of complexity of the regression 
model. Moreover, their correlations with the user experience construct were quite 
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low. Given that there were high correlations between the different system perception 
constructs (control, transparency, accuracy) in this experiment, it might be advisable 
to reduce the number of subjective user experience questionnaire items and instead 
use participant time to assess cognitive and knowledge variables. 

Many fndings in this experiment would have been missed if these measures had 
been omitted. Users with correct beliefs about the recommender were more likely 
to adopt recommendations (Figure 7.6). SAT had the highest direct positive impact 
on adherence with a β coeffcient of 0.23, followed closely by the presence of con-
trol. User experience did not predict adherence nearly as well as the SAT factor 
and the control treatment. Furthermore, the “perceived transparency” subconstruct 
was not nearly as effective at explaining adherence (the tested relationship was non-
signifcant in all models). This highlights the need for the use of the objective SAT 
measure, instead of perceived transparency, within recommender systems research. 
When combined with its impact on ∆ Decision Satisfaction, it highlights the need for 
recommender system designers to instill deep understanding of recommender opera-
tions to maximize engagement, usage, and outcomes. 

Increased interaction with the browser side of the interface was linked to increased 
SAT but also to decreased adherence. To explain this, we examined browser inter-
action in more detail. We found that, similar to the recommendation side, 50% of 
browser interactions were flter/sort/search actions and the other 50% were rating 
actions. What this might suggest is that participants were using the browser tool 
to fnd representative movies for their profle. As the participant found more rep-
resentative items, there was more opportunity to get dynamic feedback from the 
recommender. Over time, this improved SAT but also increased the chance that the 
participant found satisfactory items from the browser tool (interesting titles were 
likely adjacent in metadata space to the targeted titles). 

Explanation, control, and recommendation error steered the decision system 
towards different outcomes. Explanation improved SAT to a degree, which in turn 
correlated with increased adoption of recommendations and better decision out-
comes. However, explanation also nullifed the positive effects of control if both 
were switched on (see Table 7.8); this effect is diffcult to explain, because there is no 
corresponding increase in cognitive load, decrease in user experience, or decrease in 

TABLE 7.8 
Regressions in the Raykov Change Model That Identifes Factors That 
Contributed to Improved Decision Making in the Movie Recommendation 
Task 

Regressand Regression (←) Coeff. P(> |z|) 

← UXA −0.124 * 

∆ Decision Satisfaction ← Cognitive Load −0.237 *** 
R2 = 0.10 ← SAT 0.127 ** 

← Control 0.295 *** 
← Explanation × Control −0.268 * 

← Adherence −0.110 * 
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n=55 n=130  n=172 n=114 

2 3 4 5 

# of SA Questions Answered Correctly 

FIGURE 7.6 Relationship between adherence and understanding of the recommender in the 
Movie Recommendation study. 

Note: As understanding increases, users adopt more recommendations. 

recommender interaction caused by this particular confguration. A possible reason 
for this is that explanations boosted confdence in the recommendations, increasing 
adherence through improved SAT, and thus disengaging the participant. Next, we 
found that control played two roles. First, control (predictably) increased recom-
mender interaction, which in turn correlated with increased cognitive load and adher-
ence. Second, the presence of control features increased satisfaction with selected 
items regardless of interaction quantity. This leads us to believe that the ability to 
have control over a recommender system, whether or not that control is exercised, is 
a desirable feature of a recommender system because it leads users to be more satis-
fed with choices. Finally, reductions in recommendation error had the largest impact 
on user experience but had no direct effect on decision satisfaction. Since an alterna-
tive to the recommender was available in this task, it is likely that users switched to 
the browsing tool when the recommender failed to produce satisfactory results. Our 
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data also indicates that control has a bigger impact on the user’s satisfaction with his/ 
her fnal watchlist rather than the accuracy of the recommender. 

