


Figure 1: Sample views of AR simulation. Transparent red rectangles overlay the people, indicating their location. Left: A user view of Top
Hat (non-occluded) in the doorway. Middle: Three distractor people are visible through a large window. Right: A typical user view of a
corner occluding several people.

on each person, which is visible even when the person is occluded
by a wall. However, the target person’s overlay is identical to the
other virtual people overlays; the target may only be distinguished
when visible through a window or a door.

To actually run this experiment using a true augmented reality sys-
tem would be extremely difficult. Many confederates would be
needed to walk around the room, and their movements would need
to be accurately reproduced for each new participant. Also, the con-
federates would need to be continously tracked for the augmented
overlays to be displayed.

By simulating augmented reality, we are freed from the current re-
strictions of display technology. This simulated environment also
affords easily controlled variables, and thus the experiment may be
replicated.

4 Experimental Design

The experiment was designed with several goals in mind. The task
should have straightforward, quantitative results. Also, the task
should be reasonably simple so as not to frustrate the participants.
Furthermore, the task should be generic so as to be generizable, yet
grounded in reality (i.e. not an abstract world), to enhance partici-
pant familiarity with the AR task.

We developed a target following task scenario, where the user is
asked to visually track a virtual person as it moves throughout the
scene. The participant is centered inside a room with various doors
and windows giving a view to the outside world. They may change
their orientation, but not change position (three degrees of free-
dom). The user’s view to the virtual person may be occluded at any
time by the walls of the building; at other times the person may be
visible through doors or windows in the building. The augmented
view element is composed of red marker rectangles indicating the
location of the person to be followed and the distractor people.

The parameters of our experiment are divided between the “real”
components of immersion, such as the field of view of the HMD,
and the “augmented” components of immersion, such as the field
of view of the simulated AR display, and the performance of the
tracking sensor. We introduce periods of sensor dropouts, where the
augmented overlays disappear, to simulate the effect of dropouts in
a real tracking system. Such dropouts may occur with a magnetic
sensor near interfering material. Different display options are avail-
able in this case; for example we could use the last known sensor
reading, or predict future values. However, we determined through
expert analysis that hiding the AR overlay during sensor dropouts
would have the least effect on performance.

The experiment has two independent variables: the field of view of
the AR interface and the length of sensor dropout periods. Each
trial lasts 60 seconds, and includes seven sensor dropouts. The total

Figure 2: Overhead view of virtual room (approx. measure). Par-
ticipant is stationary in the center of the room, with initial orienta-
tion along “user view” arrow. Top-hat’s initial position is outside
the front doorway, directly in the participant’s view.

vertical field of view of the HMD is 36 degrees, while the three pos-
sible values for the augmented field of view are 10, 20, and 34 de-
grees. The length of dropouts vary between two seconds (highest),
one second (medium) and zero seconds (lowest). We experimented
with longer dropout periods but deemed them too long. There is a
total of nine conditions. For each participant we tested each condi-
tion three times giving a total of 27 trials per participant.

During each trial there are 20 people in addition to a virtual man
Top Hat wearing a tall black top hat; each walking an unpredictable
path outside of the room. The paths for each virtual person were
randomly generated from a set of coordinates exterior to the room.
Paths were constrained to stay within the rectangular 50 × 50 m2

area surrounding the room. At each path point, the virtual per-
son randomly changes its walking speed within the range of four
to seven meters per second. Top Hat has the additional constraints
as follows. He starts each trial just outside the front door of the
building, standing in the participant’s plain view. In order to make
paths of similar difficulty Top Hat walks around the entire build-
ing at least once, and is visible through the windows for at least 10
seconds. These constraints were met by randomly generating paths
until all were satisfied. We generated 27 sets of paths in this fash-
ion, each corresponding to a specific trial and used a latin squares
ordering to discourage learning effects.

4.1 Implementation

We implemented this experiment with Python and the Vizard virtual
reality toolkit. Head-tracking was handled with a InterSense Inerti-
aCube3 orientation tracker with a refresh rate of 180 Hz. We used
a Pro-View 60 head mounted display (HMD) displaying 640× 480
video at 60 Hz, and 36 degrees vertical field of view. As we were
not concerned with the effects of stereo, we disabled the stereo-
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scopic feature. The experiment ran on a 2.4 GHz Intel Core 2 ma-
chine with two gigabytes of RAM, a NVIDIA GeForce 9800 GX2
graphics card and Windows XP SP3.

4.2 Participants

We ran this experiment with 19 participants; eleven male and eight
female. The participants ranged in age from 23 to 59, 15 were
in the range 23 to 30, and the remaining four in the range 51 to
49. None were colorblind. Most users were heavy computer users
with at least some familiarity with virtual reality and augmented
reality. Only one participant reported regularly playing 3D video
games. After every nine trials, the participants took a mandatory
five minute break. Some experienced light fatigue, but none expe-
rienced strong effects of motion sickness.

5 Analysis

In our experiment we define performance as effectiveness in fol-
lowing Top Hat. The dependent variable we measure is the angu-
lar distance (in yaw) between the the user’s viewing direction and
the direction towards the target character. This measure ranges be-
tween zero and 180 degrees (we used the smaller of the two options,
clockwise and counter-clockwise). We record one measurement per
video frame, at about sixty frames per second, resulting in approx-
imately 3600 measurements for a one minute trial.

Because the video does not always run precisely at 60 Hz, each trial
might have a slightly different number of measurements. We also
record a timestamp for each measurement, so that we can deter-
mine their exact frequency. As a pre-processing step, we linearly
re-sample the data for each trial so that each has exactly 3600 mea-
surements at 60 Hz.