DINER’S DILEMMA: STATISTICAL EFFECTS 

As with the MR study, we found that modeling the individual system perceptions was 
of little value, but for different reasons. While the perceived control construct was 
found to be externally discriminant from trust and perceived accuracy, the resulting 
construct was not predictive in the context of the rest of the model. This is because 
the alternative model containing a ft perceived control factor not only ft worse than 
our chosen model, but also complicated the story of reduced interaction caused by 
the control feature of the Dining Guru. 

Perceived transparency had similar problems, but the factor also ft worse and was 
not predictive. Thus, we chose to model UXA instead, combining the items from 
trust and perceived accuracy. Also similar to the MR study, participants that consid-
ered themselves experts were much less likely to interact with the Dining Guru and 
adhere to recommendations. Unfortunately, these participants, who reported being 
trusting and yet performed worse on the domain knowledge test, subsequently ended 
up scoring fewer points in the game. Simultaneously, these users reported more trust 
than average with the Dining Guru but less interaction and adherence. Meanwhile, 
less trusting users demonstrated higher domain knowledge, which predicted more 
correct beliefs about the recommender and thus more adherence. This situation is 
strikingly similar to the MR task, but it is not yet clear how these users might be 
accommodated. 

When both explanations and error were present, the model predicts that decision 
optimality drops below the mean. This is demonstrated in Figure 7.7. This indicates 
that explanations allowed users to better detect the errors in the Dining Guru, which 
may have steered them away from adherence in the error-prone treatments. Despite 
this, adhering to the Dining Guru in even full error condition would have put the 
user’s performance at the mean, and adhering in the weak noise conditions would 
have put the users well above the mean (recall Table 7.2). This result implies that 
even relatively accurate decision support systems can be ignored if users are able to 
detect errors, regardless of the severity, in the agent. 

The results from the DD data indicate many positive benefts of incorporating 
explanations into decision support systems. Explanation indirectly caused increased 
adherence through SAT and recommender interaction. It also had a direct effect on 
decision optimality, suggesting that the explanations were useful for helping the par-
ticipant understand the game. Previously, explanations have been noted to increase 
trust (Tintarev & Masthoff, 2011), adherence (Arnold et al., 2006), and perceived 
control (Knijnenburg, Bostandjiev, O’Donovan, & Kobsa, 2012b). Now, this study 
demonstrates that explanations increase adherence through a mediating effect of 
the participants’ beliefs about the recommender. Additionally, we have observed 
many important interaction effects between explanation and control or explana-
tion and error. The results suggest that in some situations, explanation and control 
given together may overload users of the system. Furthermore, explanation features 
may draw attention to faws in the system predictions, mitigating automation bias. 
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No Expl., No Cont. Explanation Control Expl. x Cont. 

weccebaseline ew cw ecw  r er ecr cr 

n=43 n=43 n=46 n=43 n=42 n=52 n=44 n=43 n=42 n=44 n=44 n=43 

With weak error Without error With error 

Treatment 

FIGURE 7.7 Mean percent of optimal choices made in each treatment in the Diner’s 
Dilemma study. 

Note: Explanations improve performance between “c” and “ec” as well as between “w” and “ew.” Error 
bars are 95% confdence interval. 

In some situations, this may lead to better decision making due to the rejection of 
incorrect predictions. 

COMPARATIVE ANALYSIS 

In this section, the results from both the Movie Recommendation (MR) and 
Diner’s Dilemma (DD) studies are compared. We highlight which results were 
replicated across both studies. A summary of effects linked to personal user char-
acteristics is shown in Table 7.9. Across both studies, trust propensity predicted 
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TABLE 7.9 
Support for Effects Related to User Profling Factors 

Effect MR DD 

Trust propensity predicts higher perceptions of an agent 

Trust propensity predicts more incorrect beliefs about agent 

Cognitive refection predicts more correct beliefs about agent 

Cognitive refection signifcantly correlates with domain knowledge 

Self-reported expertise predicts less agent interaction 

Domain knowledge predicts more agent interaction 

Correct beliefs about an agent signifcantly correlates with trust 

Yes (***) 
Yes (**) 

Yes (**) 

Yes (***) 
Yes (***) 
Yes (***) 

No 

Yes (**) 
No 

No 

Yes (***) 
Yes (***) 
No 

Yes (**) 

Note: Results supported by both studies are shown in bold. 

greater perception of the decision support system. CRT also covaried signifcantly 
with initial insight tests regardless of domain (in fact, results from both studies 
suggest humans can be split into high CRT/high knowledge and high trust/high 
“reported expertise” groups). This suggests the Dunning-Kruger effect (Kruger 
& Dunning, 1999) is an important cognitive factor to consider when designing 
human-agent systems. In the MR study, there was a link between trust propensity, 
user experience, and low SAT, but this was not seen in the DD study, which indi-
cated a covariance between SAT and trust. A link between trust propensity and 
recommender perceptions was also reported in Knijnenburg et al. (2012a). The 
agent present in the DD study was relatively simple when compared with the agent 
from the MR study, which may explain this discrepancy. Finally, users of higher 
domain knowledge in the MR study interacted more with the recommender, but 
domain knowledge was not a predictive factor in interaction with the Dining Guru. 
This may be explained by differences in each agent’s facilities: the collaborative 
fltering algorithm provided information (the recommendation score) that was not 
present on the browser side of the interface, but the Dining Guru only aided in 
summarizing information that was already available, perhaps making it less useful 
to more capable players. 

A summary of effects for the participant’s cognitive states are shown in Table 7.10. 
Across both studies, SAT was an effective mediator of the effects of explanation on 
adherence and was also predictive of decision outcomes. This extends our under-
standing of the importance of explanations past the subjective realm of system 
perceptions and trust. Moreover, the positive effects on decision outcomes provide 
quantitative data to suggest that accurate but incomprehensible systems (e.g., deep 
learning) may require additional research in transparency. Where decision success 
was objective (DD), higher domain knowledge directly predicted better decision per-
formance. Finally, we found that when controlling for domain knowledge in the DD 
study, CRT was an unnecessary predictor. This is likely due to limitations in our 
knowledge test for the MR study, which may have been less effective at capturing 
task concepts, or simply because ∆ Decision Satisfaction in the MR study was inde-
pendent of each participant’s knowledge. 
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TABLE 7.10 
Support for Effects Related to SAT and Domain Knowledge 

Effect MR DD 

Correct beliefs about an agent predicts increased adherence Yes (***) Yes (*) 
Domain knowledge predicts better decision performance Yes (***) 

Correct beliefs about an agent predicts better decision performance Yes (**) Yes (***) 
Cognitive load and user experience with an agent are negatively correlated Yes (***) Yes (***) 
Higher user experience with an agent predicts worse decision performance Yes (*) No 

Higher user experience with an agent predicts adherence Yes (**) No 

More interaction with the agent predicts increased adherence Yes (***) Yes (***) 

Note: Results supported by both studies are shown in bold. 

TABLE 7.11 
Support for Effects Caused by Altering the Agent’s ECR Profle 

Effect MR DD 

Explanation causes correct beliefs about an agent Yes (*) Yes (***) 
Explanation causes improved decision outcomes Yes (*, full mediation Yes (**) 

via SAT) 
Control causes increased cognitive load Yes (**) With explanation (**) 
Control causes increased adherence Yes (***, full mediation No 

via interaction) 

Control increases decision performance Yes (***) No 

Error decreases user experience with an agent Yes (***) No 

Error decreases decision performance No With explanation (**) 

Error decreases adherence Yes (**, full mediation) Yes (**) 

Note: Results supported by both studies are shown in bold. 

Across both studies, cognitive load was negatively correlated with user percep-
tions of the agent, indicating the potential for an agent to mentally relieve analysts. 
Higher user experience with the agent only led to increased adherence in the MR 
study. Moreover, higher UXA was linked to higher satisfaction with selected items 
in the MS study. As previously discussed, this satisfaction decrease was linked to 
lower engagement with the system, suggesting a need for maximizing interaction for 
the best outcome. 