We observed that participants tend to switch between two different
states during the experiment: a target following state, and a lost
state, where they are searching for the target. The two states are
easily visible in the data. In the target following state, the angular
error is generally low. We had asked participants to keep the cross
hairs on the target as closely as possible, but different participants
achieved different levels of accuracy. In the lost state, the error
starts to steadily climb, and may fluctuate depending on where the
target moves. The error may even return to near-zero during a lost
state, if the participant unwittingly crosses the target’s path.

The simplest metric is the average error over an entire trial. This
may not accurately represent sensor dropouts, because the error
does not necessarily stay high during the lost state, and also dif-
ferent participants may generally keep the cross hair further from
the target even in the target following state.

We may detect the participant’s state more explicitly by applying a
threshold τ to the data. The threshold specifies the maximum an-
gular error that represents successful following of the target. When
conducting the trials we noticed that the participants spent a ma-
jority of the time correctly following Top Hat. By computing the
median angular error, we found that the participants successfully
tracked Top Hat within an error margin of four degrees. We also
noticed that during trials as Top Hat would change direction the
participant’s angular error would increase by a small amount for
a short period of time, without losing the target. As a result we
doubled the four degrees, giving us a threshold of τ = 8 degrees.

Using this threshold we measure a participant’s time to failure, the
time until the a lost state is encountered. However, this may not
be a very descriptive measure, since a participant may reach the
lost state sooner or later depending on the movement of the avatars,
which varies between trials.
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Figure 3: Box plots for our two independent variables and two
metrics. In general, performance increases when the length of sen-
sor dropout periods is lessened, and when the AR field of view in-
creases.

We also consider a measurement we call time following target,
which is the amount of time spent successfully following the target.
This metric seems to most generally represent how well a partici-
pant performed. Trials with either more or longer lost periods will
result in a lower total time following the target.

For a more specific measure of performance, we count the number
of times a participant reaches the lost state in a trial, or number of
times lost. We only record a lost state when the error stays above the
threshold τ for a minimum of four seconds. A four second thresh-
old was used because it is double the maximum dropout length,
allowing the user a few seconds to resume successful tracking after
the dropout before they are considered to have lost the target.

6 Results

Figure 3 shows box plots of two metrics versus our two independent
variables.. We performed two-way ANOVA for the time following
target metric as an overall analysis of the effects of our two factors.
Both the failure length and the field of view have a significant effect
on performance with this metric with p < 0.001. We also used a
two-way ANOVA to examine the number of times the participant
loses the target. Both field of view and dropout length have a sig-
nificant effect with p < 0.001. There also is an interaction between
the two factors at the p = 0.05 level. Figures 4(a)-(c) show box
plots for these conditions.

From this plot we can see that with a small field of view, perfor-
mance is equally bad with no dropouts or one second dropouts.
When the field of view is increased to the medium level, perfor-
mance dramatically increases when there are no dropouts, but only
gets slightly better when there are dropouts. Finally, there is not
a significant difference in performance between the medium and
large field of view (p = 0.575), which suggests that the medium
field of view is enough for good performance.

Considering the time following target metric, performance de-
creases between zero and one seconds, but seems to level off be-
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Figure 4: Box plots (a)-(c) relate sensor dropout length to the number of times the participant loses the target, with (a) low, (b) medium and
(c) upper field of view. Box plot (d) shows the total time the participant is following the target versus the length of the sensor dropout periods,
including the half second dropout condition. We collected the data for box plot (d) from seven participants, using the medium field of view.

tween one and two. We ran a post-hoc analysis to determine which
conditions were significantly different. Using Tukey’s HSD, we
found that the one second and two second conditions were signifi-
cantly different than zero (p < 0.001 for both), but not significantly
different from each other (p = 0.239). This suggests that we may
be seeing a thresholding effect above one second sensor dropouts.

To investigate this threshold, we had seven participants complete an
extra three trials with the medium field of view and sensor dropout
periods of 0.5 seconds. Figure 4(d) shows a box plot of time fol-
lowing target versus sensor dropout length for these seven partic-
ipants. Again using Tukey’s HSD to compare the means, we did
not find a significant difference between the zero length and half
second length conditions, but did find a significant difference be-
tween those and the higher length conditions. With further experi-
mentation, we could further delineate the performance curve as the
dropout length increases from zero to one second.

7 Conclusions and Future Work

We designed a AR experiment to study the effects of tracker reli-
ability and field of view on a target following task. We developed
a virtual reality based AR simulation to enable control over these
independent variables.

We found that for our target following task, good performance
could not be achieved with a low field of view, even with perfect
tracker reliability. With a reliable tracker, a medium field of view
is enough for good performance. We did not see a significant per-
formance increase when increasing to a high field of view. These
results suggest that a reasonable AR field of view is crucial for per-
formance in target following tasks, but the benefit does not continue
to improve with increasing FOV.

Decreased tracker reliability, due to periods of sensor dropout, ad-
versely affects task performance. However, the performance de-
crease levels off at one second dropouts. Preliminary analysis also
shows no significant difference between having no dropouts and
half second dropouts. This suggests that below a certain dropout
length, good performance may be maintained, given a sufficiently
large FOV. Our findings suggest that AR interface designers should
consider ways to mediate the effect of sensor dropouts longer than
one second, although dropouts less than one half second long do
not harm performance.

Future work lies in further investigating the effect of the dropout
length below the one second level. Our work also suggests new
experiments designed to test the interaction between reliability of
the head-based rendering and various other immersion components.
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