A summary of claims on explanation, control, and error of an agent is shown in 
Table 7.11. In both studies, the presence of explanations caused better decision success 
and better agent understanding. Recall that in both studies, explanation was given 
under varying levels of agent error. In the MR study, adherence dropped slightly 
when the agent made errors, but overall decision outcomes were not affected. In the 
DD study, error simultaneously predicts increased interaction with the agent, but 
also decreased adherence. When explanations were given alongside the erroneous 
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recommendations, overall decision outcomes suffered. These results suggest that 
agent errors lead to complex situations. Explanations can potentially help users iden-
tify when an agent makes errors so that alternatives can be used instead. However, 
users may under-trust the system (DD) when, despite making errors, the average per-
formance is still higher than the human operators. Moreover, if adequate alternative 
systems are accessible (MR), errors may not make their way into the fnal decision 
outcome, but will likely refect on adherence to the agent, resulting in disuse. 

Control features increased cognitive load across both the MR and DD studies. 
Control features in the MR study allowed users to customize the recommendation 
view to their tastes, getting the benefts of both traditional fltering and collabora-
tive fltering. Control features in the DD study allowed users to explore the space of 
decision outcomes and also the “automation” from the Dining Guru. Users adhered 
less to the Dining Guru’s recommendations when given control, due to decreased 
interaction, and thus decision optimality suffered (again, the Dining Guru performed 
signifcantly better than the mean in most treatments). Likewise, the control feature 
in the MR study gave the participant an increased ability to explore the movie catalog 
space, resulting in better ∆ Decision Satisfaction. The negative outcomes associated 
with control in the DD study may have been due to a usability issue: the system 
required signifcantly more effort to use over the automated version, and unlike the 
explanation feature, there was no evidence that the control feature helped participants 
understand the game or the agent better. While the control features were designed to 
be analogous for their respective tasks, this aspect of the agent appears to be the most 
sensitive. Moreover, cognitive load appears to be a reliably unfortunate side effect of 
adding control features. We suggest that agent designers carefully consider and itera-
tively prototype control features to complement the task domain and agent. 

Finally, agent errors predicted decreased adherence in both studies. In the MR 
study, this effect was fully mediated by user perception (with no direct effect found), 
indicating that users may have simply turned to the browser side of the interface 
when the recommender failed. In the DD study, the negative effects of error were 
partially mediated by recommender interaction, indicating only a minor decrease in 
adherence. As mentioned previously, this had a negative effect on participant perfor-
mance, which was unfortunate. This analysis suggests that users may be overly sen-
sitive to perceived errors on the part of an agent, which may be exacerbated when the 
user is overconfdent (high reported expertise). In multi-trial tasks, perhaps agents 
can convince their users with a retrospective “if you had followed my advice . . .” 
argument. This is a promising area for future work. 

EXTENDING TO MULTI-AGENT SYSTEMS 

This chapter has presented two studies that have taken a step in quantitatively map-
ping out cognitive and behavioral factors for monolithic non-embodied agents 
(technological artifacts). The area of multi-agent systems is much less explored, par-
ticularly in the area of interacting with multi-agent swarms. This section concludes 
with a discussion of how the cognitive factors presented here would be relevant in 
multi-agent systems and swarms. 

Multi-agent systems generally operate in objective task domains, where there is 
a tangible task such as surveillance that must be completed. The distribution of the 
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agents is made to augment human decision-making capabilities according to con-
crete guidelines. Thus, the fndings of the DD study will most strongly inform the 
discussion of this section. On occasion, multi-agent systems can be used to model 
the subjective preferences of humans to study their interactions. This is especially 
true in studies for marketing and crowd control (Humann & Madni, 2014; Kadyrova 
& Panasyuk, 2016). In these cases, the agents act as surrogates for human decision 
makers, in order to simulate the effects of system designs on the public. 

With multiple interacting tangible agents, there is a high risk of cognitive over-
load. The greatest diffculty arises when interactions among agents are essential for 
the performance of the systems. In this case, the potential interactions grow quadrati-
cally with the number of agents in the system, quickly overwhelming a human’s abil-
ity to track them all. Even just the sight of groups of interacting robots is enough to 
cause elevated stress levels in test subjects (Podevijn et al., 2016). Therefore, detailed 
explanation of an individual agent’s decision process is almost always avoided. 
Instead, it may be necessary to generate monolithic explanations for multi-agent sys-
tems to reap the SAT and trust-related benefts. Moreover, multi-agent systems are 
often automated when gathering and summarizing data before it is presented to the 
user in raw form, reducing explanation. Repeated requests for attention from agents 
can quickly annoy and overwhelm a human controller. 

Much research has gone into fnding the fan-out of a human (i.e. the number of 
robots that one human can control) (Crandall, Goodrich, Olsen, & Nielsen, 2005; 
Humann & Pollard, 2019). A human must from time to time switch his attention 
among robots, and this imposes a cost in both time and situational awareness 
(Goodrich, Quigley, & Cosenzo, 2005). As a rough estimate, the fan-out of an opera-
tor can be calculated from the task switching metrics interaction time and neglect 
time (Chen, Barnes, & Harper-Sciarini, 2011b; Crandall et al., 2005). In the emerg-
ing feld of swarm robotics, where the number of agents can reach into the thou-
sands, there is no hope for human comprehension or control, or even mathematical 
prediction of behavior (Edmonds, 2004), so self-organizing algorithms, simulation 
(Humann, Khani, & Jin, 2014), and statistical testing are used to gain confdence in 
system performance. 

The single-agent studies in this chapter show no strong correlation between 
cognitive load and decision optimality, but this may be because the users were not 
pushed to their cognitive limits by the monolithic agent. A multi-agent system which 
is prompting the user for control and decision making under time constraints repre-
sents a much more cognitively taxing scenario and may show a stronger relationship 
if it were studied in the same way. 

Situation awareness is a design challenge both in the multi-agent system itself 
and in the user interface. Because most multi-agent systems are focused on objective 
tasks, global SA (analogous to SAG in the DD study) is the primary concern. Global 
SA is especially important when a human is used as a backup or troubleshooter for 
an automated system. In these cases, the automation is used for effciency and preci-
sion during the majority of task execution, but when errors arise, the human is called 
in to restore functionality. If the human is not actively engaged with the system and 
maintaining global SA, it can be diffcult to make accurate quick decisions when 
abruptly called back into duty (Ordoukhanian & Madni, 2017, 2018). Attempting to 
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maintain SAT of large multi-agent systems is often irrelevant and could be harm-
ful if it demands too much of the user’s attention. The results of the DD study do 
not show an interaction between SAT and SAG, but we can speculate that as more 
cognitive effort is expended tracking the states of the individual agents, the user will 
have less ability to maintain awareness of the task and total system state. Therefore, 
global SA can be aided by design of low-explanation UIs that only present relevant 
task-centric information at the expense of more detailed SAT. Comprehension of 
the signifcance of system states could also be aided by UIs that alert the user when 
certain critical states are reached. 

Projecting how multi-agent systems will behave in the future is perhaps the most 
critical research aspect, as this is an area where humans tend to falter (Tabibian et 
al., 2014). Systems can be made more predictable when designed with the human in 
mind, or UIs can present predictions directly to the user. If predictions are presented, 
it would be necessary to provide a limited volume of explanation, as they are based 
on simulations whose underpinnings would be diffcult for the user to comprehend 
in real time. 

Over-reliance on automation is even more of a risk in multi-agent systems, as the 
systems can quickly become so incomprehensible that the user’s only viable choice 
to remain in control is to naively trust the recommendations of the expert system 
(Parasuraman & Riley, 1997). While trust propensity is only indirectly linked to 
adherence in these studies, it may need to be a part of the user’s training with the 
system. Recommenders within multi-agent systems are built with the assumption 
that they can provide more optimal functionality than human judgment alone, so 
users may need to be taught to trust the system even in the face of errors and stress. 

Unlike in monolithic systems, people may form a perception of each individual 
agent, so that the system perception may not be simply binary, as is indicated by 
Hassenzahl et al. (2008; Hassenzahl & Tractinsky, 2006). Here the concept of trust 
becomes more complicated, as a user may have differing levels of trust in each agent, 
and these may not all be easily predicted from that operator’s trust propensity. Although 
control was not shown to strongly effect UXA, we can speculate that in a multi-agent 
system, having the ability to change or quarantine untrustworthy agents would have a 
positive effect on UXA. (But again, this may be counterproductive if the user substi-
tutes his own erroneous judgment because he mistakenly distrusts an agent.) 

Design of Intelligent Multi-Agent Systems and Future Work 
The benefts and of multi-agent systems have made them an attractive design goal, 
but their complexity makes design and use very challenging. Traditional design pro-
cesses can falter because of the unpredictability of multi-agent behavior, so advanced 
modeling, simulation, and optimization are often needed (Humann, 2015). These 
techniques include multi-objective and hierarchical optimization (Durand, Burgaud, 
Cooksey, & Mavris, 2017; Fisher, Cooksey, & Mavris, 2017), genetic algorithms to 
tune agent behavioral parameters (Humann & Jin, 2013; Humann et al., 2014), multi-
agent simulation (including simulation of human behavior) (Gao & Cummings, 
2012), and many others. The common theme is that computational tools are neces-
sary to aid designers, as the complexity of systems is too great to draw them up fully 
formed from intuition or analytical methods. 
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Future multi-agent systems will require a more thorough understanding of human 
factors. This includes discovering the limitations of humans from the perspective of 
the agents. Agents will need to be able to sense when a human is overloaded or per-
forming poorly and adapt. Executable models of humans will need to be developed 
in control and decision-making scenarios, so that designers can use realistic simula-
tions of humans to test system autonomy levels prior to manufacture and deploy-
ment. Universal metrics for human interaction with multi-agent systems must be 
developed so that results of case studies can be interpreted and applied to new ideas. 

Finally, emerging technology for human-systems interaction will also need to be 
deployed. This includes augmented reality, which can be used to summarize high-
lights of swarm states for situation awareness, and multi-modal (e.g. haptic) feedback 
to keep the user informed of the system status across multiple channels without over-
loading a single channel. 

To reach these goals, we propose the following research agenda: 

• Study the relationship between global SA and SAT: most UIs for multi-
agent systems are designed under the assumption that users should be 
shielded from the internal details of each agent, only focusing on high-level 
tasks and system states. Is this assumption sound? Can a more detailed 
knowledge of SAT lead to inference of global SA? 

• Pinpoint limits of human cognitive load: multi-agent environments will be 
much more cognitively taxing on the user, especially if he is forced to make 
decisions under time constraints. Effective design of systems must take the 
user’s limits into account. How can workload be predicted by designers? 
How is workload related to decision optimality? 

• Clarify relationships between levels of situation awareness and cognitive 
load: the “levels” of situation awareness (knowledge of states, compre-
hension of states, and prediction of future states) may not strictly build on 
one another, and any one could be tracked and summarized by a UI. Does 
attempting to maintain these different levels have a different effect on cog-
nitive load? If one or more are presented to the user through a UI, making 
them easier to maintain, how does this affect cognitive load? 

• Investigate forced vs. voluntary users: many multi-agent systems are 
designed out of necessity; it is unrealistic for users to complete the task 
without the aid of the system. In a work environment, employees can be 
forced to use the system. How does this affect trust in the system? Can users 
be trained to be more trusting? How does it affect UXA, and in the end does 
UXA only matter when trying to attract voluntary users? 

SUMMARY 

This chapter has investigated how human cognition reacts to the presence and con-
fguration of monolithic agents. We have identifed general system, user, and cog-
nitive factors that predict decision behaviors related to interaction with systems, 
incorporate of system predictions (adherence), and domain decision success. We 
have presented surprising effects related to user traits and beliefs about systems 
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that opens a door to future investigations. The analysis of multiple domains and the 
use of a common measurement methodology in two experiments has allowed us to 
better identify effects that should generalize well to other contexts. Furthermore, 
we have discussed these effects in the context of multi-agent systems and identifed 
future research and challenges. 

In the introduction, we posed the following research questions: 

• How do a person’s cognitive traits affect usage of an intelligent agent and 
resulting decision outcomes? 

• Which cognitive or system factors explain variability in decision making 
(interaction, adherence, success) in the HAI system? 

• What is the relationship between correct beliefs about agents, their use, and 
trust? 

We provide the following answers to these research questions. 

(1) In this work, we have quantitative evidence that suggests that self-reported 
experts are likely to be more trusting than the general population of users. 
These users not only interact less but also adhere to advice more often. 
True domain experts are more likely to have higher CRT. Intelligent agents 
could potentially adapt to users based on their personality, however, how 
to accommodate overconfdent users remains an open research question. 

(2) Despite the subjective (MR) vs. objective (DD) parameters of each task, 
we found that user experience and cognitive load were not as important 
as a user’s understanding of task factors or understanding of the agent. 
Manipulation of the system’s ECR profle also more strongly affected out-
comes than subjective system perceptions. 

(3) Situation-awareness based agent transparency (SAT) was an effective 
mediator of system explanation effects when trying to understand adher-
ence to advice. Furthermore, there is strong evidence here to suggest that 
SAT and trust/system perceptions are discriminant, while SAT was found 
to be externally valid. This suggests that less trusting users might be con-
vinced to use a system through effecting correct beliefs. 

While this research has identifed a number of HAI factors that transfer across domains 
and while we have provided expectations for their general relationships in a very lim-
ited scope, more research in other decision and task contexts, especially multi-agent 
tasks, is needed to develop a reliable, general theory about how intelligent agents affect 
human cognition and decision-making behavior. Additional factor modeling, especially 
task- and domain-specifc factors, will be essential in achieving high levels of predic-
tion about how human-machine systems evolve. This study has also not examined the 
longitudinal effects of repeated agent use on cognitive factors, nor how relationships 
between users and agents evolve over long periods of time. The domain knowledge and 
SAT metrics used in this task are exploratory and require further validation and study 
in each task domain where they are applied. Finally, the effects reported here warrant 
further and more detailed study where more variables are controlled. 
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In summary, we have discovered that cognitive traits and intermediate cognitive 
variables are crucial for understanding the effects of explanation, control, and error 
for HAI. Furthermore, we discovered that (1) the user profling metrics trust propen-
sity, cognitive refection, reported knowledge, and domain knowledge increase the 
ability to predict decision-making behaviors in the presence of an agent, (2) objec-
tively defned metrics such as situation awareness and domain knowledge are more 
indicative of outcomes than subjective system perceptions in the HAI system, and 
(3) correct user beliefs (SAT) about an agent mediate the effect of system explanation 
when predicting adherence to recommendations. 

NOTES 

All URLs last accessed June 2020. 

1. www.vanityfair.com/news/business/2014/10/air-france-fight-447-crash 
2. Our approach was nearly identical to http://grouplens.org/blog/similarity-functionsfor-

user-user-collaborative-fltering/ 
3. www.qualtrics.com/ 
4. www.wired.com/2012/10/lance-armstrong-and-the-prisoners-dilemma-of-doping-in-pro-

fessional-sports/ 
5. http://www.usabart.nl/QRMS/ 
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